Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes

Mark S. Harvey A B C G , Michael G. Rix A , Volker W. Framenau D A B , Zoë R. Hamilton E B , Michael S. Johnson B , Roy J. Teale E A B , Garth Humphreys E A B and William F. Humphreys A B F
+ Author Affiliations
- Author Affiliations

A Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.

B School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.

C Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 49th Street, New York, NY 10024-5192, USA; and California Academy of Sciences, Golden Gate Park, San Francisco, CA 94103-3009, USA.

D Phoenix Environmental Sciences Pty Ltd, PO Box 857, Balcatta, Western Australia 6914, Australia.

E Biota Environmental Sciences Pty Ltd, PO Box 155, Leederville, Western Australia 6903, Australia.

F School of Earth and Environmental Sciences, University of Adelaide, South Australia 5005, Australia; and Karst Waters Institute, PO Box 4142, Leesburg, VA 20177, USA.

G Corresponding author: Email: mark.harvey@museum.wa.gov.au

Invertebrate Systematics 25(1) 1-10 https://doi.org/10.1071/IS11011
Submitted: 18 March 2011  Accepted: 26 May 2011   Published: 14 July 2011

Abstract

A major challenge confronting many contemporary systematists is how to integrate standard taxonomic research with conservation outcomes. With a biodiversity crisis looming and ongoing impediments to taxonomy, how can systematic research continue to document species and infer the ‘Tree of Life’, and still maintain its significance to conservation science and to protecting the very species it strives to understand? Here we advocate a systematic research program dedicated to documenting short-range endemic taxa, which are species with naturally small distributions and, by their very nature, most likely to be threatened by habitat loss, habitat degradation and climate change. This research can dovetail with the needs of industry and government to obtain high-quality data to inform the assessment of impacts of major development projects that affect landscapes and their biological heritage. We highlight how these projects are assessed using criteria mandated by Western Australian legislation and informed by guidance statements issued by the Environmental Protection Authority (Western Australia). To illustrate slightly different biological scenarios, we also provide three case studies from the Pilbara region of Western Australia, which include examples demonstrating a rapid rise in the collection and documentation of diverse and previously unknown subterranean and surface faunas, as well as how biological surveys can clarify the status of species thought to be rare or potentially threatened. We argue that ‘whole of biota’ surveys (that include all invertebrates) are rarely fundable and are logistically impossible, and that concentrated research on some of the most vulnerable elements in the landscape – short-range endemics, including troglofauna and stygofauna – can help to enhance conservation and research outcomes.


References

Agnarsson, I., and Kuntner, M. (2007). Taxonomy in a changing world: seeking solutions for a science in crisis. Systematic Biology 56, 531–539.
Taxonomy in a changing world: seeking solutions for a science in crisis.CrossRef | 17562477PubMed |

Anonymous (2010). Cyanopsitta spixii. In ‘IUCN 2010. IUCN Red List of Threatened Species’. Version 2010.4. Available at http://www.iucnredlist.org [Verified 20 February 2011].

Biota Environmental Sciences (2007). ‘Molecular systematics of Rhagada from the Pilbara and the Brockman Syncline 4 Project Area.’ Unpublished report for Pilbara Iron.

Biota Environmental Sciences (2008). ‘Brockman Rhagada – a molecular investigation of the ‘BROMD’ population.’ Unpublished report for Pilbara Iron.

Bond, J. E. (2002). Cryptic speciation in the Anadenobolus excisus millipede species complex on the island of Jamaica. Evolution 56, 1123–1135.
| 1:CAS:528:DC%2BD38XlvFKmur0%3D&md5=feb786b70ad434b1748b93e520a4d961CAS | 12144014PubMed |

Bond, J. E., and Sierwald, P. (2003). Molecular taxonomy of the Anadenobolus excisus (Diplopoda: Spirobolida: Rhinocricidae) species-group on the Caribbean island of Jamaica. Invertebrate Systematics 17, 515–528.
Molecular taxonomy of the Anadenobolus excisus (Diplopoda: Spirobolida: Rhinocricidae) species-group on the Caribbean island of Jamaica.CrossRef | 1:CAS:528:DC%2BD3sXnsVOqu74%3D&md5=2b78a66bee4d114cd16df7dc35f7b551CAS |

Boulton, A. J., Fenwick, G., Hancock, P. J., and Harvey, M. S. (2008). Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics 22, 103–116.
Biodiversity, functional roles and ecosystem services of groundwater invertebrates.CrossRef |

Bradbury, J. H. (2000). Western Australian stygobiont amphipods (Crustacea: Paramelitidae) from the Mt Newman and Millstream regions. Records of the Western Australian Museum 60, 1–102.

Bradbury, J. H., and Williams, W. D. (1996). Freshwater amphipods from Barrow Island, Western Australia. Records of the Australian Museum 48, 33–74.
Freshwater amphipods from Barrow Island, Western Australia.CrossRef |

Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources 10, 41–50.
DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone.CrossRef | 1:CAS:528:DC%2BC3cXht1ans7k%3D&md5=ad9b543ceacbacf9d3013968b102e199CAS | 21564989PubMed |

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.CrossRef | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=2bb4d789a88b0bd02263023fa38a4f00CAS | 18761619PubMed |

Cameron, R. A. D. (1992). Land snail faunas of the Napier and Oscar ranges, Western Australia – diversity, distribution and speciation. Biological Journal of the Linnean Society. Linnean Society of London 45, 271–286.
Land snail faunas of the Napier and Oscar ranges, Western Australia – diversity, distribution and speciation.CrossRef |

de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., Brandão, C. R. F., de Vivo, M., de Figueiredo, J. L., Britski, H. A., de Pinna, M. C. C., Menezes, N. A., Marques, F. P. L., Papavero, N., Cancello, E. M., Crisci, J. V., McEachran, J. D., Schelly, R. C., Lundberg, J. G., Gill, A. C., Britz, R., Wheeler, Q. D., Stiassny, M. L. J., Parenti, L. R., Page, L. M., Wheeler, W. C., Faivovich, J., Vari, R. P., Grande, L., Humphries, C. J., DeSalle, R., Ebach, M. C., and Nelson, G. J. (2007). Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm. Evolutionary Biology 34, 140–143.
Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm.CrossRef |

Chundawat, R. S., Habib, B., Karanth, U., Kawanishi, K., Ahmad Khan, J., Lynam, T., Miquelle, D., Nyhus, P., Sunarto, S., Tilson, R., and Wang, S. (2010). Panthera tigris. In ‘IUCN 2010. IUCN Red List of Threatened Species’. Version 2010.4. Available at http://www.iucnredlist.org [Verified 19 February 2011].

Cook, L. G., Edwards, R. D., Crisp, M. D., and Hardy, N. B. (2010). Need morphology always be required for new species descriptions? Invertebrate Systematics 24, 322–326.
Need morphology always be required for new species descriptions?CrossRef |

Crozier, R. H. (1992). Genetic diversity and the agony of choice. Biological Conservation 61, 11–15.
Genetic diversity and the agony of choice.CrossRef |

Crozier, R. H. (1997). Preserving the information content of species: genetic diversity, phylogeny, and conservation worth. Annual Review of Ecology and Systematics 28, 243–268.
Preserving the information content of species: genetic diversity, phylogeny, and conservation worth.CrossRef |

Donoghue, M. J., and Cracraft, J. (2004). Charting the tree of life. In ‘Assembling the Tree of Life’. (Eds J. Cracraft, and M. Donoghue.) pp. 1–4. (Oxford University Press: New York, NY.)

Eades, A., Kuhar, A., and Penwarden, K. (2010). Evidence for genetic exchange between parapatric populations of Rhagada land snails with divergent mitochondrial DNA. Group Honours Thesis, School of Animal Biology, University of Western Australia, Crawley, Australia.

Eberhard, S. M., Halse, S. A., Williams, M. A., Scanlon, M. D., Cocking, J., and Barron, H. J. (2009). Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology 54, 885–901.
Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia.CrossRef | 1:CAS:528:DC%2BD1MXltVOqurg%3D&md5=eae0a443b652843e1a7fff5dd170905fCAS |

Edward, K. L., and Harvey, M. S. (2008). Short-range endemism in hypogean environments: the pseudoscorpion genera Tyrannochthonius and Lagynochthonius (Pseudoscorpiones: Chthoniidae) in the semiarid zone of Western Australia. Invertebrate Systematics 22, 259–293.
Short-range endemism in hypogean environments: the pseudoscorpion genera Tyrannochthonius and Lagynochthonius (Pseudoscorpiones: Chthoniidae) in the semiarid zone of Western Australia.CrossRef |

Edward, K. L., and Harvey, M. S. (2010). A review of the Australian millipede genus Atelomastix (Diplopoda: Spirostreptida: Iulomorphidae). Zootaxa 2371, 1–63.

Environmental Protection Authority (2003). Consideration of subterranean fauna in groundwater and caves during environmental impact assessment in Western Australia. Guidance for the assessment of environmental factors (in accordance with the Environmental Protection Act 1986). No. 54, pp. 1–12. Perth.

Environmental Protection Authority (2007). Consideration of subterranean fauna in groundwater and caves during environmental impact assessment in Western Australia. Guidance for the assessment of environmental factors (in accordance with the Environmental Protection Act 1986). No. 54a, pp. 1–32. Perth.

Environmental Protection Authority (2009). Sampling of short range endemic invertebrate fauna for environmental impact assessment in Western Australia. Guidance for the assessment of environmental factors (in Accordance with the Environmental Protection Act 1986). No. 20, pp. 1–31. Perth.

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation 61, 1–10.
Conservation evaluation and phylogenetic diversity.CrossRef |

Faith, D. P. (1994). Genetic diversity and taxonomic priorities for conservation. Biological Conservation 68, 69–74.
Genetic diversity and taxonomic priorities for conservation.CrossRef |

GSchV (1998). ‘Gewässerschutzverordnung (Swiss Water Ordinance) 814.210.’ (Der Schweizer Bundesrat: Bern, Switzerland.)

Guzik, M. T., Austin, A. D., Cooper, S. J. B., Harvey, M. S., Humphreys, W. F., Bradford, T., Eberhard, S. M., King, R., Leys, R., Muirhead, K., and Tomlinson, M. (2011a). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
Is the Australian subterranean fauna uniquely diverse?CrossRef |

Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Syncarida) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 205–216.
Phylogeography of the ancient Parabathynellidae (Crustacea: Syncarida) from the Yilgarn region of Western Australia.CrossRef |

Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., Ong, S., Kawakami, T., and Austin, A. D. (2011b). Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert. Heredity , .
Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert.CrossRef |

Harvey, M. S. (1988). A new troglobitic schizomid from Cape Range, Western Australia (Chelicerata: Schizomida). Records of the Western Australian Museum 14, 15–20.

Harvey, M. S. (1992). The Schizomida (Chelicerata) of Australia. Invertebrate Taxonomy 6, 77–129.
The Schizomida (Chelicerata) of Australia.CrossRef |

Harvey, M. S. (2000a). Brignolizomus and Attenuizomus, new schizomid genera from Australia (Arachnida: Schizomida: Hubbardiidae). Memorie della Società Entomologica Italiana. Supplemento 78, 329–338.

Harvey, M. S. (2000b). A review of the Australian schizomid genus Notozomus (Hubbardiidae). Memoirs of the Queensland Museum 46, 161–174.

Harvey, M. S. (2001). New cave-dwelling schizomids (Schizomida: Hubbardiidae) from Australia. Records of the Western Australian Museum 64, 171–185.

Harvey, M. S. (2002). Short-range endemism in the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism in the Australian fauna: some examples from non-marine environments.CrossRef |

Harvey, M. S. (2003). ‘Catalogue of the Smaller Arachnid Orders of the World: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae.’ (CSIRO Publishing: Melbourne.)

Harvey, M. S. (2007). The smaller arachnid orders: diversity, descriptions and distributions from Linnaeus to the present (1758 to 2007). Zootaxa 1668, 363–380.

Harvey, M. S., Berry, O., Edward, K. L., and Humphreys, G. (2008). Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebrate Systematics 22, 167–194.
Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia.CrossRef | 1:CAS:528:DC%2BD1cXlslajsr8%3D&md5=21cec7432d015799786af7b7a053f51aCAS |

Harvey, M. S., and Humphreys, W. F. (1995). Notes on the genus Draculoides Harvey (Schizomida: Hubbardiidae), with the description of a new troglobitic species. Records of the Western Australian Museum 52, 183–189.

Hoffman, R. L. (1980). ‘Classification of the Diplopoda.’ (Muséum d’Histoire Naturelle: Geneva, Switzerland.)

Hoffman, R. L. (1994). Studies on spirobolid millipeds. XVIII. Speleostrophus nesiotes, the first known troglobitic milliped, from Barrow Island, Western Australia (Spirobolida: Pachybolidae: Trigoniulinae). Myriapodologica 3, 19–24.
Studies on spirobolid millipeds. XVIII. Speleostrophus nesiotes, the first known troglobitic milliped, from Barrow Island, Western Australia (Spirobolida: Pachybolidae: Trigoniulinae).CrossRef |

Hoffman, R. L. (2003). A new genus and species of trigonuiline milliped from Western Australia (Spirobolida: Pachybolidae: Trigoniulinae). Records of the Western Australian Museum 22, 17–22.

Hopper, S. D., and Gioia, P. (2004). The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology and Systematics 35, 623–650.
The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity.CrossRef |

Hopper, S. D., Harvey, M. S., Chappill, J. A., Main, A. R., and Main, B. Y. (1996). The Western Australian biota as Gondwanan heritage – a review. In ‘Gondwanan Heritage: Past, Present and Future of the Western Australian Biota’. (Eds S. D. Hopper, J. A. Chappill, M. S. Harvey, and A. S. George.) pp. 1–46. (Surrey Beatty & Sons: Chipping Norton, NSW.)

Humphreys, W. F. (1993). Cave fauna in semi-arid tropical Western Australia: a diverse relict wet-forest litter fauna. Memoires de Biospeologie 20, 105–110.

Humphreys, W. F. (2000). The hypogean fauna of the Cape Range Peninsula and Barrow Island, northwestern Australia. In ‘Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver, and W. F. Humphreys.) pp. 581–601. (Elsevier: Amsterdam.)

Humphreys, W. F. (2001). The subterranean fauna of Barrow Island, northwestern Australia, and its environment. Memoires de Biospeologie 28, 107–127.

Humphreys, W. F. (2008). Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22, 85–101.
Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective.CrossRef |

Job, C. A., and Simons, J. J. (1994). Ecological basis for management of groundwater in the United States: statutes, regulations, and a strategic plan. In ‘Groundwater Ecology’. (Eds J. Gibert, D. L. Danielopol, and J. A. Stanford.) pp. 523–540. (Academic Press: San Diego, CA.)

Johnson, M. S., Hamilton, Z. R., and Fitzpatrick, J. (2006). Genetic diversity of Rhagada land snails on Barrow Island. Journal of the Royal Society of Western Australia 89, 45–50.

Johnson, M. S., Hamilton, Z. R., Murphy, C. E., MacLeay, C. A., Roberts, B., and Kendrick, P. G. (2004). Evolutionary genetics of island and mainland species of Rhagada (Gastropoda: Pulmonata) in the Pilbara Region, Western Australia. Australian Journal of Zoology 52, 341–355.
Evolutionary genetics of island and mainland species of Rhagada (Gastropoda: Pulmonata) in the Pilbara Region, Western Australia.CrossRef |

Laurance, W. F., and Wright, S. J. (2009). New insights into the tropical biodiversity crisis. Conservation Biology 23, 1382–1385.
| 20078638PubMed |

Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
| 14761060PubMed |

Majer, J. (2009). Saga of the short-range endemic. Australian Journal of Entomology 48, 265–268.
Saga of the short-range endemic.CrossRef |

Meine, C., Soulé, M., and Noss, R. F. (2006). “A mission-driven discipline”: the growth of conservation biology. Conservation Biology 20, 631–651.
“A mission-driven discipline”: the growth of conservation biology.CrossRef | 16909546PubMed |

Mooney, H. A. (2010). The ecosystem-service chain and the biological diversity crisis. Philosphical Transactions of the Royal Society. Biological Sciences 365, 31–39.
The ecosystem-service chain and the biological diversity crisis.CrossRef |

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.CrossRef | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=54b901243208fc675c7e7c122d0bda02CAS | 10706275PubMed |

O’Neill, C. (2008). The relationship between morphology and genetics in Quistrachia (Gastropoda: Pulmonata) from the Pilbara, Western Australia. Honours Thesis, School of Animal Biology, University of Western Australia, Crawley, Australia.

Reddell, J. R., and Cokendolpher, J. C. (1995). Catalogue, bibliography, and generic revision of the order Schizomida (Arachnida). Texas Memorial Museum. Speleological Monographs 4, 1–170.

Rix, M. G., and Harvey, M. S. (2010). The spider family Micropholcommatidae (Arachnida, Araneae, Araneoidea): a relimitation and revision at the generic level. Zookeys 36, 1–321.
The spider family Micropholcommatidae (Arachnida, Araneae, Araneoidea): a relimitation and revision at the generic level.CrossRef |

Solem, A. (1979). Camaenid land snails from western and central Australia (Mollusca: Pulmonata: Camaenidae). I. Taxa with trans-Australian distributions. Records of the Western Australian Museum 10, 1–142.

Solem, A. (1981a). Camaenid land snails from western and central Australia (Mollusca: Pulmonata: Camaenidae). II. Taxa from the Kimberley, Amplirhagada Iredale, 1933. Records of the Western Australian Museum 11, 147–320.

Solem, A. (1981b). Camaenid land snails from western and central Australia (Mollusca: Pulmonata: Camaenidae). III. Taxa from the Ningbing Ranges and nearby areas. Records of the Western Australian Museum 11, 321–425.

Solem, A. (1984). Camaenid land snails from western and central Australia (Mollusca: Pulmonata: Camaenidae). IV. Taxa from the Kimberley, Westraltrachia Iredale, 1933 and related genera. Records of the Western Australian Museum 17, 427–705.

Solem, A. (1985). Camaenid land snails from western and central Australia (Mollusca: Pulmonata: Camaenidae). V. Remaining Kimberley genera and addenda to the Kimberley. Records of the Western Australian Museum 20, 707–981.

Solem, A. (1988). Maximum in the minimum: biogeography of land snails from the Ningbing Ranges and Jeremiah Hills, northeast Kimberley, Western Australia. Journal of the Malacological Society of Australia 9, 59–113.

Solem, A. (1991). Land snails of Kimberley rainforest patches and biogeography of all Kimberley land snails. In ‘Kimberley Rainforests’. (Eds N. L. McKenzie, R.B. Johnston, and P. G. Kendrick.) pp. 145–246. (Surrey Beatty & Sons: Chipping Norton, NSW.)

Solem, A. (1993). Camaenid land snails from western and central Australia (Mollusca: Pulmonata: Camaenidae). VI. Taxa from the red centre. Records of the Western Australian Museum 43, 983–1459.

Solem, A. (1997). Camaenid land snails from western and central Australia (Mollusca: Pulmonata: Camaenidae). VII. Taxa from Dampierland through the Nullarbor. Records of the Western Australian Museum 50, 1461–1906.

Stork, N. E. (2010). Re-assessing current extinction rates. Biodiversity and Conservation 19, 357–371.
Re-assessing current extinction rates.CrossRef |

Taylor, J. P. A. (2010). Systematics of the land snail genera Plectorhagada and Strepsitaurus (Gastropoda: Camaenidae). Honours Thesis, School of Animal Biology, University of Western Australia, Australia.

Taylor, R. W. (1983). Descriptive taxonomy: past, present and future. In ‘Australian Systematic Entomology: a Bicentenary Perspective’. (Eds E. Highley, and R. W. Taylor.) pp. 93–134. (CSIRO: Canberra.)

Volschenk, E. S., and Prendini, L. (2008). Aops oncodactylus, gen. et sp. nov., the first troglobitic urodacid (Urodacidae: Scorpiones), with a re-assessment of cavernicolous, troglobitic and troglomorphic scorpions. Invertebrate Systematics 22, 235–257.
Aops oncodactylus, gen. et sp. nov., the first troglobitic urodacid (Urodacidae: Scorpiones), with a re-assessment of cavernicolous, troglobitic and troglomorphic scorpions.CrossRef |


Full Text PDF (2.6 MB) Export Citation Cited By (42)