Supplementary Material

Unravelling the relationships among *Madrepora* Linnaeus, 1758, *Oculina* Lamark, 1816 and *Cladocora* Ehrenberg, 1834 (Cnidaria: Anthozoa: Scleractinia)

Anna M. Addamo^{A,B,C,F,*}, Melinda S. Modrell^A, Marco Taviani^{D,E} and Annie Machordom^A

^ADepartamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain

^BEuropean Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy

^CClimate Change Research Centre (CCRC), University of Insubria, I-21100 Varese, Italy

^DIstituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR), I-40129 Bologna, Italy

^EStazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy

^FPresent address: Faculty of Biosciences and Aquaculture, Nord University, NO-8049

Bodø, Norway

*Correspondence to: Email: <u>am.addamo@gmail.com</u>

List of coral species used in this study

Family code	Family	Genus	Species	Institute /	Contact	Voucher code /	AMA code
				Database		NCBI code	
ACR	Acroporidae	Acropora	aspera	NCBI		KF448532	
	Acroporidae	Acropora	digitifera	NCBI		KF448535	
	Acroporidae	Acropora	divaricata	NCBI		KF448537	
	Acroporidae	Acropora	florida	NCBI		KF448533	
	Acroporidae	Acropora	hemprichii §	UNIMIB	Francesca Benzoni	BA071	AMA-01
	Acroporidae	Acropora	horrida	NCBI		KF448530	
	Acroporidae	Acropora	humilis	NCBI		KF448528	
	Acroporidae	Acropora	hyacynthus §	UNIMIB	Francesca Benzoni	BA091	AMA-02
	Acroporidae	Acropora	hyacynthus §	NCBI		KF448531	
	Acroporidae	Acropora	muricata	NCBI		KF448529	
	Acroporidae	Acropora	nasuta	NCBI		KF448536	
	Acroporidae	Acropora	robusta	NCBI		KF448538	
	Acroporidae	Acropora	tenuis	NCBI		AF338425	
	Acroporidae	Acropora	yongei	NCBI		KF448534	
	Acroporidae	Acropora	valida §	UNIMIB	Francesca Benzoni	BA130	AMA-03
	Acroporidae	Alveopora	sp.	NCBI		KJ634271	
	Acroporidae	Anacropora	matthaii	NCBI		AY903295	
	Acroporidae	Astreopora	explanata	NCBI		KJ634269	
	Acroporidae	Astreopora	myriophthalma	NCBI		KJ634272	
	Acroporidae	Isopora	palifera	NCBI		KJ634270	
	Acroporidae	Isopora	togianensis	NCBI		KJ634268	
	Acroporidae	Montipora	Cactus	NCBI		AY903296	
AST	Astrangiidae	Astrangia	sp.	NCBI		DQ643832	
AGA	Agariciidae	Agaricia	humilis	NCBI		DQ643831	
	Agariciidae	Pavona	clavus	NCBI		DQ643836	
CAR	Caryophylliidae	Caryophyllia (Caryophyllia)	calveri §	CNR-ISMAR	Marco Taviani		AMA-282
	Caryophylliidae	Caryophyllia (Caryophyllia)	diomedeae †	NMNH	Stephen Cairns	USNM 1072329	AMA-181
	Caryophylliidae	Caryophyllia (Caryophyllia)	huinayensis §	MNCN	Anna M. Addamo		AMA-58
	Caryophylliidae	Caryophyllia (Caryophyllia)	smithii §	US	Pablo José López-González		AMA-40
	Caryophylliidae	Ceratotrochus	magnaghii	NMNH	Stephen Cairns	USNM 98482	AMA-145
	Caryophylliidae	Desmophyllum	dianthus §	MNCN	Marco Taviani		DdROC163 (Italy)
	Caryophylliidae	Desmophyllum	dianthus §	MNCN	Anna M. Addamo		DdIJC432 (Chile)
	Caryophylliidae	Desmophyllum	pertusum §	CNR-ISMAR	Marco Taviani		AMA-52 (Italy)
	Caryophylliidae	Desmophyllum	pertusum §	MNCN	Anna M. Addamo		AMA-296 (Ireland)
	Caryophylliidae	Desmophyllum	pertusum §	NCBI		KC875349	
	Caryophylliidae	Labyrinthocyathus	facetus	NMNH	Stephen Cairns	USNM 1114920	AMA-191
	Caryophylliidae	Paraconotrochus	antarcticus §	US	Pablo José López-González		AMA-44
	Caryophylliidae	Polycyathus	senegalensis *	NMNH	Stephen Cairns	USNM 1026497	AMA-178
	Caryophylliidae	Polycyathus	sp.	NCBI		JF825140	
	Caryophylliidae	Pourtalosmilia	anthophyllites §	CMAJA	Mari Carmen Arroyo		AMA-37
	Caryophylliidae	Premocyathus	cornuformis *	NMNH	Stephen Cairns	USNM 1010389	AMA-173
	Caryophylliidae	Stephanocyathus (Odontocyathus)	coronatus	NMNH	Stephen Cairns	USNM 1100225	AMA-187
	Caryophylliidae	Stephanocyathus (Stephanocyathus)	diadema †	NMNH	Stephen Cairns	USNM 100906	AMA-166
	Caryophylliidae	Stephanocyathus (Stephanocyathus)s	regius	NMNH	Stephen Cairns	USNM 98655	AMA-153
	Caryophylliidae	Stephanocyathus (Stephanocyathus)s	moseleyanus §	IEO	Alvaro Altuna	001-V03	AMA-269
	Caryophylliidae	Tethocyathus	endesa §	MNCN	Anna M. Addamo		AMA-59
	Caryophylliidae	Trochocyathus	aithoseptatus †	NMNH	Stephen Cairns	USNM 1072318	AMA-180
	Caryophylliidae	Vaughanella	concinna §	IEO	Alvaro Altuna	038-DR15	AMA-266
	Caryophylliidae	Vaughanella	margaritata	NMNH	Stephen Cairns	USNM 1008600	AMA-170

Table S1. Coral species used in the analyses (in alphabetical order).

Family code	Family	Genus	Species	Institute / Database	Contact	Voucher code / NCBL code	AMA code
CLA	Cladocoridae	Cladocora	arbuscula	NCBI		AB117292	
CLIT	Cladocoridae	Cladocora	caespitosa 8	MNCN	Annie Machordom	11011/2/2	AMA-284 (A)
	Cladocoridae	Cladocora	caespitosa §	MNCN	Annie Machordom		AMA-286 (B)
DEN	Dendrophylliidae	Balanophyllia (Balanophyllia)	europaea §	MNCN	Anna M. Addamo		AMA-48
D DI (Dendrophylliidae	Balanophyllia (Balanophyllia)	floridana *	NMNH	Stephen Cairns	USNM 68416	AMA-79
	Dendrophylliidae	Balanophyllia (Balanophyllia)	regia §	MNCN	Anna M. Addamo		AMA-47
	Dendrophylliidae	Balanophyllia (Balanophyllia)	regia §	NCBI		HG965314	
	Dendrophylliidae	Cladopsammia	echinata *	NMNH	Stephen Cairns	USNM 97628	AMA-141
	Dendrophylliidae	Dendrophyllia	alcocki *	NMNH	Stephen Cairns	USNM 1006512	AMA-168
	Dendrophylliidae	Dendrophyllia	laboreli §	JdA	Mari Carmen Arroyo		AMA-39
	Dendrophylliidae	Dendrophyllia	johnsoni	NMNH	Stephen Cairns	USNM 98444	AMA-143
	Dendrophylliidae	Dendrophyllia	ramea §	US	Pablo José López-González		AMA-45
	Dendrophylliidae	Tubastraea)	aurea §	UNIMIB	Francesca Benzoni	Y755	AMA-07
	Dendrophylliidae	Endopachys	grayi	NMNH	Stephen Cairns	USNM 98983	AMA-161
	Dendrophylliidae	Rhizopsammia	wettsteini §	UNIMIB	Francesca Benzoni	Y756	AMA-08
	Dendrophylliidae	Rhizopsammia	wettsteini §	NCBI		HG965337	
	Dendrophylliidae	Thecopsammia	socialis	NMNH	Stephen Cairns	USNM 1114650	AMA-190
	Dendrophylliidae	Tubastraea	micranthus §	UNIMIB	Francesca Benzoni	Y757	AMA-09
EUP	Euphylliidae	Fimbriaphyllia	ancora	NCBI		JF825139;	
						JQ968408;	
	E 1 1111			MODI		JQ968408	
	Euphylliidae	Galaxea	fascicularis	NCBI		AB086826	
FAV	Faviidae	Colpophyllia	natans	NCBI		DQ643833	
	Faviidae	Mussa	angulosa	NCBI	V' ' ' D 1 '	DQ643834	ANIA (1
FLA	Flabellidae	Flabellum (Flabellum)	cinctutum §*	IEO	Virginia Polonio		AMA-01
	Flabellidae	Flabellum (Flabellum)	curvatum §	IEU	Virginia Polonio Stephen Ceime	PATAU8	AMA-07
	Flabellidae	Flabellum (Flabellum)	jiexuosum imponsum 8	MNUNI	Auda Andoucha	MNIHN IV 2011 2427	AMA 228
	Flabellidae	Flabellum (Flabellum)	knori *	NMNH	Stephen Cairns	USNM 9/332	AMA-238
	Flabellidae	Flabellum (Flabellum)	lamellulosum 8	MNHN	Aude Andouche	MNHN_IK_2011_2386	AMA-107
	Flabellidae	Flabellum (Flabellum)	thouarsii 8	IFO	Virginia Polonio	PATA06	AMA-65
	Flabellidae	Flabellum (Illocyathus)	alahastrum	NMNH	Stephen Cairns	USNM 1008601	AMA-171 (A)
	Flabellidae	Flabellum (Ulocyathus)	alabastrum 8	IEO	Alvaro Altuna	025-DR15	AMA-262 (B)
	Flabellidae	Flabellum (Ulocyathus)	apertum	NMNH	Stephen Cairns	USNM 94298	AMA-107
	Flabellidae	Flabellum (Ulocyathus)	lowekevesi	NMNH	Stephen Cairns	USNM 94318	AMA-108
	Flabellidae	Javania	antarctica §	IEO	Virginia Polonio	PATA03	AMA-62
	Flabellidae	Javania	borealis	NMNH	Stephen Cairns	USNM 1011112	AMA-174
	Flabellidae	Javania	cailleti §	IEO	Alvaro Altuna	026-DR15	AMA-270
	Flabellidae	Javania	cailleti §	NCBI		JQ611399	
	Flabellidae	Javania	lamprotichum	NMNH	Stephen Cairns	USNM 1071211	AMA-179
	Flabellidae	Polymyces	wellsi	NMNH	Stephen Cairns	USNM 1072331	AMA-182
FGY	Fungiacyathidae	Fungiacyathus (Fungiacyathus)	stephanus §	MNHN	Aude Andouche	MNHN-IK-2011-2388	AMA-230
	Fungiacyathidae	Fungiacyathus (Fungiacyathus)	stephanus §	NCBI		JF825138	
FUN	Fungiidae	Heliofungia	actiniformis	NCBI		DQ174720	
MER	Merulinidae	Dipsastraea	matthaii §†	UNIMIB	Francesca Benzoni	BA101	AMA-05
	Merulinidae	Dipsastraea	pallida §†	UNIMIB	Francesca Benzoni	BA061	AMA-04 (A)
	Merulinidae	Dipsastraea	pallida §	UNIMIB	Francesca Benzoni	BA119	AMA-06 (B)
	Merulinidae	Favites	chinesis	NCBI		AB094431	
	Merulinidae	Orbicella	faveolata	NCBI		AP008978	
MIC	Merulinidae	Platygyra	carnosa	NCBI		JX911333	AD4A 116
MIC	Micrabaciidae	Knombopsammia	niphada	NMNH	Stephen Cairns	USNM 96737	AMA-116
000	Bathyporidae	<i>Maarepora</i> Madaaaaa	oculata s	UNK-ISMAR	warco 1 aviani	1222011	AMA-51
	Bathyporidae	<i>Maarepora</i>		NCBI		JA230041	
	Oculinidae	Ocuina	aijjusa	INCBI	Anno M. Addomo	FJ9008/1	AMA 50
	Oculinidae	Oculina	patagonica 8	NCBI	Anna M. Auuamo	I N614380	AWIA-30
	Geunnuae	Ocuilla	риндописи	IICDI		L1014300	

Family code	Family	Genus	Species	Institute / Contact	Voucher code / AMA code
				Database	NCBI code
	Oculinidae	Oculina	sp	NCBI	LN614379;
					AY451365
	Oculinidae	Oculina	varicosa	NCBI	FJ966875
POC	Poritidae	Goniopora	columna	NCBI	JF825141
	Pocilloporidae	Madracis	myriaster (formerly miriabilis)	NCBI	EU400212
	Pocilloporidae	Pocillopora	grandis (formerly eydouxi)	NCBI	EF526303
	Pocilloporidae	Seriatopora	hystrix	NCBI	EF633600;
	-	-			HM147127;
					M147130
	Pocilloporidae	Stylophora	pistillata	NCBI	KC342191;
	*	•	•		AY360081;
					KC79165
POR	Poritidae	Porites	okinawensis	NCBI	JF825142
	Poritidae	Porites	panamensis	NCBI	KJ546638
	Poritidae	Porites	porites	NCBI	DQ643837
RHI	Rhizangiidae	Siderastrea	radians	NCBI	DO643838

Taxa in **bold** are the 7 species chosen for whole genome sequencing from which the 14 markers were developed and used for the phylogenetic analyses in this study. Taxa in **blue** are the species included in the combined trees (Fig. 1 and 2). Species collected in the field and preserved in ethanol for this study are denoted by a section symbol (§). Neverbefore-sequenced species are denoted by an asterisk (*). Species for which new *ITS* sequences were obtained (i.e. *ITS* sequence was not previously available for the species) are denoted by a dagger symbol (†). AMA codes are those assigned by the first author (Anna M. Addamo) also used in Campoy *et al.* 2020; Family codes are abbreviations for scleractinian families used in this study. NCBI codes are Accession numbers assigned to sequence records in the GenBank database. Voucher codes are those originally assigned by the museum or collection owner. Coral names have been cross-checked and aligned with the information available in WoRMS (last access on 29 December 2023). Abbreviations: CNR-ISMAR, Consiglio Nazionale di Ricerca – Istituto di Scienze Marine (Italy); IEO, Instituto Español de Oceanografía (Spain) ; JdA, Junta de Andalucía (Spain); MNCN, Museo Nacional de Ciencias Naturales (Spain); MNHN, Muséum national d'Histoire naturelle (France); NCBI, National Center for Biotechnology Information (USA); NMNH, Smithsonian National Museum of Natural History (USA); UNIMIB, Università degli Studi di Milano Bicocca (Italy); US, Universidad de Sevilla (Spain).

Description of the 14 markers developed from the genome screen

As a resource for this and future studies, seven temperate or cold-water coral species were selected for whole genome high-throughput sequencing to highlight the knowledge gap within the scleractinian phylogeny that currently exist for these under-sampled species: *Caryophyllia (Caryophyllia) smithii* Stokes & Broderip. 1828, *Dendrophyllia ramea* (Linnaeus, 1758), *Desmophyllum dianthus, Javania cailleti* (Duchassaing & Michelotti, 1864), *Madrepora oculata, Oculina patagonica* and *Paraconotrochus antarcticus* (Gardiner, 1929) (formerly *Gardineria antarctica* Gardiner, 1929).

Whole genome sequencing of seven coral species

The genomic libraries of the selected species were constructed at Genomics Research & Services (Parque Científico de Madrid, and Biomol-Informatics SL, Cantoblanco, Madrid, Spain). DNA was extracted as described above, except samples were adjusted to a final concentration of 25 ng μ L⁻¹. For each specimen, 2.5 μ g of gDNA were fragmented using a Bioruptor (Diagenode). DNA fragments ~400 base pairs (bp) in length were excised from agarose gels and purified, and TruSeq libraries (Illumina) were prepared according to the manufacturer's instructions. The seven DNA libraries were checked for size, concentration and integrity using a Bioanalyzer (Agilent), and DNA quantity was estimated by quantitative PCR (qPCR). An Illumina GAIIx sequencer was used for the shotgun sequencing with each species sequenced in separate lanes. Paired-end reads (2×100) were generated and the raw reads were filtered for quality (removal of adapters, artefacts, low-quality reads and duplicates) using the standard Illumina process and analysed using FastQC tool (S. Andrews, see http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Only reads with a Phred quality score > 30 for 95% of the nucleotide bases were kept for further analysis. An average of 66×10^6 reads per species were used for de novo assembly using the package SOAPdenovo (ver. 1.05, see http://soap.genomics.org.cn/soapdenovo.html; Luo et al. 2012) (Table S2) and oriented into scaffolds using Mugsy, an open-source multiple whole genome alignment tool (ver. 1.0, see http://mugsy.sf.net; Angiuoli and Salzberg 2010). To filter coral from non-coral reads (i.e. those of bacteria, archaea, fungi and other eukaryotes that may have been present on the coral specimen), Kmer thresholds were set during the assembly using SOAPdenovo and reads were mapped using the genome of Acropora digitifera (Dana, 1846) as a reference (Shinzato et al. 2011). The identification of orthologous groups and the genome annotation were performed using both **OrthoMCL** (ver. 1.4. see https://orthomcl.org/orthomcl/app; Li et al. 2003) and SWISS-PROT (ver. 2013 05, see https://www.uniprot.org/; Bairoch and Apweiler 1996).

For this study, the seven genomes were preferentially screened to select for homologous, orthologous, single copy protein-coding genes from the translated nucleotide sequences. For this, more than 1×10^6 scaffolds were manually filtered by length (set to \geq 500 bp) and identity (set to \geq 70%); also, a sequence consensus of multiple copies was considered. Multiple species alignments of the selected scaffolds were manually filtered by length (set

to ≥200 bp), strand representation and interspecific polymorphism using Gmaj (ver. 20181103, see https://globin.bx.psu.edu/dist/gmaj/; Blanchette et al. 2004). A total of 50 multiple alignments were obtained and then manually checked with Seaview (ver. 3.2, see https://doua.prabi.fr/software/seaview3; Gouy et al. 2010). Of these, 26 were selected after filtering for length (set to \geq 400 bp), variable sites (set to \geq 2%) and informative sites (set to $\geq 10\%$) as a potential source of markers. Degenerate primers, designed using CODEHOP (ver. 1.0, see http://blocks.fhcrc.org/codehop.html; Rose et al. 2003) and HYDEN (ver. 1.0, see https://acgt.cs.tau.ac.il/hyden/; Linhart and Shamir 2007), were manually checked to reduce degeneracy by using the ability of 'mismatched' base pairs to form a partial bond in primer-template interactions (Palumbi 1996). Corresponding amino acid translations of primers pairs were manually checked to maximise the efficiency of universal primer pairs by extending the match from 7 to 9 identical amino acids (Palumbi 1996). Of the 26 primers pairs initially tested, 14 resulted in successful PCR amplification and sequencing. Amplified products were sequenced and confirmed to not be potential chimeric sequences due to de novo assembly or multiple copies in the genome. Sequences were aligned using ClustalX (ver. 2.1, see http://www.clustal.org/clustal2/; Thompson et al. 1997) and the resulting alignments were checked manually using Se-Al (ver. 2.0a11, see http://tree.bio.ed.ac.uk/software/seal/). The 14 markers (4 mtDNA, 10 nDNA) developed from this screen were 16S rDNA (different fragment from the common one), Actin, AMPt1, AMPt2, ATP6-NAD4, β-Actin, Creatine kinase, Heat shock-like, Helicase, NCAH-like, NAD3, NAD5, SIAH1 and UBB (Tables 1 and S3).

Species	Average insertion size (bp)	Number of reads	Size (Mb)	Percentage cover	Number of scaffolds	Number of alignment
Caryophyllia smithii	513	57495676	57	13.57	221391	40894
Dendrophyllia ramea	470	76154662	76	18.10	277008	24513
Desmophyllum dianthus	430	64208496	64	15.24	194379	39916
Javania cailleti	541	96834006	99	23.57	191043	24637
Madrepora oculata	453	52968500	53	12.62	26214	10067
Oculina patagonica	511	56996784	57	13.57	269768	27105
Paraconotrochus antarcticus	524	56254806	56	13.33	142013	26151

Table S2. Illumina GaIIx information and number of scaffolds and multiple alignment per species.

Percentage cover is calculated considering the genome size of Acropora digitifera (420 Mbp) (Shinzato et al. 2011). Mb, megabases.

For this study, the seven genomes were preferentially screened to select for homologous, orthologous, single copy protein-coding genes from the translated nucleotide sequences. For this, more than 1×10^6 scaffolds were manually filtered by length (set to \geq 500 bp) and identity (set to \geq 70%); also, a sequence consensus of multiple copies was considered. Multiple species alignments of the selected scaffolds were manually filtered by length (set to \geq 200 bp), strand representation and interspecific polymorphism using Gmaj (ver. 20181103; Blanchette *et al.* 2004). A total of 50 multiple alignments were obtained and then manually checked with Seaview (ver. 3.2; Gouy *et al.* 2010). Of these, 26 were selected after filtering for length (set to \geq 400 bp), variable sites (set to \geq 2%) and informative sites (set to \geq 10%) as a potential source of markers. Degenerate primers, designed using CODEHOP

(ver. 1.0; Rose *et al.* 2003) and HYDEN (ver. 1.0; Linhart and Shamir 2007), were manually checked to reduce degeneracy by using the ability of 'mismatched' base pairs to form a partial bond in primer–template interactions (Palumbi 1996). Corresponding amino acid translations of primers pairs were manually checked to maximise the efficiency of universal primer pairs by extending the match from 7 to 9 identical amino acids (Palumbi 1996). Of the 26 primers pairs initially tested, 14 resulted in successful PCR amplification and sequencing. Amplified products were sequenced and confirmed to not be potential chimeric sequences due to *de novo* assembly or multiple copies in the genome. Sequences were aligned using ClustalX (ver. 2.1; Thompson *et al.* 1997) and the resulting alignments were checked manually using Se-Al (ver. 2.0a11). The 14 markers (4 mtDNA, 10 nDNA) developed from this screen were *16S* rDNA (different fragment from the common one), *Actin, AMPt1, AMPt2, ATP6-NAD4, β-Actin, Creatine kinase, Heat shock-like, Helicase, NCAH-like, NAD3, NAD5, SIAH1* and *UBB* (Tables 1 and S3).

Table S	53. Descrip	tion of the	14 markers	developed	in this study.
---------	--------------------	-------------	------------	-----------	----------------

Number	Name (type)	Description
1	16S rDNA	Mitochondrial large subunit ribosomal RNA is the only marker not derived from a protein-coding gene.
	(mtDNA)	This portion of 16S differs from the one commonly used in phylogeny studies of Scleractinia, and it is
		located at ~1300 bp closer to the 5'end.
2	Actin (ncDNA)	Actin is the most abundant protein in most eukaryotic cells. It is highly conserved and participates in more
		protein-protein interactions than any other known protein. Final alignment length: 303 bp.
3	AMPt1 (ncDNA)	Adenosine monophosphate-protein transferase, a protein mediates the addition of adenosine 5'-
		monophosphate (AMP) to specific residues of target proteins. Final alignment length: 332 bp.
4	AMPt2 (ncDNA)	Adenosine monophosphate-protein transferase a protein mediates the addition of adenosine 5'-
_		monophosphate (AMP) to specific residues of target proteins. Final alignment length: 333 bp.
5	ATP6NAD4	The sequence is formed by two fragments of the genes for ATP synthase subunit a and NADH-
	(mtDNA)	ubiquinone oxidoreductase chain 4. The former is a multi-pass memorane protein with hydrogen ion
		(for description of semplar, see NAD2 below). Final alignment length, 1222 br
6	βA_{ctin} (ncDNA)	(for description of complex, see NAD's below). Final alignment length: 1225 bp.
0	<i>p-Actin</i> (IICDNA)	b-Actin gene (see description for <i>Actin</i>). Final anglinent length. 585 bp.
7	Creatine kinase	Creatine kinase belongs to the ATP:guanido phosphotransferase family. Final alignment length: 252 bp.
0	(IICDINA) Heat shock like	Mamber of the Heat sheek like protein family involved in the general stress response to shenges in a
8	(ncDNA)	cell or organism's state or activity. Final alignment length: 523 hp
0	(Helicase(ncDNA))	ATP-dependent RNA beliesse belongs to the DEAD box beliesse family, which catalyse the unwinding
9	neucuse (nebra)	of double-stranded nucleic acids Final alignment length: 466 bn
10	NAD3 (mtDNA)	NADH-ubiquinone oxidoreductase chain 3 protein, a core subunit of the mitochondrial membrane
10		respiratory chain NADH dehydrogenase (Complex I). Final alignment length: 461 bp.
11	NAD5 (mtDNA)	NADH-ubiquinone oxidoreductase chain 5 gene (see description for <i>NAD3</i>). Final alignment length:
		779 bp
12	NCAH-like	Neurocalcin like protein, a calcium ion binding involved in regulation of cytosolic calcium ion
	(ncDNA)	concentration. Final alignment length: 528 bp.
13	SIAH1 (ncDNA)	E3 ubiquitin-protein ligase, a protein mediating ubiquitination and subsequent proteasomal degradation
		of target proteins. Final alignment length: 601 bp.
14	UBB (ncDNA)	Polyubiquitin is derived from ubiquitin, a highly conserved 76-amino acid polypeptide found throughout
		the eukaryotic kingdom. Final alignment length: 730 bp.

mtDNA, mitochondrial DNA; ncDNA, nuclear DNA.

Supplementary results

Besides the results on the main species *C. caespitosa*, *M. oculata*, and *O. patagonica*, additional findings of this study are worth mentioning as they provide further information on some of the phylogenetic relationships of other Scleractinia (e.g. *Desmophyllum dianthus v. D. pertusum*, see Seiblitz *et al.* 2022) or more molecular data for some groups (e.g. *Flabellum* (*Flabellum*) *cinctutum*, see Cairns and Polonio 2013).

The phylogenetic analyses of the combined data sets and some of the individual loci provided additional support for a close relationship among certain Caryophylliidae taxa assigned to one of the three major families (Caryophylliidae, Dendrophylliidae or Flabellidae) whose taxonomic placement is still under discussion or that have not, until now, been included in molecular studies (e.g. see Arrigoni *et al.* 2014; Cairns 2016; Kitahara *et al.* 2016; Seiblitz *et al.* 2022; Terraneo *et al.* 2022):

- caryophyllid species *D. dianthus* and *D. pertusum* (yellow clade in Fig. 1–3, and S1*a–n*), further support for the placement of *D. pertusum* as the second taxon within the genus *Desmophyllum*;
- Caryophyllia (Caryophyllia) calveri Duncan, 1873, C. (C.) huinayensis Cairns, Häussermann & Försterra, 2005, C. (C.) smithii, Pourtalosmilia anthophyllites (Ellis & Solander, 1786), Stephanocyathus (Stephanocyathus) diadema (Moseley, 1876) and Trochocyathus aithoseptatus Cairns, 1984 (green clade in Fig. 1–3 and S1b, c, e–g);
- *Caryophylllia* (*C*.) *diomedeae* Marenzeller, 1904, *Polycyathus senegalensis* Chevalier, 1966, *Vaughanella margaritata* (Jourdan, 1895) and some flabellid species (pink clade in Fig. 2 and S1*a*–*c*, *e*, *g*–*l*, *n*);
- Stephanocyathus (Odontocyathus) coronotaus (Pourtalés, 1867), Javania borealis Cairns, 1994 (Flabellidae) and some dendrophyllid species currently assigned to three different groups (see Cairns, 2021) including *Dendrophyllia alcocki* (Wells, 1954) and *D. johnsoni* (Cairns, 1991) (group 3), *D. laboreli* Zibrowius & Brito, 1984 (group 2) and *D. ramea* (Linnaeus, 1758) (group 1) (red clade in Fig. 2, S1a-d, f, n);
- Paraconotrochus antarcticus (formerly Gardineria antartica and tentatively placed in the newly erected genus by Cairns 1989) and its relatively close relationship with caryophyllid species of the 'robust' clade– Vacatina suborder (see Fig. 1, 3, and S1a, d, i, l–n), supporting the hypothesised close relationship between Conotrochus and Paraconotrochus (Cairns 1989; Campoy et al. 2020) and the taxonomic re-evaluation with respect to Gardineria, which is considered the earliest diverging group of Scleractinia (Kitahara et al. 2010; Seiblitz et al. 2022);
- dendrophyllid species *Tubastraea aurea* (Quoy & Gaimerd, 1833) and *Rhizopsammia wettsteini* (Quoy & Gaimerd, 1833) (blue clade in Fig. 1, 2, and S1b–d, f–g, n);
- finally, the seven species originally defined based on morphological characters and that were sequenced here for the first time are from different families and genera: *Balanophyllia (Balanophyllia) floridana* Poutalés, 1868, *Cladopsammia echinata* Cairns, 1984 and *Dendrophyllia alcocki* are currently assigned

to the Dendrophylliidae, consistent with their assigned taxonomy based on morphology; *Polycyathus senegalensis* and *Premocyathus cornuformis* (Porutalés, 1868), to the Caryophylliidae; and *Flabellum* (*Flabellum*) *cinctutum* Cairns & Polonio, 2013 and *F.* (*F.*) *knoxi* Ralph & Squires, 1962, to the Flabellidae.

Although based on single markers, some of the reconstructions provide a starting point from which to consider the potential phylogenetic placement of these species. For instance, *B. (Balanophyllia) floridana, C. echinata* and *D. alcocki* all resolved as most closely related to other dendrophylliid species in the 'complex' clade–Refertina suborder of Scleractinia (Fig. S1*b–d, g*), consistent with their taxonomic assignment. By contrast, *P. senegalensis* and *P. cornuformis* appeared more related to flabelliid species in the 'complex' clade–Refertina suborder (Fig. S1*a–d, f, n*) than to caryophylliid species in the 'robust' clade–Vacatina suborder, suggesting that either their taxonomy or phylogenetic placement is doubtful. Likewise, *F. (F.) cinctutum* and *F. (F.) knoxi* resolved as more related to 'robust' clade–Vacatina suborder caryophylliid species instead of 'complex' clade–Refertina suborder flabellid species as would have been expected by their taxonomic assignment.

The findings support the idea that Caryophylliidae should comprise less species than previously thought, as suggested by Seiblitz *et al.* (2022). Also, the inclusion of as many extant species as possible in molecular phylogeny reconstructions are pivotal to determine the level of support for the monophyly of Dendrophyllidae, as suggested by Arrigoni *et al.* (2014) and Terraneo *et al.* (2022), or to investigate the evolutionary history of the family Flabellidae with taxa not yet represented in phylogenetic studies (see Cairns 2016; Campoy *et al.* 2020; Kitahara *et al.* 2016).

(b)

Figure S1. Phylogeny reconstruction of scleractinian relationships based on Bayesian and maximum likelihood analyses of the 14 studied markers. The first seven gene trees are of the markers included in the concatenated data set: (a) Actin, (b) AMPt1, (c) AMPt2, (d) β -Actin, (e) NAD3, (f) NAD5, (g) SIAH1, followed by the rest of the developed markers (h) ATP6-NAD4, (i) Creatine kinase, (j) Heat shock-like (k) Helicase, (l) NCAH-like, (m) UBB, (n) 16S rDNA. An asterisk (*) indicates a well-supported node (pp \geq 95; bootstrap > 70). *Cladocora caespitosa, Madrepora oculata*, and *Oculina patagonica* are highlighted in light blue. Clades showing other relationships worthy of further investigation are indicated in blue, pink, red, yellow and green. See Table 1 and Table S3 for marker information, and Supplementary Table S1 for species information. OUT, outgroup.

Figure S1. (Cont.)

(**d**)

ulina patag

jonica

Cladocora caespitosa-CLA Platygyra carnosa JX911333-MER Orbicella faveolata AP008978-MER Dipsastraea matthaii-MER Mussa angulosa_DQ643834-FAV Colpophyllia natans_DQ643833-FAV Polycylathus sp. JF825140-CAR Javania lamprotichum-FLA

0.07

Figure S1. (Cont.)

Figure S1. (Cont.)

(h)

(g)

Figure S1. (Cont.)

(j)

Figure S1. (Cont.)

(l)

Figure S1. (Cont.)

Figure S1. (Cont.)

(0)

References

- Angiuoli SV, Salzberg SL (2010) Mugsy: fast multiple alignment of closely related whole genomes. *Bioinformatics* 27, 334–342.
- Arrigoni R, Kitano YF, Stolarski J, Hoeksema BW, Fukami H, Stefani F, Galli P, Montano S, Castoldi E, Benzoni F (2014) A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. *Zoologica Scripta* 43, 661–688.
- Bairoch A, Apweiler R (1996) The SWISS-PROT protein sequence data bank and its new supplement TREMBL. *Nucleic Acids Research* 24, 21–25.
- Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W (2004) Aligning multiple genomic sequences with the Threaded Blockset Aligner. *Genome Research* 14, 708–715.
- Cairns S (1989) A revision of the ahermatypic Scleractinia of the Philippine Islands and adjacent Waters, part 1: Fungiacyathidae, Micrabaciidae, Turbinoliinae, Guyniidae, and Flabellidae. *Smithsonian Contributions to Zoology* **486**, 1–136.
- Cairns S (2016) A key to the genera and species of the transversely dividing Flabellidae (Anthozoa, Scleractinia, Flabellidae), with a guide to the literature, and the description of two new species. *ZooKeys* **562**, 1–48.
- Cairns S (2021) Cold-water corals online appendix. Phylogenetic list of the valid recent azooxanthellate scleractinian species, with their junior synonyms and depth ranges. Available at http://www.lophelia.org/coldwatercoralsbook/online-appendices
- Cairns SD, Polonio V (2013) New records of deep-sea Scleractinia off Argentina and the Falkland Islands. *Zootaxa* **3691**(1), 58-86.
- Campoy AN, Addamo AM, Machordom A, Meade A, Rivadeneira MM, Hernández CE, Venditti C (2020) The origin and correlated evolution of symbiosis and coloniality in scleractinian corals. *Frontiers in Marine Science* 7, 461.
- Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. *Molecular Biology and Evolution* **27**, 221–224.
- Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller D (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial *COI* sequence data. *PLoS ONE* **5**, e11490.
- Kitahara MV, Fukami H, Benzoni F, Huang D (2016) The new systematics of Scleractinia: integrating molecular and morphological evidence. In 'The Cnidaria, Past, Present and Future'. (Eds S Goffredo, Z Dubinsky) pp. 41–59. (Springer)
- Li L, Stoeckert CJ, Roos DS (2003) Ortho{MCL}: identification of ortholog groups for eukaryotic genomes. *Genome Research* **13**(9), 2178–2189.
- Linhart C, Shamir R (2007) Degenerate primer design: theoretical analysis and the HYDEN program. *Methods in Molecular Biology* **402**, 221–244.

- Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung D, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. *GigaScience* 1, 18.
- Palumbi S (1996) Nucleic acids II: the polymerase chain reaction. In 'Molecular Systematics'. (Eds DH Hillis, C Moritz, BK Mable) pp. 205–247. (Sinauer & Associates Inc.)
- Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (consensus-degenerate hybrid oligonucleotide primer) PCR primer design. *Nucleic Acids Research* **31**, 3763–3766.
- Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV (2022) Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. *Molecular Phylogenetics and Evolution* **175**, 107565.
- Shinzato S, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwarea M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the *Acropora digitifera* genome to understand coral responses to environmental change. *Nature* 476, 320–323.
- Terraneo TI, Arrigoni R, Marchese F, Chimienti G, Eweida AA, Rodrigue M, Benzoni F (2022) The complete mitochondrial genome of *Dendrophyllia minuscula* (Cnidaria: Scleractinia) from the NEOM region of the Northern Red Sea. *Mitochondrial DNA B* **7**(5), 848-850
- Thompson JD, Gibson TJ, Plewniak F, Jeanmoughin F, Higgins D (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research* **24**, 4876–4882.