Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography

A revision of Herennia (Araneae : Nephilidae : Nephilinae), the Australasian ‘coin spiders’

Matjaž Kuntner

A Department of Entomology, National Museum of Natural History, Smithsonian Institution, NHB-105, PO Box 37012, Washington, DC 20013-7012, USA and Department of Biological Sciences, George Washington University, 2023 G St. N.W., Washington, DC 20052, USA.

B Present address: Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, PO Box 306, SI-1001 Ljubljana, Slovenia.

C Email:

Invertebrate Systematics 19(5) 391-436
Submitted: 14 June 2005  Accepted: 23 September 2005   Published: 12 December 2005


The nephilid ‘coin spiders’ (Herennia Thorell) are known for their arboricolous ladder webs, extreme sexual size dimorphism and peculiar sexual biology. This paper revises Herennia taxonomy, systematics, biology and biogeography. The widespread Asian Herennia multipuncta (Doleschall) ( = H. sampitana Karsch, new synonymy; = H. mollis Thorell, new synonymy) is synanthropic and invasive, whereas the other 10 species are narrowly distributed Australasian island endemics: H. agnarssoni, sp. nov. is known from Solomon Islands; H. deelemanae, sp. nov. from northern Borneo; H. etruscilla, sp. nov. from Java; H. gagamba, sp. nov. from the Philippines; H. jernej, sp. nov. from Sumatra; H. milleri, sp. nov. from New Britain; H. oz, sp. nov. from Australia; H. papuana Thorell from New Guinea; H. sonja, sp. nov. from Kalimantan and Sulawesi; and H. tone, sp. nov. from the Philippines. A phylogenetic analysis of seven species of Herennia, six nephilid species and 15 outgroup taxa scored for 190 morphological and behavioural characters resulted in 10 equally parsimonious trees supporting the monophyly of Nephilidae, Herennia, Nephila, Nephilengys and Clitaetra, but the sister-clade to the nephilids is ambiguous. Coin spiders do not fit well established biogeographic lines (Wallace, Huxley) dividing Asian and Australian biotas, but the newly drawn ‘Herennia line’ suggests an all-Australasian speciation in Herennia. To explain the peculiar male sexual behaviour (palpal mutilation and severance) known in Herennia and Nephilengys, three specific hypotheses based on morphological and behavioural data are proposed: (1) broken embolic conductors function as mating plugs; (2) bulb severance following mutilation is advantageous for the male to avoid hemolymph leakage; and (3) the eunuch protects his parental investment by fighting off rival males.


Views, opinions, interpretations and potential errors in this paper are my own, not those of who have commented on and criticised earlier drafts. I thank Jonathan Coddington and Gustavo Hormiga for advice and help, Ingi Agnarsson and Jeremy Miller for their daily help, encouragement and comments, Jutta Schneider and Miquel Arnedo for discussing the ideas and preliminary results from this study, and Marc Allard, Jim Clark, Diana Lipscomb and Chris Thompson for their comments on an early draft. The helpful comments of Camilla Myers, Mark Harvey and Volker Framenau much improved the paper. Fernando Alvarez-Padilla, Lara Lopardo, Dana deRoche and Scott Larcher offered assistance and help; Scott Whittaker and Patrick Herendeen provided SEM help, and Karie Darrow kindly helped with digital image manipulation. Numerous curators, collection managers and other biologists have assisted with loans (see Materials and methods) and by collecting the specimens. Erik J. van Nieukerken kindly helped translate Doleschall’s text and find his original artwork. Gustavo Hormiga kindly provided his unpublished photograph. The fieldwork in Indonesia was done jointly with Irena Kuntner and Matjaž Bedjanič. This project was supported by the USA National Science Foundation (PEET grant DEB-9712353 to Hormiga and Coddington) and partly by the OTS-STRI-Mellon Research Exploration Award (to Kuntner and Šereg). I further acknowledge material and financial support of the George Washington University, Smithsonian Institution, the Ministry of Science of the Republic of Slovenia and the Biological Institute of the Slovenian Academy of Sciences and Arts. At the latter institution, the support (1999–2001) was coordinated by Rajko Slapnik, and the final stages endorsed by Branko Vreš and Oto Luthar. This project would have been impossible without the support of my wife Irena, my parents Sonja and Tone, and my brother Jernej.


Bonnet P. (1957). ‘Bibliographia Araneorum, Vol. 2, Part 3, (F–M).’ (Douladoure: Toulouse, France.)

Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstructions. Evolution 42, 795–803. open url image1

Bremer K. (1994) Branch support and tree stability. Cladistics 10, 295–304.
CrossRef |
open url image1

Brignoli P. M. (1983). ‘A Catalogue of the Araneae Described Between 1940 and 1981.’ (Manchester University Press in association with The British Arachnological Society: Manchester, UK.)

Brown J. H., and Lomolino M. V. (1998). ‘Biogeography.’ 2nd edn. (Sinauer Associates: Sunderland, MA, USA).

Cantino P. D., and de Queiroz K. (2004). ‘PhyloCode: A Phylogenetic Code of Biological Nomenclature, Version 2b.’ Available online at: (verified November 2005).

Chrysanthus F. (1971) Further notes on the spiders of New Guinea I (Argyopidae). Zoologische Verhandelingen 113, 1–52. open url image1

Coddington J. A. (1983) A temporary slide-mount allowing precise manipulation of small structures. Verhandlungen des Naturwissenschaftlischen Vereins in Hamburg, N.S. 26, 291–292. open url image1

Coddington J. A. (1989) Spinneret silk spigot morphology: evidence for the monophyly of orb-weaving spiders, Cyrtophorinae (Araneidae), and the group Theridiidae–Nesticidae. Journal of Arachnology 17, 71–95. open url image1

Coddington J. A. (1990) Ontogeny and homology in the male palpus of orb weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). Smithsonian Contributions to Zoology 496, 1–52. open url image1

Coddington J. A., Hormiga G., Scharff N. (1997) Giant female or dwarf male spiders? Nature 385, 687–688.
CrossRef | open url image1

Colwell R. K. (1999). ‘BIOTA: The Biodiversity Database Manager, Version 1.6.0.’ (Sinauer Associates: Sunderland, MA, USA).

Dahl F. (1912) Seidenspinne und Spinnenseide. Mitteilungen aus dem Zoologischen Museum in Berlin 6, 1–90. open url image1

Davies V. T. (1988) An illustrated guide to the genera of orb-weaving spiders in Australia. Memoirs of the Queensland Museum 25, 273–332. open url image1

Doleschall C. L. (1859) Tweede Bijdrage tot de Kennis der Arachniden van den Indischen Archipel. Verhandelingen der Natuurkundige Vereeniging in Nederlandsch Indië 5, 1–60. open url image1

Eberhard W. G. (1982) Behavioral characters for the higher classification of orb-weaving spiders. Evolution; International Journal of Organic Evolution 36, 1067–1095. open url image1

Farris J. S. (1969) A successive approximations approach to character weighting. Systematic Zoology 18, 374–385. open url image1

Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791. open url image1

Fitch W. M. (1971) Towards defining the course of evolution: minimal change for a specific tree topology. Systematic Zoology 20, 406–416. open url image1

Goloboff P. A. (1993). ‘NONA, Version 2.0.’ Available online at: (verified November 2005).

Griswold C. E., Coddington J. A., Hormiga G., Scharff N. (1998) Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zoological Journal of the Linnean Society 123, 1–99.
CrossRef | open url image1

Holm Å. (1979) A taxonomic study of European and East African species of the genera Pelecopsis and Trichopterna (Araneae, Linyphiidae) with descriptions of a new genus and two new species of Pelecopsis from Kenya. Zoologica Scripta 8, 255–278. open url image1

Hormiga G., Eberhard W. G., Coddington J. A. (1995) Web-construction behaviour in Australian Phonognatha and the phylogeny of nephiline and tetragnathid spiders (Araneae: Tetragnathidae). Australian Journal of Zoology 43, 313–364.
CrossRef | open url image1

Hormiga G., Scharff N., Coddington J. A. (2000) The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Systematic Biology 49, 435–462.
CrossRef | PubMed | open url image1

International Comission on Zoological Nomenclature (1999). ‘International Code of Zoological Nomenclature.’ 4th edn. (International Trust for Zoological Nomenclature: London, UK.)

Karsch F. (1880) Arachnologische Blätter (Decas I). Zeitschrift für die Gesammten Naturwissenschaften 53, 373–409. open url image1

Kuntner M. (2002) The placement of Perilla (Araneae, Araneidae) with comments on araneid phylogeny. The Journal of Arachnology 30, 281–287. open url image1

Kuntner M. (2003) The systematics of nephiline spiders (Araneae, Tetragnathidae). American Arachnology 66, 9. open url image1

Kuntner M. (in press) Phylogenetic systematics of the Gondwanan nephilid spider lineage Clitaetrinae (Araneae, Nephilidae). Zoologica Scripta , open url image1

Kuntner M., Hormiga G. (2002) The African spider genus Singafrotypa (Araneae, Araneidae). The Journal of Arachnology 30, 129–139. open url image1

Levi H. W. (1980) The orb-weaver genus Mecynogea, the subfamily Metinae and the genera Pachygnatha, Glenognatha and Azilia of the subfamily Tetragnathinae north of Mexico (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology 149, 1–75. open url image1

Levi H. W. (1986) The neotropical orb-weaver genera Chrysometa and Homalometa (Araneae: Tetragnathidae). Bulletin of the Museum of Comparative Zoology 151, 91–215. open url image1

Levi H. W., von Eickstedt V. R. D. (1989) The Nephilinae spiders of the Neotropics (Araneae: Tetragnathidae). Memorias do Instituto Butantan 51, 43–56. open url image1

Masumoto T., Okuma C. (1995) Specific web building on eucalyptus trees in Herennia ornatissima (Araneae: Tetragnathidae). Acta Arachnologica 44, 171–172. open url image1

Murphy F., and Murphy J. (2000). ‘An Introduction to the Spiders of South East Asia.’ (Malaysian Nature Society: Kuala Lumpur, Malaysia.)

Nixon K. (2002). ‘WinClada, Version 1.00.08.’ Available online at: (verified November 2005).

Pan H. C., Zhou K. Y., Song D. X., Qiu Y. (2004) Phylogenetic placement of the spider genus Nephila (Araneae: Araneoidea) inferred from rRNA and MaSp1 gene sequences. Zoological Science 21, 343–351.
CrossRef | PubMed | open url image1

Platnick N. I. (1989). ‘Advances in Spider Taxonomy: A Supplement to Brignoli’s A Catalogue of the Araneae Described between 1940 and 1981.’ (Manchester University Press: Manchester, UK.)

Platnick N. I. (1993). ‘Advances in Spider Taxonomy 1988–1991: With Synonymies and Transfers 1940–1980.’ (New York Entomological Society in association with the American Museum of Natural History: New York, USA.)

Platnick N. I. (1997). ‘Advances in Spider Taxonomy 1992–1995: With Redescriptions 1940–1980.’ (New York Entomological Society in association with the American Museum of Natural History: New York, USA.)

Platnick N. I. (2005). ‘The World Spider Catalog, Version 5.5.’ Available online at: (verified November 2005).

Robinson M. H. (1975). The evolution of predatory behaviour in araneid spiders. In ‘Function and Evolution in Behavior’. (Eds G. Baerends, C. Beer and A. Manning.) pp. 292–312. (Clarendon Press: Oxford, UK.)

Robinson M. H. (1982) Courtship and mating behavior in spiders. Annual Review of Entomology 27, 1–20.
CrossRef | open url image1

Robinson M. H., Lubin Y. D. (1979) Specialists and generalists: the ecology and behavior of some web-building spiders from Papua New Guinea, 1. Herennia ornatissima, Argiope ocyaloides and Arachnura melanura (Araneae: Araneidae). Pacific Insects 21, 97–132. open url image1

Robinson M. H., Robinson B. (1978) The evolution of courtship systems in tropical araneid spiders. Symposia of the Zoological Society of London 42, 17–29. open url image1

Robinson M. H., Robinson B. (1980) Comparative studies of the courtship and mating behavior of tropical araneid spiders. Pacific Insects Monograph 36, 35–218. open url image1

Roewer C. F. (1942). ‘Katalog der Araneae von 1758 bis 1940, bzw. 1954., Vol. 1.’ (Paul Budy: Bremen, Germany.)

Roth V. D., Roth B. M. (1984) A review of appendotomy in spiders and other arachnids. Bulletin (British Arachnological Society) 6, 137–146. open url image1

Scharff N., Coddington J. A. (1997) A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zoological Journal of the Linnean Society 120, 355–434.
CrossRef | open url image1

Simon E. (1894). ‘Histoire Naturelle des Araignées. Vol. 1.’ pp. 489–760. (Roret: Paris, France.)

Stoliczka F. (1869) Contribution towards the knowledge of Indian Arachnoidea. Journal of the Asiatic Society of Bengal 38, 201–251. open url image1

Thorell T. (1877) Studi sui ragni Malési e Papuani. I. Ragni di Selebes raccolti nel 1874 dal Dott. O. Beccari. Annali del Museo Civico di Storia Naturale ‘Giacomo Doria’. Genova 10, 341–634. open url image1

Thorell T. (1878) Studi sui ragni Malési e Papuani. II. Ragni di Amboina raccolti Prof. O. Beccari. Annali del Museo Civico di Storia Naturale ‘Giacomo Doria’. Genova 13, 1–317. open url image1

Thorell T. (1881) Studi sui ragni Malési e Papuani. III. Ragni dell’Austro Malesia e del Capo York, conservati nel Museo civico di storia naturale di Genova. Annali del Museo Civico di Storia Naturale,’Giacomo Doria’. Genova 17, 7–27. open url image1

Thorell T. (1887) Viaggio di L. Fea in Birmania e regioni vicine. II. Primo saggio sui Ragni birmani. Annali del Museo Civico di Storia Naturale,’Giacomo Doria’. Genova 2, 5–417. open url image1

Thorell T. (1890) Studi sui ragni Malesi e Papuani. IV, 1. Annali del Museo Civico di Storia Naturale,’Giacomo Doria’. Genova 28, 1–419. open url image1

Tikader B. K. (1982). Spiders: Araneae, Vol. II, Part 1: family Araneidae (=Argiopidae), typical orbweavers. In ‘The Fauna of India’. pp. 1–293. (Zoological Survey of India: Calcutta, India.)

Wunderlich J. (1986). ‘Spinnenfauna gestern und heute. Fossile Spinnen in Bernstein und ihre heute lebenden Verwandten.’ (Erich Bauer, Quelle & Meyer: Wiesbaden, Germany.)

Wunderlich J. (2004). Fossil spiders in amber and copal. Conclusions, revisions, new taxa and family diagnoses of fossil and extant taxa. Beiträge zur Araneologie 3A-B, 1–1908.

Appendix 1. List of characters and character states used in the phylogenetic analysis, with description of characters relevant for Herennia

A rigorous homology test of these and additional characters relevant for nephilids will be presented elsewhere (Kuntner, Hormiga and Coddington, unpublished data)

(1) Female cephalic region: 0, low (Fig. 1A); 1, conspicuously high.

(2) Female carapace: 0, piriform (Fig. 1C); 1, oval with wide head region.

(3) Female carapace edge: 0, smooth; 1, ridged (Figs 1C, 5B, D).

(4) Female carapace edge: 0, glabrous or with few hair-like setae; 1, with an extensive row of hair-like setae (Fig. 5BE).

(5) Female median pair of prosomal tubercles: 0, absent (Figs 1AC, 5B); 1, present.

(6) Fovea (female carapace): 0, inconspicuous (Figs 1A, C, 5B, 19A); 1, pronounced.

(7) Female carapace macrospines: 0, absent; 1, present.

Note: in all Nephilengys species stout erect macrospines aer present on carapace.

(8) Female carapace warts: 0, absent; 1, present (Figs 5F, 19AF).

Note: the carapace cuticle is warty (enlarged functional and non-functional setal bases) in all Herennia species, especially pronounced in H. etruscilla (Fig. 19).

(9) Female carapace V-mark: 0, absent; 1, present (Figs 1C, 14, 27A, C).

(10) Female carapace hair-like setae: 0, present (Figs 5, 19); 1, absent.

Note: apart from regular setae nephilids (and certain outgroups) have thin short white hair-like setae.

(11) Female median eye region: 0, rounded; 1, median eyes on a tubercle (Figs 1BC, 5C, 19E).

(12) Female lateral eye region: 0, lateral eyes on separate tubercles; 1, lateral eyes on a single tubercle (Figs 1BC, 5C, 19E); 2, rounded.

(13) Female LE separation from ME: 0, not widely separated (Figs 1BC, 5C, 19E); 1, widely separated.

Note: ratio of the distance between the PLE and PME (at its widest point) divided by the width of the PME ocular area (at the widest point). If the ratio is less than 1, the separation is normal; if the ratio is more than 1, the separation is wide.

(14) Posterior eye row (dorsal view): 0, straight to recurved (Figs 1C, 5BC, 19A, D, E); 1, procurved.

Note: the character is from Scharff and Coddington (1997: character 54).

(15) Female PME: 0, less than one PME diameter apart; 1, one PME diameter or more apart (Figs 1C, 5BC, 19A, D, E).

(16) Female PLE size: 0, equal or less than PME (Fig. 19E); 1, larger than PME.

(17) PME canoe tapetum: 0, absent; 1, full; 2, narrow.

Note: corresponds to character 4 in Hormiga et al. (1995), characters 51 and 52 in Scharff and Coddington (1997) and characters 28 and 29 in Griswold et al. (1998). Herennia lacks eye tapeta.

(18) PLE canoe tapetum: 0, absent; 1, full; 2, narrow.

Note: as above.

(19) Female clypeus height: 0, low (less than three AME diameters); 1, equal or more than three AME diameters.

(20) Endites: 0, very long (> 2 × width); 1, short (length < 2 × width).

(21) Labium and sternum: 0, separate; 1, fused.

(22) Female sternum: 0, longer than wide; 1, as wide as or wider than long.

(23) Sternal slit sensilla: 0, present (Figs 6EF, 20F); 1, absent.

(24) Female sternum colour pattern: 0, inconspicuously coloured; 1, uniformly orange/red (Fig. 26B); 2, medially dark, laterally pale; 3, medially light, laterally dark; 4, with yellow spots corresponding to tubercles.

(25) Sternal white pigment: 0, absent; 1, present.

(26) Female sternal tubercle I: 0, absent; 1, present.

Note: paired elevations of the female sternum adjacent to coxae I-IV are termed sternal tubercles (Fig. 6E – arrows).

(27) Female sternal tubercle II: 0, absent; 1, present (Fig. 6E – arrows).

(28) Female sternal tubercle III: 0, absent; 1, present (Fig. 6E – arrows).

(29) Female sternal tubercle IV: 0, absent; 1, present (Fig. 6E – arrows).

(30) Female frontal sternal tubercle: 0, absent; 1, present.

(31) Female chilum: 0, absent; 1, present.

Note: The chilum is present as a paired sclerite (Fig. 1B) at the base of chelicerae, just under the clypeus in most nephilids (not in certain Clitaetra species).

(32) Female chelicerae: 0, massive (width > 1/2 length); 1, slender (width < 1/2 length).

Note: nephilids have massive chelicerae with the width from profile more than 1/2 length (Figs 1A, 20A).

(33) Cheliceral ectal margins: 0, smooth; 1, with stridulatory striae.

(34) Cheliceral boss: 0, present (Figs 6B, 20AC); 1, absent.

(35) Cheliceral boss surface: 0, smooth; 1, striated (Figs 6B, 20AC).

(36) Prosomal supracheliceral lobe (PSL): 0, present (Fig. 20B); 1, absent.

(37) Cheliceral furrow: 0, denticulated (Fig. 20E); 1, smooth.

(38) Female first femur: 0, more/less straight; 1, sigmoidal.

(39) Femoral macrosetae: 0, present (Figs 5B, D, 19B); 1, absent.

(40) Femoral (I, II) macrosetae length: 0, long (Fig. 19B); 1, short, stout (Fig. 5D).

(41) Female femur 1 group of prolateral long spines: 0, absent; 1, present (Figs 16AB, 31B).

(42) Dorsal femoral trichobothria: 0, absent; 1, present.

(43) Female tibia I tufts: 0, absent; 1, present.

Note: all Nephila species at some stage possess dense tibial setae on legs I, II, IV.

(44) Female tibia II tufts: 0, absent; 1, present.

(45) Female tibia IV tufts: 0, absent; 1, present.

(46) Patella-tibia autospasy: 0, absent; 1, present.

(47) Ventral tarsus IV setae: 0, irregular; 1, comb-like.

(48) Tarsus IV median claw: 0, long (as long or longer than the main claw; Fig. 7AD); 1, short (shorter than the paired main claw).

(49) Sustentaculum: 0, present (Fig. 7BD); 1, absent.

(50) Sustentaculum angle: 0, wide, diverging from other setae; 1, narrow, parallel to other setae (Fig. 7BD).

(51) Female abdomen length: 0, very long (> 2 × width); 1, long (longer than wide, but < 2 × width); 2, short (as wide as long or wider).

(52) Female abdomen width: 0, elliptical; 1, widest anteriorly; 2, widest posteriorly; 3, pentagonal.

(53) Female lateral abdominal margin: 0, smooth; 1, with 3–4 pairs of lobes (Figs 1AD, 8AC, 9AB, E, 10AD).

(54) Female anterior abdominal humps: 0, absent; 1, present.

(55) Female abdomen tip: 0, rounded; 1, truncated (Fig. 9B – arrow).

(56) Female ventro-median sclerotisations: 0, absent; 1, paired sclerotisations (Figs 1D, 8AC, 9BD, 10A).

Note: all nephilids possess a row of conspicuous sclerotised apodemes medially on venter and one to several rows of sclerotisations laterally on venter.

(57) Female ventro-median sclerotisations: 0, 1–5 pairs; 1, 6–11 pairs.

(58) Female ventro-lateral abdominal sclerotisations: 0, present (Figs 1D, 8, 10AD); 1, absent.

(59) Ventro-lateral abdominal sclerotisations: 0, one paired line of small dots; 1, sclerotisations in several lines (Figs 1D, 8, 10AD).

(60) Female dorso-median abdominal apodemes: 0, absent; 1, 3–5 prominent pairs (Figs 1A, C, 16A, D, 22BD, 27A, 28A, 29A, 31AB).

(61) Female dorso-lateral abdominal sclerotisations: 0, present (Figs 1A, C, 16A, D, 22BD, 27A, 28A, 29A, 31AB); 1, absent.

(62) Female dorso-central abdominal sclerotisations: 0, absent; 1, present (Figs 1C, 22C, 31A).

(63) Female abdominal sigillae: 0, absent; 1, present (Figs 14, 23, 24A).

(64) Female anterior abdomen: 0, without; 1, with a broad light-pigmented band.

(65) Female abdominal dorsal pattern: 0, inconspicuous; 1, conspicuous.

(66) Female dorsum dark spots: 0, absent; 1, present (Figs 14, 25, 26A).

(67) Female dorsum ‘butterfly’ pattern: 0, absent; 1, present.

(68) Female abdomen tip color: 0, no different to the subapical abdomen; 1, paired white dots around spinnerets.

(69) Female abdomen silver pigment spots: 0, absent; 1, present.

(70) Female venter light pigmented pattern: 0, absent; 1, present (Fig. 1D, 29B).

(71) Female venter light pigmented pattern form: 0, one central light area; 1, transverse line(s); 2, four large spots; 3, numerous spots; 4, longitudinal lines.

(72) Book lung cover: 0, grooved (Figs 1D, 10AC); 1, smooth.

(73) Area around female book lung spiracle: 0, little sclerotised; 1, strongly sclerotised (Fig. 1D).

(74) Posterior epigynal plate: 0, round; 1, grooved.

Note: in some species of Nephila and Nephilengys the epigynal plate posterior edge is grooved and leads to lateral copulatory openings.

(75) Epigynal ventral area: 0, low; 1, swollen.

(76) Epigynal openings: 0, simple; 1, in chambers (Fig. 11).

Note: copulatory openings are within larger chambers in Nephilengys, Herennia, some Nephila species and in some outgroups.

(77) Chamber opening position: 0, medial (Fig. 27D); 1, lateral (Figs 2AB, 10EF, 11).

(78) Epigynal septum: 0, absent; 1, present (Figs 11, 18C, 28C).

(79) Epigynal septum shape: 0, simple border between chambers (Figs 11, 18C, 28C); 1, extensive, broader posteriorly (Fig. 27D); 2, extensive, broader anteriorly.

(80) Epigynal paired sclerotised pocket: 0, absent; 1, present.

(81) Anterior epigynal area: 0, with a pair of apodemes; 1, round.

(82) Cuticle anterior to the epigynal area: 0, rounded; 1, depressed.

(83) Copulatory opening position: 0, caudal; 1, ventral.

(84) Caudal copulatory openings: 0, on the posterior sclerotised epigynal margin; 1, anterior to the posterior margin.

(85) Copulatory opening form: 0, elongated slit openings; 1, rounded openings (Fig. 11).

(86) Copulatory duct morphology: 0, flattened duct (longer than wide, flat); 1, tube (longer than wide, cylindrical); 2, broad attachment to body wall (wider than long).

(87) Spermathecae: 0, lobed; 1, spherical; 2, oval.

Note: in Herennia spermathecae are adjacent, oval, with gland pores over their entire surface (Figs 2CD, 18D, 31E).

(88) Spermathecae separation: 0, wide (separated more than two widths); 1, small or none (separated less than two widths).

(89) Epigynal sclerotised arch: 0, absent; 1, present (Figs 2C, 18D, 31E).

(90) Female copulatory aperture: 0, never plugged; 1, sometimes plugged with emboli a/o conductors (Fig. 11). See Discussion.

(91) Female copulatory plugs: 0, emboli; 1, emboli plus (embolic) conductors (Fig. 11).

(92) Cribellum: 0, present; 1, absent.

(93) ALS piriform gland spigot bases: 0, normal; 1, reduced.

Note: the spinneret spigot characters (93–99) are from Hormiga et al. (1995), characters 54–60, and follow the homology assessments of Coddington (1989). An almost uniform nephilid spinneret morphology is: ALS with ‘normal PI field’ where the PI spigot base is nearly as long or longer than the shaft (Griswold et al., 1998: character 69, fig. 48B), the major ampullate spigot and a nubbin, PMS with a sparse aciniform field, and a nubbin, PLS with the aggregate spigots embracing the flagelliform, and with the two cylindrical spigots of normal size, the mesal being peripheral (compare with Figs 7EF, 21DF).

(94) PMS nubbin: 0, absent; 1, present.

(95) PMS aciniform field: 0, extensive; 1, sparse.

(96) PLS mesal cylindrical gland spigot base: 0, subequal to other PLS cylindrical spigot; 1, larger.

(97) PLS mesal cylindrical gland spigot position: 0, central; 1, peripheral.

(98) PLS aggregate-flagelliform relation: 0, aggregates apart from flagelliform; 1, distal aggregate spigots embrace flagelliform.

(99) PLS aggregate gland spigot: 0, normal; 1, large.

(100) Male size: 0, more than half the size of female; 1, less than 0.4 female.

Note: corresponds to character 14 in Hormiga et al. (1995) arbitrarily quantifying the extreme sexual size dimorphism, within nephilids typical of Nephila, Nephilengys and Herennia (Fig. 1).

(101) Male dorsal abdomen: 0, cuticle soft; 1, with scutum (Figs 3AC, 24AB, F).

(102) Male lateral eyes: 0, separate (Figs 3AB, 23AE); 1, juxtaposed.

(103) Male cephalic region: 0, narrower than in female (Fig. 1C, F); 1, same proportion to cephalothorax as in female.

(104) Male clypeus: 0, as in female; 1, more horizontal (Fig. 1A, E).

(105) Male v. female cheliceral size: 0, same; 1, larger; 2, smaller (Fig. 1A, E).

(106) Male paturon posteriorly: 0, smooth; 1, with a tubercle.

(107) Male leg II tibial macrosetae: 0, similar to those on tibia I; 1, stronger and more robust; 2, absent.

(108) Male endite depression: 0, absent; 1, present.

(109) Male palpal trochanter: 0, short (twice the width or less); 1, long (more than twice the width).

(110) Male palpal femoral tubercle: 0, absent; 1, present.

Note: see character 3 of Scharff and Coddington (1997: Fig. 4).

(111) Male palpal patella macrosetae: 0, none; 1, one (Figs 4A, 18A, 30A); 2, two.

Note: modified from character 19 in Hormiga et al. (1995).

(112) Male palpal tibia length: 0, short (not exceeding 1.5 times its width); 1, long (exceeding 1.5 times its width).

(113) Cymbium length: 0, short (less than 2 × width); 1, long (more than 2 × width).

(114) Cymbial ectal margin: 0, sclerotised as cymbium; 1, transparent.

(115) Paracymbium (P): 0, absent; 1, present.

(116) Paracymbial base sclerotisation: 0, like cymbium; 1, less sclerotised.

(117) Paracymbium morphology: 0, short basal structure, more or less hook-shaped; 1, longer than wide and finger-like; 2, flat and roughly rectangular; 3, U-shaped; 4, flat and roughly triangular; 5, Phonognatha condition.

(118) Paracymbium edge: 0, glabrous; 1, with setae.

(119) Anterior paracymbial apophysis (APA): 0, absent; 1, present.

(120) Paracymbial margin fold: 0, absent; 1, present.

(121) Paracymbium apically: 0, rounded; 1, with a prong.

(122) Tegulum in ectal view: 0, same size as or larger than subtegulum (Fig. 4A); 1, smaller than subtegulum.

(123) Reservoir course: 0, spiralled; 1, with a switchback (Fig. 4E).

(124) Ventral tegular switchback: 0, single; 1, double.

(125) Ejaculatory duct: 0, within the entire length of embolus; 1, joins distal embolus.

(126) Median apophysis (MA): 0, absent; 1, present.

(127) Median apophysis: 0, without sperm duct; 1, with a loop of the sperm duct.

(128) Median apophysis thread-like spur: 0, absent; 1, present.

(129) Apical tegular apophysis (ATA): 0, absent; 1, present (Figs 4A, 12AB, E, 13BE, 18AB, 30A, C).

(130) Ventral tegular apophysis (VTA): 0, absent; 1, present.

(131) Mesal tegular apophysis (MTA): 0, absent; 1, present.

(132) Theridiid tegular apophysis (TTA): 0, absent; 1, present.

(133) Conductor (C): 0, present; 1, absent.

(134) Conductor size: 0, small (less than half bulb volume); 1, large (more than half bulb volume).

(135) Conductor form: 0, rounded; 1, grooved for embolus.

(136) Embolic conductor (EC): 0, absent; 1, present.

Note: Nephila, Nephilengys, Herennia, Clitaetra, Phonognatha and Deliochus possess one or more sclerites of the embolic division, connected to EB and T via membrane. The sclerite(s) function(s) as conductor, enclosing the embolus. In Nephila and Clitaetra (Kuntner, in press) the sclerite is simple, long and finger-like, with a groove in which the embolus sits fully wrapped. In Nephilengys and Herennia (Figs 4AC, 12–13, 18AB, 30, 17BC) the sclerite is complex, wide and sigmoidal, with membranous and sclerotised parts (distally with ridged edges), though functioning as one large sclerite.

(137) EC membrane: 0, absent; 1, present.

(138) EC shape: 0, complex; 1, finger-like.

(139) Finger EC: 0, short; 1, long.

(140) EC (division): 0, not subdivided; 1, subdivided into more sclerites.

(141) Distal EC flap: 0, absent; 1, present.

(142) EC edge: 0, smooth; 1, ridged.

(143) EC curvature: 0, more or less straight; 1, sigmoidal; 2, bent distally.

(144) EC tip: 0, straight; 1, with a hook.

(145) Embolus (E) length: 0, long (> 2 × CB); 1, medium (0.5–1.5 CB length); 2, short (< 1/2 cymbium).

(146) Embolus form: 0, thin (Figs 4CE, 30CE); 1, thick; 2, filiform.

(147) Embolus–tegulum orientation: 0, parallel; 1, 90 degrees.

(148) Embolus–tegulum membrane: 0, absent; 1, present.

(149) Embolus base: 0, thin; 1, enlarged ( = radix) (Figs 4BC, 12CD, 13B, F, 18B, 30BE).

(150) Embolus base distal part: 0, smooth; 1, denticulated.

(151) Embolic apophysis: 0, absent; 1, present.

(152) Radical membrane: 0, absent; 1, present.

(153) Stipes: 0, absent; 1, present.

(154) Embolus constriction: 0, absent; 1, present.

(155) Embolus: 0, smooth; 1, hooked.

Note: embolus has a single hook in Argiope and Herennia (Figs 4CE, 30CE) and a row of hooks in Deliochus.

(156) Embolus distal apophysis: 0, present; 1, absent.

(157) Embolus tip: 0, flat (Fig. 30CE); 1, cylindrical (Fig. 4CD).

(158) Web architecture: 0, orb; 1, sheet; 2, gum foot.

Note: Herennia web architecture and known behaviours are summarised in text, see also Figs 14–15, 25–26.

(159) Orb–web angle: 0, horizontal (0–45 degrees); 1, vertical (46–90 degrees).

(160) Orb shape: 0, round; 1, rectangular.

(161) Silk color: 0, white; 1, golden.

(162) Stabilimentum: 0, absent; 1, present.

(163) Barrier (3D) web: 0, absent; 1, present.

(164) Hub position: 0, aerial; 1, against substrate.

(165) Hub relative position: 0, central; 1, displaced up; 2, displaced down.

(166) Hub bite-out: 0, present; 1, absent.

Note: Nephila, Nephilengys, Herennia, Clitaetra, Phonognatha and Uloborus leave the hub intact after completing the orb web, whereas araneids and tetragnathids remove it by biting it out. The character corresponds to character 45 in Hormiga et al. (1995), which was modified from the states G1 (hub left intact), G2 (hub centre removed) and G4 (entire hub removed) in Eberhard (1982).

(167) Hub: 0, closed; 1, open.

(168) Hub-cup: 0, absent; 1, present (Figs 14AB – arrow, 25B – arrow).

Note: the hub of Herennia orbs is in the shape of a depression of dense silk, coming in touch with the substrate. Robinson and Lubin (1979) referred to the structure as the hub-cup.

(169) Hub loop – non-sticky spiral transition: 0, gradual; 1, abrupt.

(170) Radius construction: 0, cut and reeled; 1, doubled.

Note: corresponds to the characters 49 in Hormiga et al. (1995) and in part to 76 in Scharff and Coddington (1997), all modified from Eberhard’s (1982) character F (states F1, F2, F4). In araneids and tetragnathids the trip from hub to frame on a pre-existing radius attaches a new ‘temporary radius’, which is then cut and reeled on the way back to hub, while laying a new one behind (see Eberhard, 1982: fig. 5AD, character state F1). Uloborids and nephilids do not cut and reel but spin a double radius (Eberhard 1982: figs 6, 8).

(171) Radius attachment on frame: 0, attached singly; 1, attached twice.

(172) Secondary (split) radii: 0, absent; 1, present.

(173) Tertiary (split) radii: 0, absent; 1, present.

(174) Pseudoradii: 0, absent; 1, present (Figs 15, 25A).

Note: a unique feature in Herennia webs (where known) are perpendicular ‘radii’ (which do not run through the hub) described and termed pseudoradii by Robinson and Lubin (1979: Fig. 2).

(175) Sticky spiral: 0, spiralling; 1, parallel.

(176) Non-sticky spiral (NSS): 0, removed; 1, persists in web.

(177) NSS form: 0, linear; 1, zig-zag Nephila form.

(178) First sticky spiral (SS) spiral–NSS contact: 0, NSS contacted; 1, no contact.

(179) Sticky spiral localisation: 0, oL1; 1, iL1; 2, oL4.

(180) Web posture: 0, flexed legs I, II; 1, extended legs I, II.

(181) Argiope posture: 0, absent; 1, present.

Note: a typical web pose of Argiope species is with first two and last two leg pairs close together, thus forming a ‘leg-cross’.

(182) Attack behaviour: 0, wrap-bite; 1, bite-wrap.

(183) Wrap-bite silk: 0, dry; 1, sticky.

(184) Cheliceral clasp: 0, absent; 1, present.

(185) Bulbus detachment (eunuchs): 0, absent; 1, present.

(186) Body shake: 0, absent; 1, present.

Note: in Clitaetra, Nephilengys and some Nephila a body shake is a common behavioural ritual in response to threat. A similar behaviour is known in Argiope.

(187) Side change: 0, absent; 1, when in danger, rushing on other side of orb.

(188) Partial web renewal: 0, absent; 1, present.

(189) Retreat: 0, absent; 1, off-web; 2, in web.

(190) Retreat form: 0, silken tube; 1, utilisation of a leaf.

Appendix 2.  Phylogenetic matrix
Click to zoom

Appendix 2a. continued
Click to zoom

Rent Article (via Deepdyve) Export Citation Cited By (51)