Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

A-type lamin dynamics in bovine somatic cell nuclear transfer embryos

Richard D. W. Kelly A B , Ramiro Alberio A and Keith H. S. Campbell A C
+ Author Affiliations
- Author Affiliations

A Animal Development and Biotechnology Group, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.

B Present address: Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Vic. 3168, Australia.

C Corresponding author. Email: keith.campbell@nottingham.ac.uk

Reproduction, Fertility and Development 22(6) 956-965 https://doi.org/10.1071/RD09264
Submitted: 28 October 2009  Accepted: 20 January 2010   Published: 1 July 2010

Abstract

The persistence of A-type nuclear lamin in somatic cell nuclear transfer (SCNT) embryos has been proposed as a marker for incomplete nuclear reprogramming. Using monoclonal antibodies to A/C- (A/C-346 and A/C-131C3) and B-type lamin, we compared distribution during early development of bovine IVF, parthenogenetic and SCNT embryos. A/C-346 staining was observed in the pronuclei of IVF embryos and in nuclei at the two-cell stage, but was not detected in subsequent cleavage stages up to and including hatched blastocysts. In contrast, A/C-131C3 and anti-lamin B2 stained all preimplantation stage embryos. Parthenogenetic and SCNT embryos had similar staining patterns to IVF embryos for all three antibodies, demonstrating correct nuclear architecture reprogramming. Inhibiting protein synthesis with cycloheximide (CHX) in parthenogenetic and SCNT embryos did not affect lamin A/C localisation, suggesting that lamin A/C is maternal in origin. However, activation with CHX delayed lamin A/C incorporation compared with 6-dimethylaminopurine activation. In SCNT embryos, staining for both A/C- and B-type lamin was delayed compared with parthenotes, although lamin B2 incorporation preceded lamin A/C in both. In conclusion, the lamin A/C distribution in SCNT bovine embryos paralleled that of IVF and parthenogenetic controls and therefore is not a marker of incomplete reprogramming.

Additional keywords: cycloheximide, 6-dimethylaminopurine, lamin A/C, nuclear lamina.


References

Alberio, R. , Kubelka, M. , Zakhartchenko, V. , Hajduch, M. , Wolf, E. , and Motlik, J. (2000). Activation of bovine oocytes by specific inhibition of cyclin-dependent kinases. Mol. Reprod. Dev. 55, 422–432.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Alberio, R. , Brero, A. , Motlik, J. , Cremer, T. , Wolf, E. , and Zakhartchenko, V. (2001a). Remodeling of donor nuclei, DNA-synthesis, and ploidy of bovine cumulus cell nuclear transfer embryos: effect of activation protocol. Mol. Reprod. Dev. 59, 371–379.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Alberio, R. , Zakhartchenko, V. , Motlik, J. , and Wolf, E. (2001b). Mammalian oocyte activation: lessons from the sperm and implications for nuclear transfer. Int. J. Dev. Biol. 45, 797–809.
PubMed |

Boguslavsky, R. L. , Stewart, C. L. , and Worman, H. J. (2006). Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 15, 653–663.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Broers, J. L. V. , Machiels, B. M. , Kuijpers, H. J. H. , Smedts, F. , van den Kieboom, R. , Raymond, Y. , and Ramaekers, F. C. S. (1997). A- and B-type lamins are differentially expressed in normal human tissues. Histochem. Cell Biol. 107, 505–517.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Broers, J. L. V. , Machiels, B. M. , Van Eys, G. J. J. M. , Kuijpers, H. J. H. , Manders, E. M. M. , van Driel, R. , and Ramaekers, F. C. S. (1999). Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins. J. Cell Sci. 112, 3463–3475.
PubMed |

Broers, J. L. V. , Ramaekers, F. C. S. , Bonne, G. , Ben Yaou, R. , and Hutchison, C. J. (2006). Nuclear lamins: laminopathies and their role in premature ageing. Physiol. Rev. 86, 967–1008.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Constantinescu, D. , Gray, H. L. , Sammak, P. J. , Schatten, G. P. , and Csoka, A. B. (2006). Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177–185.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dechat, T. , Pfleghaar, K. , Sengupta, K. , Shimi, T. , Shumaker, D. K. , Solimando, L. , and Goldman, R. D. (2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Degrouard, J. , Hozak, P. , Heyman, Y. , and Flechon, J. E. (2004). Nucleoskeleton of early bovine embryos and differentiated somatic cells: an ultrastructural and immunocytochemical comparison. Histochem. Cell Biol. 121, 441–451.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dyer, J. A. , Kill, I. R. , Pugh, G. , Quinlan, R. A. , Lane, E. B. , and Hutchison, C. J. (1997). Cell cycle changes in A-type lamin associations detected in human dermal fibroblasts using monoclonal antibodies. Chromosome Res. 5, 383–394.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Forbes, D. J. , Kirschner, M. W. , and Newport, J. W. (1983). Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell 34, 13–23.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Foster, H. A. , Stokes, P. , Forsey, K. , Leese, H. J. , and Bridger, J. M. (2007). Lamins A and C are present in the nuclei of early porcine embryos, with lamin A being distributed in large intranuclear foci. Chromosome Res. 15, 163–174.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fouladi Nashta, A. A. , Waddington, D. , and Campbell, K. H. (1998). Maintenance of bovine oocytes in meiotic arrest and subsequent development in vitro: a comparative evaluation of antral follicle culture with other methods. Biol. Reprod. 59, 255–262.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Frock, R. L. , Kudlow, B. A. , Evans, A. M. , Jameson, S. A. , Hauschka, S. D. , and Kennedy, B. K. (2006). Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 20, 486–500.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Galiová, G. , Bártová, E. , Raška, I. , Krejči, J. , and Kozubek, S. (2008). Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A. Eur. J. Cell Biol. 87, 291–303.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gaustad, K. G. , Boquest, A. C. , Anderson, B. E. , Gerdes, A. M. , and Collas, P. (2004). Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem. Biophys. Res. Commun. 314, 420–427.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gerace, L. , and Blobel, G. (1980). Nuclear-envelope lamina is reversibly depolymerized during mitosis. Cell 19, 277–287.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gruenbaum, Y. , Goldman, R. D. , Meyuhas, R. , Mills, E. , Margalit, A. , Fridkin, A. , Dayani, Y. , Prokocimer, M. , and Enosh, A. (2003). The nuclear lamina and its functions in the nucleus. Int. Rev. Cytol. 226, 1–62.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Håkelien, A. M. , Delbarre, E. , Gaustad, K. G. , Buendia, B. , and Collas, P. (2008). Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects. Exp. Cell Res. 314, 1869–1880.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hall, V. J. , Cooney, M. A. , Shanahan, P. , Tecirlioglu, R. T. , Ruddock, N. T. , and French, A. J. (2005). Nuclear lamin antigen and messenger RNA expression in bovine in vitro produced and nuclear transfer embryos. Mol. Reprod. Dev. 72, 471–482.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Harborth, J. , Elbashir, S. M. , Bechert, K. , Tuschl, T. , and Weber, K. (2001). Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565.
PubMed |

Houliston, E. , Guilly, M. N. , Courvalin, J. C. , and Maro, B. (1988). Expression of nuclear lamins during mouse preimplantation development. Development 102, 271–278.
PubMed |

Hutchison, C. J. , and Worman, H. J. (2004). A-Type lamins: guardians of the soma? Nat. Cell Biol. 6, 1062–1067.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Isaji, M. , Iwata, H. , Harayama, H. , and Miyake, M. (2004). The localization of LAP2β in bovine oocytes after in vitro activation and fertilization. Zygote 12, 81–93.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kosak, S. T. , and Groudine, M. (2004). Form follows function: the genomic organization of cellular differentiation. Genes Dev. 18, 1371–1384.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kubiak, J. Z. , Prather, R. S. , Maul, G. G. , and Schatten, G. (1991). Cytoplasmic modification of the nuclear lamina during pronuclear-like transformation of mouse blastomere nuclei. Mech. Dev. 35, 103–111.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lee, K. , Fodor, W. L. , and Machaty, Z. (2007). Dynamics of lamin A/C in porcine embryos produced by nuclear transfer. Mol. Reprod. Dev. 74, 1221–1227.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, L. , and Yang, X. Z. (1999). Interplay of maturation-promoting factor and mitogen-activated protein kinase inactivation during metaphase-to-interphase transition of activated bovine oocytes. Biol. Reprod. 61, 1–7.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, L. , Lee, C. , and Moor, R. M. (1996). DNA synthesis, microtubule and nuclear dynamics in porcine parthenotes. Zygote 4, 139–144.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lourim, D. , and Lin, J. J. C. (1989). Expression of nuclear lamin-A and muscle-specific proteins in differentiating muscle-cells in ovo and in vitro. J. Cell Biol. 109, 495–504.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lourim, D. , Kempf, A. , and Krohne, G. (1996). Characterization and quantitation of three B-type lamins in Xenopus oocytes and eggs: increase of lamin L(I) protein synthesis during meiotic maturation. J. Cell Sci. 109, 1775–1785.
PubMed |

Mitalipov, S. M. , Zhou, Q. , Byrne, J. A. , Ji, W. Z. , Norgren, R. B. , and Wolf, D. P. (2007). Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum. Reprod. 22, 2232–2242.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Moir, R. D. , Yoon, M. , Khuon, S. , and Goldman, R. D. (2000). Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Moos, J. , Visconti, P. E. , Moore, G. D. , Schultz, R. M. , and Kopf, G. S. (1995). Potential role of mitogen-activated protein-kinase in pronuclear envelope assembly and disassembly following fertilization of mouse eggs. Biol. Reprod. 53, 692–699.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Moreira, P. N. , Robl, J. M. , and Collas, P. (2003). Architectural defects in pronuclei of mouse nuclear transplant embryos. J. Cell Sci. 116, 3713–3720.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Peter, M. , and Nigg, E. A. (1991). Ectopic expression of an A-type lamin does not interfere with differentiation of lamin A-negative embryonal carcinoma cells. J. Cell Sci. 100, 589–598.
PubMed |

Peter, A. , and Stick, R. (2008). Ectopic expression of prelamin A in early Xenopus embryos induces apoptosis. Eur. J. Cell Biol. 87, 879–891.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Philimonenko, V. V. , Flechon, J. E. , and Hozak, P. (2001). The nucleoskeleton: a permanent structure at cell nuclei regardless of their transcriptional activity. Exp. Cell Res. 264, 201–210.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Prather, R. S. , Sims, M. M. , Maul, G. G. , First, N. L. , and Schatten, G. (1989). Nuclear lamin antigens are developmentally regulated during porcine and bovine embryogenesis. Biol. Reprod. 41, 123–132.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Röber, R. A. , Weber, K. , and Osborn, M. (1989). Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105, 365–378.
PubMed |

Shehu, D. , Marsicano, G. , Flechon, J. E. , and Galli, C. (1996). Developmentally regulated markers of in vitro-produced preimplantation bovine embryos. Zygote 4, 109–121.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shumaker, D. K. , Dechat, T. , Kohlmaier, A. , Adam, S. A. , and Bozovsky, M. R. , et al. (2006). Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl Acad. Sci. USA 103, 8703–8708.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Silva, L. , Cliffe, A. , Chang, L. , and Knipe, D. M. (2008). Role for A-type lamins in herpesviral DNA targeting and heterochromatin modulation. PLoS Pathog. 4, e1000071.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stewart, C. , and Burke, B. (1987). Teratocarcinoma stem-cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin-B. Cell 51, 383–392.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stick, R. , and Hausen, P. (1985). Changes in the nuclear lamina composition during early development of Xenopus Laevis. Cell 41, 191–200.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stierlé, V. N. , Couprie, J. L. , Östlund, C. , Krimm, I. , Zinn-Justin, S. , Hossenlopp, P. , Worman, H. J. , Courvalin, J. C. , and Duband-Goulet, I. (2003). The carboxyl-terminal region common to lamins A and C contains a DNA binding domain. Biochemistry 42, 4819–4828.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stuurman, N. , Delbecque, J. P. , Callaerts, P. , and Aebi, U. (1999). Ectopic overexpression of Drosophila lamin C is stage-specific lethal. Exp. Cell Res. 248, 350–357.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sullivan, E. J. , Kasinathan, S. , Kasinathan, P. , Robl, J. M. , and Collas, P. (2004). Cloned calves from chromatin remodeled in vitro. Biol. Reprod. 70, 146–153.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sullivan, T. , Escalante-Alcalde, D. , Bhatt, H. , Anver, M. , Bhat, N. , Nagashima, K. , Stewart, C. L. , and Burke, B. (1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tunnah, D. , Sewry, C. A. , Vaux, D. , Schirmer, E. C. , and Morris, G. E. (2005). The apparent absence of lamin B1 and emerin in many tissue nuclei is due to epitope masking. J. Mol. Histol. 36, 337–344.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vergnes, L. , Peterfy, M. , Bergo, M. O. , Young, S. G. , and Reue, K. (2004). Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl Acad. Sci. USA 101, 10 428–10 433.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zakhartchenko, V. , Mueller, S. , Alberio, R. , Schernthaner, W. G. , and Stojkovic, M. , et al. (2001). Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol. Reprod. Dev. 60, 362–369.
Crossref | GoogleScholarGoogle Scholar | PubMed |