Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE (Open Access)

DNA barcodes and morphology reveal a hybrid hawkmoth in Tahiti (Lepidoptera : Sphingidae)

R. Rougerie A E , Jean Haxaire B , Ian J. Kitching C and Paul D. N. Hebert D
+ Author Affiliations
- Author Affiliations

A Laboratoire d’Ecologie, EA 1293 ECODIV, UFR Sciences et Techniques, Université de Rouen, 76821 Mont Saint Aignan Cedex, France.

B Honorary Attaché, Muséum national d’Histoire naturelle de Paris, Le Roc, F-47310 Laplume, France.

C Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.

D Department of Integrative Biology & Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, N1G 2W1, Canada.

E Corresponding author. Email: rrougeri@gmail.com

Invertebrate Systematics 26(6) 445-450 https://doi.org/10.1071/IS12029
Submitted: 17 April 2012  Accepted: 13 September 2012   Published: 19 December 2012

Abstract

Interspecific hybridisation is a rare but widespread phenomenon identified as a potential complicating factor for the identification of species through DNA barcoding. Hybrids can, however, also deceive morphology-based taxonomy, resulting in the description of invalid species based on hybrid specimens. As the result of an unexpected case of discordance between barcoding results and current morphology-based taxonomy, we discovered an example of such a hybrid ‘species’ in hawkmoths. By combining barcodes, morphology and a nuclear marker, we show that Gnathothlibus collardi Haxaire, 2002 is actually an F1 hybrid between two closely related species that co-occur on Tahiti. In accordance with the International Code of Zoological Nomenclature, the taxon G. collardi is thus invalid as a species. This study demonstrates the potential of DNA barcodes to detect overlooked hybrid taxa. With the growth of sequence libraries, we anticipate that more unsuspected hybrid species will be detected, particularly among those taxa that are very rare, such as those known from only the type specimen.

Additional keywords: 28S rDNA, COI, hybrid detection.


References

Allendorf, F. W., Leary, R. F., Spruell, P., and Wenburg, J. K. (2001). The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution 16, 613–622.
The problems with hybrids: setting conservation guidelines.CrossRef |

Bachtrog, D., Thornton, K., Clark, A., and Andolfatto, P. (2006). Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution 60, 292–302.
| 1:CAS:528:DC%2BD28XjsFaqt7c%3D&md5=032518e1536961b7d3f5da11da35fa3cCAS |

Bortolus, A. (2008). Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37, 114–118.
Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology.CrossRef |

Brownlow, C. A. (1996). Molecular taxonomy and the conservation of the red wolf and other endangered carnivores. Conservation Biology 10, 390–396.
Molecular taxonomy and the conservation of the red wolf and other endangered carnivores.CrossRef |

Carcasson, R. H. (1968). Revised catalogue of the African Sphingidae (Lepidoptera) with descriptions of the East African species. Journal of the East Africa Natural History Society and National Museum 26, 1–148.

Decaëns, T., and Rougerie, R. (2008). Descriptions of two new species of Hemileucinae (Lepidoptera: Saturniidae) from the region of Muzo in Colombia – evidence from morphology and DNA barcodes. Zootaxa 1944, 34–52.

Funk, D. J., and Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34, 397–423.
Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA.CrossRef |

Graves, G. (1990). Systematics of the “green-throated sunangels” (Aves: Trochilidae): valid taxa or hybrids? Proceedings of the Biological Society of Washington 103, 6–25.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=08d747d827542961412adcc224832fc5CAS |

Hausmann, A., Hebert, P. D. N., Mitchell, A., Rougerie, R., Sommerer, M., Edwards, T., and Young, C. J. (2009a). Revision of the Australian Oenochroma vinaria Guenee, 1858 species-complex (Lepidoptera: Geometridae, Oenochrominae): DNA barcoding reveals cryptic diversity and assesses status of type specimen without dissection. Zootaxa 2239, 1–21.

Hausmann, A., Sommerer, M., Rougerie, R., and Hebert, P. (2009b). Hypobapta tachyhalotaria spec. nov from Tasmania – an example of a new species revealed by DNA barcoding. Spixiana 32, 161–166.

Haxaire, J. (2002). Description d’un nouveau Sphingidae de l’île de Tahiti: Gnathothlibus collardi (Lepidoptera: Sphingidae). Lambillionea 102, 495–499.

Hundsdoerfer, A. K., Mende, M. B., Kitching, I. J., and Cordellier, M. (2011). Taxonomy, phylogeography and climate relations of the Western Palaearctic spurge hawkmoth (Lepidoptera, Sphingidae, Macroglossinae). Zoologica Scripta 40, 403–417.
Taxonomy, phylogeography and climate relations of the Western Palaearctic spurge hawkmoth (Lepidoptera, Sphingidae, Macroglossinae).CrossRef |

ICZN (1999). ‘International Code of Zoological Nomenclature.’ 4th edn. (The International Trust for Zoological Nomenclature: London, UK.)

Lim, G. S., Balke, M., and Meier, R. (2012). Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Systematic Biology 61, 165–169.
Determining species boundaries in a world full of rarity: singletons, species delimitation methods.CrossRef |

Mallet, J. (2008). Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society B. Biological Sciences 363, 2971–2986.
Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation.CrossRef |

Mallet, J., Beltran, M., Neukirchen, W., and Linares, M. (2007). Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evolutionary Biology 7, 28.
Natural hybridization in heliconiine butterflies: the species boundary as a continuum.CrossRef |

Mayr, E. (Ed.) (1942). ‘Systematics and Origin of Species.’ (Columbia University Press: New York.)

Parham, J. F., Simison, W. B., Kozak, K. H., Feldman, C. R., and Shi, H. (2001). New Chinese turtles: endangered or invalid? A reassessment of two species using mitochondrial DNA, allozyme electrophoresis and known-locality specimens. Animal Conservation 4, 357–367.
New Chinese turtles: endangered or invalid? A reassessment of two species using mitochondrial DNA, allozyme electrophoresis and known-locality specimens.CrossRef |

Pillon, Y., and Chase, M. W. (2007). Taxonomic exaggeration and its effects on orchid conservation. Conservation Biology 21, 263–265.
Taxonomic exaggeration and its effects on orchid conservation.CrossRef |

Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7, 355–364.
BOLD: The Barcode of Life Data System (http://www.barcodinglife.org).CrossRef | 1:CAS:528:DC%2BD2sXntVyksbc%3D&md5=53cd40598900a88b3cc1c91ad7b9427cCAS | ).&title=Molecular Ecology Notes&date=2007&volume=7&spage=355&epage=364&sid=csiro&aulast=Ratnasingham&aufirst=S." target="_blank" >open url image1

Saux, C., Fisher, B. L., and Spicer, G. S. (2004). Dracula ant phylogeny as inferred by nuclear 28S rDNA sequences and implications for ant systematics (Hymenoptera: Formicidae: Amblyoponinae). Molecular Phylogenetics and Evolution 33, 457–468.
Dracula ant phylogeny as inferred by nuclear 28S rDNA sequences and implications for ant systematics (Hymenoptera: Formicidae: Amblyoponinae).CrossRef | 1:CAS:528:DC%2BD2cXntVKqu7g%3D&md5=90c470efe034e5e06033fbdc1ae3c1d5CAS |

Schmidt, B. C., and Sperling, F. A. (2008). Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Systematic Entomology 33, 613–634.
Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae).CrossRef |

Schwenk, K., Brede, N., and Streit, B. (2008). Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philosophical Transactions of the Royal Society B. Biological Sciences 363, 2805–2811.
Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals.CrossRef |

Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution 19, 198–207.
Hybridization and adaptive radiation.CrossRef |

Sperling, F. A. H. (1990). Natural hybrids of Papilio (Insecta: Lepidoptera): poor taxonomy or interesting evolutionary process? Canadian Journal of Zoology 68, 1790–1799.
Natural hybrids of Papilio (Insecta: Lepidoptera): poor taxonomy or interesting evolutionary process?CrossRef |

Stuart, B. L., and Parham, J. F. (2007). Recent hybrid origin of three rare Chinese turtles. Conservation Genetics 8, 169–175.
Recent hybrid origin of three rare Chinese turtles.CrossRef |

Thulin, C.-G., Stone, J., Tegelström, H., and Walker, C. W. (2006). Species assignment and identification among Scandinavian hares Lepus europaeus and L. timidus. Wildlife Biology 12, 29–38.
Species assignment and identification among Scandinavian hares Lepus europaeus and L. timidus.CrossRef |

Vaglia, T., Haxaire, J., Kitching, I. J., Meusnier, I., and Rougerie, R. (2008). Morphology and DNA barcoding reveal three cryptic species within the Xylophanes neoptolemus and loelia species-groups (Lepidoptera: Sphingidae). Zootaxa 1923, 18–36.

Vences, M., Thomas, M., Bonett, R. M., and Vieites, D. R. (2005). Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philosophical Transactions of the Royal Society B. Biological Sciences 360, 1859–1868.
Deciphering amphibian diversity through DNA barcoding: chances and challenges.CrossRef | 1:CAS:528:DC%2BD2MXhtlSjsrjE&md5=2eec6fc25c94b8fa4ec087fcdffdb959CAS |

vonHoldt, B. M., Pollinger, J. P., Earl, D. A., Knowles, J. C., Boyko, A. R., Parker, H., Geffen, E., Pilot, M., Jedrzejewski, W., Jedrzejewska, B., Sidorovich, V., Greco, C., Randi, E., Musiani, M., Kays, R., Bustamante, C. D., Ostrander, E. A., Novembre, J., and Wayne, R. K. (2011). A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Research 21, 1294–1305.
A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids.CrossRef | 1:CAS:528:DC%2BC3MXpvFeqs7k%3D&md5=a8697e6ff407d38139859011c514efe9CAS |

Vonlanthen, P., Bittner, D., Hudson, A. G., Young, K. A., Muller, R., Lundsgaard-Hansen, B., Roy, D., Di Piazza, S., Largiader, C. R., and Seehausen, O. (2012). Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357–362.
Eutrophication causes speciation reversal in whitefish adaptive radiations.CrossRef | 1:CAS:528:DC%2BC38Xit12gtbY%3D&md5=6c2651df9f02de8d0f6b46d71e1000c2CAS |

Whitworth, T. L., Dawson, R. D., Magalon, H., and Baudry, E. (2007). DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceedings. Biological Sciences 274, 1731–1739.
DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae).CrossRef | 1:CAS:528:DC%2BD2sXosVans7k%3D&md5=78b3201e91b8dfa011fecf87056696bcCAS |

Wilson, J. J., Rougerie, R., Schonfeld, J., Janzen, D. H., Hallwachs, W., Hajibabaei, M., Kitching, I. J., Haxaire, J., and Hebert, P. D. N. (2011). When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths. BMC Ecology 11, 18.
When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths.CrossRef |

Zakharov, E. V., Lobo, N. F., Nowak, C., and Hellmann, J. J. (2009). Introgression as a likely cause of mtDNA paraphyly in two allopatric skippers (Lepidoptera: Hesperiidae). Heredity 102, 590–599.
Introgression as a likely cause of mtDNA paraphyly in two allopatric skippers (Lepidoptera: Hesperiidae).CrossRef | 1:CAS:528:DC%2BD1MXmtFSisr0%3D&md5=e24f2ba59e1d83eb68ffc23b96d9aa55CAS |


Full Text PDF (417 KB) Export Citation Cited By (7)

View Altmetrics