Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The first phylogenetic analysis of Palpigradi (Arachnida) – the most enigmatic arthropod order

Gonzalo Giribet A K , Erin McIntyre A , Erhard Christian B , Luis Espinasa C , Rodrigo L. Ferreira D , Óscar F. Francke E , Mark S. Harvey F , Marco Isaia G , Ĺubomír Kováč H , Lynn McCutchen I , Maysa F. V. R. Souza D and Maja Zagmajster J

A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

B Institut für Zoologie, Universität für Bodenkultur, Gregor-Mendel-Straße 33, 1180 Wien, Austria.

C School of Science, Marist College, 3399 North Road, Poughkeepsie, New York, USA.

D Centro de Estudos em Biologia Subterrânea, Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG. CEP 37200-000, Brazil.

E Colección Nacional de Arácnidos, Instituto de Biologia, UNAM, Apartado Postal 70-153, C. P. 04510, Mexico, D. F., Mexico.

F Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.

G Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy.

H Department of Zoology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia.

I Department of Biology, Kilgore College, 1100 Broadway, Kilgore, TX 75662, USA.

J SubBioLab, Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.

K Corresponding author. Email: ggiribet@g.harvard.edu

Invertebrate Systematics 28(4) 350-360 http://dx.doi.org/10.1071/IS13057
Submitted: 9 November 2013  Accepted: 1 February 2014   Published: 12 September 2014

Abstract

Palpigradi are a poorly understood group of delicate arachnids, often found in caves or other subterranean habitats. Concomitantly, they have been neglected from a phylogenetic point of view. Here we present the first molecular phylogeny of palpigrades based on specimens collected in different subterranean habitats, both endogean (soil) and hypogean (caves), from Australia, Africa, Europe, South America and North America. Analyses of two nuclear ribosomal genes and COI under an array of methods and homology schemes found monophyly of Palpigradi, Eukoeneniidae and a division of Eukoeneniidae into four main clades, three of which include samples from multiple continents. This supports either ancient vicariance or long-range dispersal, two alternatives we cannot distinguish with the data at hand. In addition, we show that our results are robust to homology scheme and analytical method, encouraging further use of the markers employed in this study to continue drawing a broader picture of palpigrade relationships.

Additional keywords: biogeography, micro-whip scorpions, palpigrades, speleobiology.


References

Arabi, J., Judson, M. L., Deharveng, L., Lourenço, W. R., Cruaud, C., and Hassanin, A. (2012). Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements. Journal of Molecular Evolution 74, 81–95.
Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements.CrossRef | 1:CAS:528:DC%2BC38Xktlaktr0%3D&md5=e79441b6d22a87576be6bdf0b30b8360CAS | 22362465PubMed | open url image1

Barranco, P., and Harvey, M. S. (2008). The first indigenous palpigrade from Australia: a new species of Eukoenenia (Palpigradi: Eukoeneniidae). Invertebrate Systematics 22, 227–233.
The first indigenous palpigrade from Australia: a new species of Eukoenenia (Palpigradi: Eukoeneniidae).CrossRef | open url image1

Beccaloni, J. (2009). ‘Arachnids.’ (The Natural History Museum: London.)

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.CrossRef | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=b9e72f4f43e92e5aaa6c2696c6b069dbCAS | 10742046PubMed | open url image1

Christian, E., Capurro, M., and Galli, L. (2010). Phenology of two syntopic Eukoenenia species in a northern Italian forest soil (Arachnida: Palpigradi). Revue Suisse de Zoologie 117, 829–834. open url image1

Condé, B. (1996). Les palpigrades, 1885–1995: acquisitions et lacunes. Revue suisse de Zoologie hors série, 87–106.

Delclòs, X., Nei, A., Azar, D., Bechly, G., Dunlop, J. A., Engel, M. S., and Heads, S. W. (2008). The enigmatic Mesozoic insect taxon Chresmodidae (Polyneoptera): new palaeobiological and phylogenetic data, with the description of a new species from the Lower Cretaceous of Brazil. Neues Jahrbuch für Geologie und Palaontologie. Abhandlungen 247, 353–381.
The enigmatic Mesozoic insect taxon Chresmodidae (Polyneoptera): new palaeobiological and phylogenetic data, with the description of a new species from the Lower Cretaceous of Brazil.CrossRef | open url image1

Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F., and Hormiga, G. (2012). Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceedings. Biological Sciences 279, 1341–1350.
Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling.CrossRef | open url image1

Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod Structure & Development 39, 124–142.
Geological history and phylogeny of Chelicerata.CrossRef | open url image1

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.CrossRef | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=0f644003e0450eab42e285b06371fbb5CAS | 15034147PubMed | open url image1

Edgecombe, G. D., and Giribet, G. (2008). A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence. Invertebrate Systematics 22, 1–15.
A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence.CrossRef | open url image1

Edgecombe, G. D., and Giribet, G. (2009). Phylogenetics of scutigeromorph centipedes (Myriapoda: Chilopoda) with implications for species delimitation and historical biogeography of the Australian and New Caledonian faunas. Cladistics 25, 406–427.
Phylogenetics of scutigeromorph centipedes (Myriapoda: Chilopoda) with implications for species delimitation and historical biogeography of the Australian and New Caledonian faunas.CrossRef | open url image1

Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124.
Parsimony jackknifing outperforms neighbor-joining.CrossRef | open url image1

Ferreira, R. L., and Souza, M. F. V. R. (2012). Notes on the behavior of the advanced troglobite Eukoenenia maquinensis Souza & Ferreira 2010 (Palpigradi: Eukoeneniidae) and its conservation status. Speleobiology Notes 4, 17–23. open url image1

Ferreira, R. L., Souza, M. F. V. R., Machado, E. O., and Brescovit, A. D. (2011). Description of a new Eukoenenia (Palpigradi: Eukoeneniidae) and Metagonia (Araneae: Pholcidae) from Brazilian caves, with notes on their ecological interactions. The Journal of Arachnology 39, 409–419.
Description of a new Eukoenenia (Palpigradi: Eukoeneniidae) and Metagonia (Araneae: Pholcidae) from Brazilian caves, with notes on their ecological interactions.CrossRef | open url image1

Giribet, G. (2005). Generating implied alignments under direct optimization using POY. Cladistics 21, 396–402.
Generating implied alignments under direct optimization using POY.CrossRef | open url image1

Giribet, G. (2007). Efficient tree searches with available algorithms. Evolutionary Bioinformatics Online 3, 341–356.
| 1:CAS:528:DC%2BD1cXjvVWlsL4%3D&md5=7fa27c6d3432f30089b45a5ac87e25d2CAS | 19461977PubMed | open url image1

Giribet, G., and Edgecombe, G. D. (2013a). The Arthropoda: a phylogenetic framework. In ‘Arthropod Biology and Evolution – Molecules, Development, Morphology’. (Eds A. Minelli, G. Boxshall and G. Fusco.) pp. 17–40. (Springer: Berlin.)

Giribet, G., and Edgecombe, G. D. (2013b). Stable phylogenetic patterns in scutigeromorph centipedes (Myriapoda: Chilopoda: Scutigeromorpha): dating the diversification of an ancient lineage of terrestrial arthropods. Invertebrate Systematics 27, 485–501.
Stable phylogenetic patterns in scutigeromorph centipedes (Myriapoda: Chilopoda: Scutigeromorpha): dating the diversification of an ancient lineage of terrestrial arthropods.CrossRef | open url image1

Giribet, G., and Shear, W. A. (2010). The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species. Bulletin of the Museum of Comparative Zoology 160, 1–33.
The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species.CrossRef | open url image1

Giribet, G., Edgecombe, G. D., Wheeler, W. C., and Babbitt, C. (2002). Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18, 5–70.
| 14552352PubMed | open url image1

Giribet, G., Vogt, L., Pérez González, A., Sharma, P., and Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437. open url image1

Giribet, G., Sharma, P. P., Benavides, L. R., Boyer, S. L., Clouse, R. M., de Bivort, B. L., Dimitrov, D., Kawauchi, G. Y., Murienne, J. Y., and Schwendinger, P. J. (2012). Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement. Biological Journal of the Linnean Society. Linnean Society of London 105, 92–130.
Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement.CrossRef | open url image1

Goloboff, P. A. (1999). Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15, 415–428.
Analyzing large data sets in reasonable times: solutions for composite optima.CrossRef | open url image1

Goloboff, P. A. (2002). Techniques for analyzing large data sets. In ‘Techniques in Molecular Systematics and Evolution’. (Eds R. DeSalle, G. Giribet and W. Wheeler.) pp. 70–79. (Brikhäuser Verlag: Basel.)

Grassi, B., and Calandruccio, S. (1885). Intorno ad un nuovo aracnide artrogastro (Koenenia mirabilis) che crediamo rappresentante d’un nuovo ordine (Microteliphonida). Naturalista Siciliano 4, 127–133, 162–169.

Harvey, M. S. (2002). The neglected cousins: what do we know about the smaller arachnid orders? The Journal of Arachnology 30, 357–372.
The neglected cousins: what do we know about the smaller arachnid orders?CrossRef | open url image1

Harvey, M. S., Stáhlavsky, F., and Theron, P. D. (2006). The distribution of Eukoenenia mirabilis (Palpigradi: Eukoeneniidae): a widespread tramp. Records of the Western Australian Museum 23, 199–203. open url image1

Kováč, L., Mock, A., Ľuptáčik, P., and Palacios-Vargas, J. G. (2002). Distribution of Eukoenenia spelaea (Peyerimhoff, 1902) (Arachnida, Palpigradida) in the Western Carpathians with remarks on its biology and behaviour. In ‘Studies on Soil Fauna in Central Europe’. (Eds K. Tajovský, V. Balík and V. Pižl.) pp. 93–99. (České Budějovice.)

Král, J., Kováč, L., Št’ahlavský, F., Lonský, P., and L’uptácik, P. (2008). The first karyotype study in palpigrades, a primitive order of arachnids (Arachnida: Palpigradi). Genetica 134, 79–87.
The first karyotype study in palpigrades, a primitive order of arachnids (Arachnida: Palpigradi).CrossRef | 18030430PubMed | open url image1

Linton, E. W. (2005). MacGDE: Genetic Data Environment for MacOS X. (Software available at http://www.msu.edu/~lintone/macgde/)

Mallatt, J., and Giribet, G. (2006). Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Molecular Phylogenetics and Evolution 40, 772–794.
Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch.CrossRef | 1:CAS:528:DC%2BD28XotFWktbo%3D&md5=f23b03c0783fc276d051af0c702f8715CAS | 16781168PubMed | open url image1

Mayoral, J. G., and Barranco, P. (2013). Rediscovery of the troglobious palpigrade Eukoenenia draco (Peyerimhoff 1906) (Palpigradi: Eukoeneniidae), with notes on the adaptations to a cave-dwelling life. Zootaxa 3635, 174–184.
Rediscovery of the troglobious palpigrade Eukoenenia draco (Peyerimhoff 1906) (Palpigradi: Eukoeneniidae), with notes on the adaptations to a cave-dwelling life.CrossRef | open url image1

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’. pp. 1–8. New Orleans.

Montaño Moreno, H. (2008). Revisión taxonómica de los palpígrados (Arachnida: Palpigradi) de México. Masters Thesis, Universidad Nacional Autónoma de México.

Montaño-Moreno, H. (2012). Redescripción de Eukoenenia hanseni (Arachnida: Palpigradi) y descripción de una nueva especie de palpígrado de México. Revista Ibérica de Aracnología 20, 1–15. open url image1

Murienne, J., Harvey, M. S., and Giribet, G. (2008). First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Molecular Phylogenetics and Evolution 49, 170–184.
First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata).CrossRef | 1:CAS:528:DC%2BD1cXhtFOltrzP&md5=05dd5f34c002757f0ac106b25a803982CAS | 18603009PubMed | open url image1

Nixon, K. C. (1999). The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414.
The Parsimony Ratchet, a new method for rapid parsimony analysis.CrossRef | open url image1

Pepato, A. R., da Rocha, C. E., and Dunlop, J. A. (2010). Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evolutionary Biology 10, 235.
Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence.CrossRef | 20678229PubMed | open url image1

Prendini, L. (2011). Order Palpigradi Thorell, 1888 (In: Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness). Zootaxa 3148, 121. open url image1

Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J. W., and Cunningham, C. W. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463, 1079–1083.
Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences.CrossRef | 1:CAS:528:DC%2BC3cXhvVKruro%3D&md5=249ea471863b2450ffe6c3b7ce931459CAS | 20147900PubMed | open url image1

Rowland, J. M., and Sissom, W. (1980). Report on a fossil palpigrade from the Tertiary of Arizona, and a review of the morphology and systematics of the order (Arachnida, Palpigradida). The Journal of Arachnology 8, 69–86. open url image1

Sharma, P. P., Vahtera, V., Kawauchi, G. Y., and Giribet, G. (2011). Running WILD: the case for exploring mixed parameter sets in sensitivity analysis. Cladistics 27, 538–549.
Running WILD: the case for exploring mixed parameter sets in sensitivity analysis.CrossRef | open url image1

Shultz, J. W. (2007). A phylogenetic analysis of the arachnid orders based on morphological characters. Zoological Journal of the Linnean Society 150, 221–265.
A phylogenetic analysis of the arachnid orders based on morphological characters.CrossRef | open url image1

Smrž, J., Kováč, ?., Mikeš, J., and Lukešová, A. (2013). Microwhip scorpions (Palpigradi) feed on heterotrophic Cyanobacteria in Slovak caves – a curiosity among Arachnida. PLoS ONE 8, e75989.
Microwhip scorpions (Palpigradi) feed on heterotrophic Cyanobacteria in Slovak caves – a curiosity among Arachnida.CrossRef | 24146804PubMed | open url image1

Souza, M. F. V. R., and Ferreira, R. L. (2010). Eukoenenia (Palpigradi: Eukoeneniidae) in Brazilian caves with the first troglobiotic palpigrade from South America. The Journal of Arachnology 38, 415–424.
Eukoenenia (Palpigradi: Eukoeneniidae) in Brazilian caves with the first troglobiotic palpigrade from South America.CrossRef | open url image1

Souza, M. F. V. R., and Ferreira, R. L. (2011a). A new species of Eukoenenia (Palpigradi: Eukoeneniidae) from Brazilian iron caves. Zootaxa 2886, 31–38. open url image1

Souza, M. F. V. R., and Ferreira, R. L. (2011b). A new troglobitic Eukoenenia (Palpigradi: Eukoeneniidae) from Brazil. The Journal of Arachnology 39, 185–188.
A new troglobitic Eukoenenia (Palpigradi: Eukoeneniidae) from Brazil.CrossRef | open url image1

Souza, M. F. V. R., and Ferreira, R. L. (2012a). Eukoenenia virgemdalapa (Palpigradi: Eukoeneniidae): a new troglobitic palpigrade from Brazil. Zootaxa 3295, 59–64. open url image1

Souza, M. F. V. R., and Ferreira, R. L. (2012b). A new highly troglomorphic species of Eukoenenia (Palpigradi: Eukoeneniidae) from tropical Brazil. The Journal of Arachnology 40, 151–158.
A new highly troglomorphic species of Eukoenenia (Palpigradi: Eukoeneniidae) from tropical Brazil.CrossRef | open url image1

Souza, M. F. V. R., and Ferreira, R. L. (2013). Two new species of the enigmatic Leptokoenenia (Eukoeneniidae: Palpigradi) from Brazil: first record of the genus outside intertidal environments. PLoS ONE 8, e77840.
Two new species of the enigmatic Leptokoenenia (Eukoeneniidae: Palpigradi) from Brazil: first record of the genus outside intertidal environments.CrossRef | 1:CAS:528:DC%2BC3sXhslClurfN&md5=8df2c82350c41b97840fffad42230f27CAS | open url image1

Stamatakis, A., Hoover, P., and Rougemont, J. (2008a). A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML Web servers.CrossRef | 18853362PubMed | open url image1

Stamatakis, A. P., Meier, H., and Ludwig, T. (2008b). RAxML: a parallel program for phylogenetic tree inference.

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.CrossRef | 1:CAS:528:DC%2BD2sXhtFKrs7%2FP&md5=0c5c46451d549b55ffe3d65d7213c7a5CAS | 17654362PubMed | open url image1

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.CrossRef | open url image1

Varón, A., Lucaroni, N., Hong, L., and Wheeler, W. C. (2012). POY 5.0.0. (American Museum of Natural History. http://research.amnh.org/scicomp: New York.)

Vélez, S., Mesibov, R., and Giribet, G. (2012). Biogeography in a continental island: population structure of the relict endemic centipede Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) in Tasmania using 16S rRNA and COI. The Journal of Heredity 103, 80–91.
Biogeography in a continental island: population structure of the relict endemic centipede Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) in Tasmania using 16S rRNA and COI.CrossRef | 22058409PubMed | open url image1

Wheeler, W. C. (1995). Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 44, 321–331. open url image1

Wheeler, W. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
Optimization alignment: the end of multiple sequence alignment in phylogenetics?CrossRef | open url image1

Wheeler, W. C. (2003). Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search. Cladistics 19, 261–268.
Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search.CrossRef | 12901383PubMed | open url image1

Wheeler, W. C., and Hayashi, C. Y. (1998). The phylogeny of the extant chelicerate orders. Cladistics 14, 173–192.
The phylogeny of the extant chelicerate orders.CrossRef | open url image1

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=86df74a7ce3b490b4da8ad4ca25d6b71CAS | 11975347PubMed | open url image1

Zagmajster, M., and Kováč, ?. (2006). Distribution of palpigrades (Arachnida, Palpigradi) in Slovenia with a new record of Eukoenenia austriaca (Hansen, 1926). Natura Sloveniae 8, 23–31. open url image1


Full Text PDF (1022 KB) Export Citation