Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Evolution of host use, group-living and foraging behaviours in kleptoparasitic spiders: molecular phylogeny of the Argyrodinae (Araneae : Theridiidae)

Yong-Chao Su A B C and Deborah Smith B

A Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan.

B Department of Ecology and Evolutionary Biology, Haworth Hall, 1200 Sunnyside Ave, University of Kansas, Lawrence, KS 66045, USA.

C Corresponding author. Email: ycsu527@gmail.com

Invertebrate Systematics 28(4) 415-431 http://dx.doi.org/10.1071/IS14010
Submitted: 8 February 2014  Accepted: 23 April 2014   Published: 12 September 2014

Abstract

Spiders in the subfamily Argyrodinae are known for their associations with other spiders. These associations include predation (araneophagy), web usurpation and kleptoparasitism. Although the majority of the 239 described species are solitary, ~20 species live in groups in the webs of their hosts. We constructed a molecular phylogeny of argyrodine genera and species in order to investigate (1) the evolution of araneophagy and kleptoparasitism, and (2) group-living and its association with particular types of host webs. We investigated the phylogeny of 41 primarily Asian and American species representing six recognised genera of Argyrodinae, using sequences of four genes: mitochondrial cytochrome c oxidase I (COI) and 16S rRNA (16S); and nuclear 28S rRNA (28S) and histone 3 (H3). We used Bayesian methods to reconstruct the ancestral states of three behavioural characters: foraging method, group-living and specialisation on large webs of large hosts. We tested for correlated evolution of group-living behaviour and specialisation on large webs using reversible-jump Markov chain Monte Carlo methods. The molecular phylogenetic analyses support the monophyly of the Argyrodinae. Reconstruction of ancestral states shows the evolutionary pathway of web-invading behaviour in Argyrodinae is from araneophagy to kleptoparasitism, and then to group-living kleptoparasitism. We found the evolution of group-living behaviour is strongly correlated with specialisation on the use of large host webs, which provide a larger food resource than smaller webs.

Additional keywords: araneophagy, correlated character evolution, kleptoparasitism, sociality.


References

Agnarsson, I. (2002). Sharing a web – on the relation of sociality and kleptoparasitism in theridiid spiders (Theridiidae, Araneae). The Journal of Arachnology 30, 181–188.
Sharing a web – on the relation of sociality and kleptoparasitism in theridiid spiders (Theridiidae, Araneae).CrossRef | open url image1

Agnarsson, I. (2004). Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zoological Journal of the Linnean Society 141, 447–626.
Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae).CrossRef | open url image1

Agnarsson, I., Avilés, L., Coddington, J. A., and Maddison, W. P. (2006). Sociality in Theridiid spiders: repeated origins of an evolutionary dead end. Evolution 60, 2342–2351.
Sociality in Theridiid spiders: repeated origins of an evolutionary dead end.CrossRef | 17236425PubMed | open url image1

Agnarsson, I., Maddison, W. P., and Avilés, L. (2007). The phylogeny of the social Anelosimus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology. Molecular Phylogenetics and Evolution 43, 833–851.
The phylogeny of the social Anelosimus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology.CrossRef | 1:CAS:528:DC%2BD2sXlvVOrurk%3D&md5=6e762f9f10b630e730a71b095b976637CAS | 17081775PubMed | open url image1

Arnedo, M. A., Coddington, J., Agnarsson, I., and Gillespie, R. G. (2004). From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 31, 225–245.
From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes.CrossRef | 1:CAS:528:DC%2BD2cXhvFSksL0%3D&md5=2ef99c8d40496eb79f3b464ccaabdffeCAS | 15019622PubMed | open url image1

Avilés, L. (1997). Causes and consequences of cooperation and permanent-sociality in spiders. In ‘The Evolution of Social Behavior in Insects and Arachnids’. (Ed. J. C. Choe and B. J. Crespi.) pp. 476–498. (Cambridge University Press: Cambridge.)

Baba, Y. G., Walters, R. J., and Miyashita, T. (2007). Host-dependent differences in prey acquisition between populations of a kleptoparasitic spider Argyrodes kumadai (Araneae: Theridiidae). Ecological Entomology 32, 38–44.
Host-dependent differences in prey acquisition between populations of a kleptoparasitic spider Argyrodes kumadai (Araneae: Theridiidae).CrossRef | open url image1

Bidegaray-Batista, L., and Arnedo, M. A. (2011). Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology 11, 317.
Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders.CrossRef | 22039781PubMed | open url image1

Bilde, T., and Lubin, Y. (2011). Group living in spiders: cooperative breeding and coloniality. In ‘Spider Behavior: Flexibility and Versatility’. (Ed. M. E. Herberstein.) pp. 275–298. (Cambridge University Press: Cambridge.)

Brach, V. (1977). Anelosimus studiosus (Araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders. Evolution 31, 154–161.
Anelosimus studiosus (Araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders.CrossRef | open url image1

Buskirk, R. (1981). Sociality in the Arachnida. In ‘Social Insects. Vol. 2’. (Ed. H. R. Hermann.) pp. 281–367. (Academic Press: New York, NY.)

Cangialosi, K. R. (1997). Foraging versatility and the influence of host availability in Argyrodes trigonum (Araneae, Theridiidae). The Journal of Arachnology 25, 182–193. open url image1

Cobbold, S. M., and Su, Y. C. (2010). The host becomes dinner: possible use of Cyclosa as a nuptial gift by Argyrodes in a colonial web. The Journal of Arachnology 38, 132–134.
The host becomes dinner: possible use of Cyclosa as a nuptial gift by Argyrodes in a colonial web.CrossRef | open url image1

Colgan, D. J., McLauchlan, A., Edgecombe, G. D., Macaranas, J., Cassis, G., Gray, M. R., Livingston, S. P., and Wilson, G. D. F. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution.CrossRef | open url image1

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.CrossRef | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=beec25ccf0d2a98903aa512fd45babe5CAS | 22367748PubMed | open url image1

Eberhard, W. G. (1979). Argyrodes attenuatus (Theridiidae): a web that is not a snare. Psyche 86, 407–413.
Argyrodes attenuatus (Theridiidae): a web that is not a snare.CrossRef | open url image1

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.CrossRef | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=0f644003e0450eab42e285b06371fbb5CAS | 15034147PubMed | open url image1

Elgar, M. (1993). Inter-specific associations involving spiders: kleptoparasitism, mimicry and mutualism. Memoirs of the Queensland Museum 33, 411–430. open url image1

Evans, T. A. (1999). Kin recognition in a social spider. Proceedings of the Royal Society of London. Series B, Biological Sciences 266, 287–292.
Kin recognition in a social spider.CrossRef | open url image1

Evans, T. A., and Goodisman, M. A. D. (2002). Nestmate relatedness and population genetic structure of the Australian social crab spider Diaea ergandros (Araneae: Thomisidae). Molecular Ecology 11, 2307–2316.
Nestmate relatedness and population genetic structure of the Australian social crab spider Diaea ergandros (Araneae: Thomisidae).CrossRef | 1:CAS:528:DC%2BD38XptlSlsr0%3D&md5=cd54175746b8c327652727ce591333b5CAS | 12406241PubMed | open url image1

Exline, H., and Levi, H. (1962). American spiders of the genus Argyrodes (Araneae, Theridiidae). Bulletin of the Museum of Comparative Zoology. 127, 75–202. open url image1

Fernández Campón, F. (2007). Group foraging in the colonial spider Parawixia bistriata (Araneidae): effect of resource levels and prey size. Animal Behaviour 74, 1551–1562.
Group foraging in the colonial spider Parawixia bistriata (Araneidae): effect of resource levels and prey size.CrossRef | open url image1

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=41891c10f444b637826cbf6001a4954cCAS | 7881515PubMed | open url image1

Fowler, H., and Gobbi, N. (1988). Cooperative prey capture by an orb-web spider. Naturwissenschaften 75, 208–209.
Cooperative prey capture by an orb-web spider.CrossRef | open url image1

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732.
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.CrossRef | open url image1

Hedin, M. C. (1997). Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution 51, 1929–1945.
Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling.CrossRef | open url image1

Hedin, M. C., and Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae).CrossRef | 1:CAS:528:DC%2BD3MXit1ansbg%3D&md5=cedf4973ea9822c87cf2bcd4c96f698aCAS | 11277632PubMed | open url image1

Hénaut, Y., Delme, J., Legal, L., and Williams, T. (2005). Host selection by a kleptobiotic spider. Naturwissenschaften 92, 95–99.
Host selection by a kleptobiotic spider.CrossRef | 15592806PubMed | open url image1

Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association 90, 773–795.
Bayes factors.CrossRef | open url image1

Koh, T. H., and Li, D. (2003). State dependent prey type preferences of a kleptoparasitic spider Argyrodes flavescens (Araneae: Theridiidae). Journal of Zoology 260, 227–233.
State dependent prey type preferences of a kleptoparasitic spider Argyrodes flavescens (Araneae: Theridiidae).CrossRef | open url image1

Kullmann, E. J. (1972). Evolution of social behavior in spiders (Araneae; Eresidae and Theridiidae). American Zoologist 12, 419–426. open url image1

Kuntner, M., Arnedo, M. A., Trontelj, P., Lokovšek, T., and Agnarsson, I. (2013). A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage. Molecular Phylogenetics and Evolution 69, 961–979.
A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.CrossRef | 1:CAS:528:DC%2BC3sXhtFSmt77K&md5=f12200ce3dd52d6424ee263921a38694CAS | 23811436PubMed | open url image1

Lemey, P., Rambaut, A., Drummond, A. J., and Suchard, M. A. (2009). Bayesian phylogeography finds its roots. PLoS Computational Biology 5, e1000520.
Bayesian phylogeography finds its roots.CrossRef | 19779555PubMed | open url image1

Lubin, Y., and Bilde, T. (2007). The evolution of sociality in spiders. Advances in the Study of Behavior 37, 83–145.
The evolution of sociality in spiders.CrossRef | open url image1

Miyashita, T. (2002). Population dynamics of two species of kleptoparasitic spiders under different host availabilities. The Journal of Arachnology 30, 31–38.
Population dynamics of two species of kleptoparasitic spiders under different host availabilities.CrossRef | open url image1

Miyashita, T., Maezono, Y., and Shimazaki, A. (2004). Silk feeding as an alternative foraging tactic in a kleptoparasitic spider under seasonally changing environments. Journal of Zoology 262, 225–229.
Silk feeding as an alternative foraging tactic in a kleptoparasitic spider under seasonally changing environments.CrossRef | open url image1

Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L., and Swofford, D. L. (2008). AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581–583.
AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics.CrossRef | 1:CAS:528:DC%2BD1cXitVKis7g%3D&md5=2cd588dbda07e498a2e2ce90171acfa8CAS | open url image1

Pagel, M., and Lutzoni, F. (2002). Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. Biological Evolution and Statistical Physics Vol. 585. (Eds M. Lässig and A. Valleriani.) pp. 148–161. (Springer: Berlin.)

Pagel, M., and Meade, A. (2006). Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. American Naturalist 167, 808–825.
Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo.CrossRef | 16685633PubMed | open url image1

Penney, D., and Green, D. I. (2011). Fossils in Amber: Remarkable Snapshots of Prehistoric Forest Life. (Siri Scientific Press.) 226 pp.

Platnick, N. (2014). The world spider catalog, version 15 American Museum of Natural History. Available at http://research.amnh.org/iz/spiders/catalog/ [Verified July 2014]

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.CrossRef | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=a227fa0ae4120a3a8c06cab96986f12aCAS | 18397919PubMed | open url image1

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2013). Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer [Verified July 2014]

Robinson, M. H., and Robinson, B. (1973). Ecology and behavior of the giant wood spider Nephila maculata (Fabricius) in New Guinea. Smithsonian Contributions to Zoology 149, 1–76.
Ecology and behavior of the giant wood spider Nephila maculata (Fabricius) in New Guinea.CrossRef | open url image1

Roeloffs, R., and Riechert, S. E. (1988). Dispersal and population-genetic structure of the cooperative spider, Agelena consociata, in west African rainforest. Evolution 42, 173–183.
Dispersal and population-genetic structure of the cooperative spider, Agelena consociata, in west African rainforest.CrossRef | open url image1

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.CrossRef | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=d5b84f5cc16cfb75b367ced57a76cb2cCAS | 12912839PubMed | open url image1

Saaristo, M. I. (1978). Spiders (Arachnida, Araneae) from the Seychelle islands, with notes on taxonomy. Annales Zoologici Fennici 15, 99–126. open url image1

Saaristo, M. I. (2006). Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae). Phelsuma 14, 49–89. open url image1

Simon, E. (1864). ‘Histoire Naturelle des Araignées. First Edn.’ Librairie Encyclopédique de Roret, rue Hautefeuille, 12, Paris.

Simon, E. (1892–1895). ‘Histoire Naturelle des Araignées. Second Edn.’ Volume 1 (section 3, published 10 October 1894), Librairie Encyclopédique de Roret, rue Hautefeuille, 12, Paris, pp. 496–503.

Smith Trail, D. (1980). Predation by Argyrodes (Theridiidae) on solitary and communal spiders. Psyche 87, 349–355.
Predation by Argyrodes (Theridiidae) on solitary and communal spiders.CrossRef | open url image1

Smith, D. (1982). Reproductive success of solitary and communal Philoponella oweni (Araneae: Uloboridae). Behavioral Ecology and Sociobiology 11, 149–154.
Reproductive success of solitary and communal Philoponella oweni (Araneae: Uloboridae).CrossRef | open url image1

Smith, D. R., and Hagen, R. H. (1996). Population structure and interdemic selection in the cooperative spider Anelosimus eximius. Journal of Evolutionary Biology 9, 589–608.
Population structure and interdemic selection in the cooperative spider Anelosimus eximius.CrossRef | open url image1

Smith, D., Van Rijn, S., Henschel, J., Bilde, T., and Lubin, Y. (2009). Amplified fragment length polymorphism fingerprints support limited gene flow among social spider populations. Biological Journal of the Linnean Society. Linnean Society of London 97, 235–246.
Amplified fragment length polymorphism fingerprints support limited gene flow among social spider populations.CrossRef | open url image1

Tanaka, K. (1984). Rate of predation by a kleptoparasitic spider, Argyrodes fissifrons, upon a large host spider, Agelena limbata. The Journal of Arachnology 12, 363–367. open url image1

Tanikawa, A. (1998). The new synonymy of the spider genus Argyrodes (Araneae: Theridiidae) and a description of a new species from Japan. Acta Arachnologica 47, 21–26.
The new synonymy of the spider genus Argyrodes (Araneae: Theridiidae) and a description of a new species from Japan.CrossRef | open url image1

Uetz, G. W., and Hieber, C. S. (1997). Colonial web-building spiders: balancing the costs and benefits of group-living. In ‘Social Behavior in Insects and Arachnids’. (Eds J. C. Chou and B. J. Crespi.) pp. 458–475. (Cambridge University Press: Cambridge, UK.)

Vollrath, F. (1979). Behaviour of the kleptoparasitic spider Argyrodes elevatus (Araneae, Theridiidae). Animal Behaviour 27, 515–521.
Behaviour of the kleptoparasitic spider Argyrodes elevatus (Araneae, Theridiidae).CrossRef | open url image1

Whitehouse, M. (1988). Factors influencing specificity and choice of host in Argyrodes antipodiana (Theridiidae, Araneae). The Journal of Arachnology 16, 349–355. open url image1

Whitehouse, M. (1991). To mate or fight? Male-male competition and alternative mating strategies in Argyrodes antipodiana (Theridiidae, Araneae). Behavioural Processes 23, 163–172.
To mate or fight? Male-male competition and alternative mating strategies in Argyrodes antipodiana (Theridiidae, Araneae).CrossRef | 1:STN:280:DC%2BC2cfit1Smsw%3D%3D&md5=9b29f5d5912266c05967c3198465d36eCAS | 24923512PubMed | open url image1

Whitehouse, M. (2011). Kleptoparasitic spiders of the subfamily Argyrodinae: a special case of behavioural plasticity. In ‘Spider Behaviour: Flexibility and Versatility’. (Ed. M. E. Herberstein.) (Cambridge University Press: Cambridge.)

Whitehouse, M., Agnarsson, I., Miyashita, T., Smith, D., Cangialosi, K., Masumoto, T., Li, D., and Henaut, Y. (2002). Argyrodes: phylogeny, sociality and interspecific interactions: a report on the Argyrodes symposium, Badplaas 2001. The Journal of Arachnology 30, 238–245.
Argyrodes: phylogeny, sociality and interspecific interactions: a report on the Argyrodes symposium, Badplaas 2001.CrossRef | open url image1

Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=86df74a7ce3b490b4da8ad4ca25d6b71CAS | 11975347PubMed | open url image1

Wise, D. H. (1982). Predation by a commensal spider, Argyrodes trigonum, upon its host: an experimental study. The Journal of Arachnology 10, 111–116. open url image1

Wunderlich, J. (1988). Die fossilen Spinnen im dominikanischen Bernstein. Beiträge zur Araneologie 2, 1–378. open url image1

Wunderlich, J. (2004). Subrecent spiders (Araneae) in copal from Madagascar, with description of new species. Beiträge zur Araneologie 3, 1830–1853. open url image1

Wunderlich, J. (2008). On extant and fossil (Eocene) European comb-footed spiders (Araneae: Theridiidae), with notes on their subfamilies, and with descriptions of new taxa. Beiträge zur Araneologie 5, 140–469. open url image1

Wunderlich, J. (2011). Some subrecent spiders (Araneae) in copal from Madagascar. Beiträge zur Araneologie 6, 445–460. open url image1

Yip, E., Clarke, S., and Rayor, L. (2009). Aliens among us: nestmate recognition in the social huntsman spider, Delena cancerides. Insectes Sociaux 56, 223–231.
Aliens among us: nestmate recognition in the social huntsman spider, Delena cancerides.CrossRef | open url image1

Yoshida, H. (2001). The genus Rhomphaea (Araneae: Theridiidae) from Japan, with notes on the subfamily Argyrodinae. Acta Arachnologica 50, 183–192.
The genus Rhomphaea (Araneae: Theridiidae) from Japan, with notes on the subfamily Argyrodinae.CrossRef | open url image1

Yoshida, H. (2003). A new genus and three new species of the family Theridiidae (Arachnida: Araneae) from North Borneo. Acta Arachnologica 52, 85–89.
A new genus and three new species of the family Theridiidae (Arachnida: Araneae) from North Borneo.CrossRef | open url image1

Zwickl, D. J. (2006). GARLI: genetic algorithm for rapid likelihood inference. Available at http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html [Verified July 2014]



Export Citation