Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Floristic shifts in wetlands: the effects of environmental variables on the interaction between Phragmites australis (Common Reed) and Melaleuca ericifolia (Swamp Paperbark)

Kay Morris A , Paul I. Boon B D , Elisa J. Raulings A and Sean D. White C

A School of Biological Sciences and Centre for Biodiversity: Analysis, Policy and Management, Monash University, Clayton, Victoria 3800, Australia.

B Institute for Sustainability and Innovation, Victoria University, St Albans, Victoria 3021, Australia.

C School of Earth and Environmental Science, University of Adelaide, South Australia 5005, Australia.

D Corresponding author. Email: paul.boon@vu.edu.au

Marine and Freshwater Research 59(3) 187-204 https://doi.org/10.1071/MF07072
Submitted: 11 April 2007  Accepted: 11 January 2008   Published: 30 April 2008

Abstract

Over the past 40–50 years, the woody shrub Melaleuca ericifolia has progressively invaded large areas of Phragmites australis in Dowd Morass, a Ramsar-listed, brackish wetland in south-eastern Australia. To understand the processes underlying this shift we grew Phragmites and Melaleuca alone and together under contrasting sediment organic-matter loadings and salinities. To examine if the capacity of Phragmites to aerate the sediment influenced plant interactions, we also dissipated convective gas flow in some Phragmites plants by perforating their stems. Although Phragmites suppressed the growth of Melaleuca under all conditions, Melaleuca persisted. We did not find Phragmites ramets to be more sensitive to salinity than Melaleuca seedlings. Surprisingly Phragmites did not increase sediment redox and was more sensitive to increased organic-matter loading than Melaleuca. These results do not support the notion that colonisation by Melaleuca was facilitated by a decline in Phragmites at higher salinities or through aeration of the sediments by Phragmites. Seedlings of Melaleuca, however, were easily blown over by wind and it is likely that Phragmites stands shelter Melaleuca during establishment. Although our short-term experiment did not show that Melaleuca was a better competitor, differences in seasonal growth patterns may contribute to a shift in competitive abilities over a longer time scale.

Additional keywords: cellulose, convective gas flow, Gippsland Lakes, redox potential, salinity, soil oxygenation.


Acknowledgements

This project was funded principally by Land and Water Australia under projects UMO41 and UTV2. We thank Michael Roache, Matt Hatton and Robert Gomer for their assistance with the pond experiments. We also thank two anonymous reviewers for their valuable comments and suggestions.


References

Adams, J. B. , and Bate, G. C. (1999). Growth and photosynthetic performance of Phragmites australis in estuarine waters: a field and experimental evaluation. Aquatic Botany 64, 359–367.
CrossRef |

Akilan, A. , Farrell, R. C. C. , Bell, D. T. , and Marshall, J. K. (1997). Responses of clonal river red gums (Eucalyptus camaldulensis) to waterlogging by fresh and salt water. Australian Journal of Experimental Agriculture 37, 243–248.
CrossRef |

Aldridge, K. T. , and Ganf, G. G. (2003). Modification of sediment redox potential by three contrasting macrophytes: implications for phosphorus adsorption/desorption. Marine and Freshwater Research 54, 87–94.
CrossRef |

Armstrong, J. , and Armstrong, W. (1990). Light-enhanced convective through flow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Stued. New Phytologist 114, 121–128.
CrossRef |

Armstrong, J. , Armstrong, W. , Beckett, P. M. , Halder, J. E. , Lythe, S. , Holt, R. , and Sinclair, A. (1996a). Pathways of aeration and the mechanisms and beneficial effects of humidity – and venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany 54, 177–197.
CrossRef |

Armstrong, J. , Armstrong, W. , and Van der Putten, W. H. (1996b). Phragmites die-back: bud and root death, blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytologist 133, 399–414.
CrossRef |

Armstrong, J. , Jones, J. E. , and Armstrong, W. (2006). Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytologist 172, 719–731.
CrossRef | PubMed |

Bailey, P. C. E. , Watkins, S. C. , Morris, K. , and Boon, P. I. (2003). Do Melaleuca ericifolia leaves suppress organic matter decay in freshwater wetland? Archiv für Hydrobiologie 156, 225–240.
CrossRef |

Bernhardt, E. S. , and Likens, G. E. (2002). Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 83, 1689–1700.


Bird, E. C. F. (1961). Reed growth in the Gippsland Lakes. Victorian Naturalist 77, 262–268.


Bird, E. C. F. (1962). The swamp paper-bark. Victorian Naturalist 79, 72–81.


Boon P. I. (2006). Biogeochemistry, ecology and management of hydrologically dynamic wetlands. In ‘The Ecology of Freshwater and Estuarine Wetlands’. (Eds D. P. Batzer and R. R. Sharitz.) pp. 115–176. (California University Press: Berkeley.)

Boon, P. I. , and Johnstone, L. (1997). Organic matter decay in coastal wetlands: an inhibitory role for essential oil from Melaleuca alternifolia? Archiv für Hydrobiologie 138, 433–449.


Boon, P. I. , and Sorrell, B. K. (1991). Biogeochemistry of billabong sediments. I. The effect of macrophytes. Freshwater Biology 26, 209–226.
CrossRef |

Bowkett, L. A. , and Kirkpatrick, J. B. (2003). Ecology and conservation of remnant Melaleuca ericifolia stands in the Tamar Valley, Tasmania. Australian Journal of Botany 51, 405–413.
CrossRef |

Brix, H. , Sorrell, B. K. , and Orr, P. T. (1992). Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnology and Oceanography 37, 1420–1433.


Burke, D. J. , Hamerlynck, E. P. , and Hahn, D. (2002). Interactions among plant species and microorgansims in salt marsh sediments. Applied and Environmental Microbiology 68, 1157–1164.
CrossRef | PubMed |

Callaway, R. M. (1995). Positive interactions among plants (interpreting botanical progress). Botanical Review 61, 306–344.


Callaway, R. M. , and Aschehoug, E. T. (2000). Invasive plants versus their new and old neighbours: a mechanism for exotic plant invasion. Science 290, 521–523.
CrossRef | PubMed |

Callaway, R. M. , Thelen, G. C. , Rodriguez, A. , and Holben, W. E. (2004). Soil biota and exotic plant invasion. Nature 427, 731–733.
CrossRef | PubMed |

Callaway, R. M. , Ridenour, M. , Laboski, T. , Weir, T. , and Vivanco, J. M. (2005). Natural selection for resistance to the allelopathic effects of invasive plants. Journal of Ecology 93, 576–583.
CrossRef |

Castellanos, E. M. , Figueroa, M. E. , and Davy, A. J. (1994). Nucleation and facilitation in saltmarsh succession: Interactions between Spartina maritima and Arthrocnemum perenne. Journal of Ecology 82, 239–248.
CrossRef |

Costermans L. F. (1998). ‘Native Trees and Shrubs of South-eastern Australia.’ (Landsdowne Publishing: Sydney.)

Cowling, S. J. , and Lowe, K. W. (1981). Studies of ibises in Victoria, I: Records of breeding since 1955. Emu 81, 33–39.


Dacey, J. W. H. (1981). Pressurized ventilation in the yellow waterlily. Ecology 62, 1137–1147.
CrossRef |

Dacey, J. W. H. , and Howes, B. L. (1984). Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh. Science 224, 487–489.
CrossRef | PubMed |

Ehrenfeld, J. G. , Ravit, B. , and Elgersma, K. (2005). Feedback in the plant-soil system. Annual Review of Environment and Resources 30, 75–115.
CrossRef |

Gibson, N. , Williams, K. , Marsden-Smedley, J. , and Brown, M. J. (1987). Regeneration characteristics of a swamp forest in northwestern Tasmania. Papers and Proceedings of the Royal Society of Tasmania 121, 93–99.


Grünfeld, S. , and Brix, H. (1999). Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis. Aquatic Botany 64, 63–75.
CrossRef |

Hacker, S. D. , and Bertness, M. D. (1995). Morphological and physiological consequences of a positive plant interaction. Ecology 76, 2165–2175.
CrossRef |

Hierro, J. L. , and Callaway, R. M. (2003). Allelopathy and exotic plant invasion. Plant and Soil 256, 29–39.
CrossRef |

Horne A. J., and Goldman C. R. (1994). ‘Limnology.’ 2nd edn. (McGraw-Hill Inc: New York.)

Jespersen, D. N. , Sorrell, B. K. , and Brix, H. (1998). Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany 61, 165–180.
CrossRef |

Kimura, M. , Murase, J. , and Lu, Y. (2004). Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biology and Biochemistry 36, 1399–1416.
CrossRef |

Lissner, J. , and Schierup, H.-H. (1997). Effects of salinity on the growth of Phragmites australis. Aquatic Botany 55, 247–260.
CrossRef |

Mitch W. J., and Gosselink J. G. (1993). ‘Wetlands.’ 2nd edn. (Van Nostrand Reinhold: New York.)

Munns, R. , and Termaat, A. (1986). Whole plant response to salinity. Australian Journal of Plant Physiology 13, 143–160.


Naidoo, G. , and Mundree, S. G. (1993). Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) Kunth. Oecologica 93, 360–366.
CrossRef |

Quinn G., and Keough M. (2002). ‘Experimental Design and Data Analysis for Biologists.’ (Cambridge University Press: Cambridge.)

Raulings, E. J. , Boon, P. I. , Bailey, P. C. , Morris, K. , Roache, M. C. , and Robinson, R. R. (2007). Rehabilitation of Swamp Paperbark (Melaleuca ericifolia) wetlands in south-eastern Australia: effects of hydrology, microtopography, plant age and planting technique on the success of community-based revegetation trials. Wetlands Ecology and Management 15, 175–188.
CrossRef |

Roberts J., and Marston F. (2000). ‘Water Regime of Wetland and Floodplain Plants in the Murray-Darling Basin.’ (CSIRO Land and Water: Canberra.)

Sainty G. R., and Jacobs S. W. L. (1994). ‘Waterplants in Australia. A Field Guide.’ 4th edn. (Sainty and Associates: Sydney.)

Salter, J. , Morris, K. , Bailey, P. C. E. , and Boon, P. I. (2007). Interactive effects of salinity and water depth on the growth of Melaleuca ericifolia Sm. (Swamp paperbark) seedlings. Aquatic Botany 86, 213–222.
CrossRef |

Schat H., and Van Beckhoven K. (1991). Water as a stress factor in the coastal dune system. In ‘Ecological Responses to Environmental Stresses’. (Eds J. Rozema and J.A.C. Verkleij.) pp. 76–89. (Kluwer Academic Publishers: Netherlands.)

Sculthorpe C. D. (1967). ‘The Biology of Aquatic Vascular Plants.’ (Edward Arnold: London.)

Seitzinger, S. P. (1994). Linkages between organic matter mineralization and denitrification in eight riparian wetlands. Biogeochemistry 25, 19–39.
CrossRef |

Sorrell, B. K. , and Boon, P. I. (1994). Convective gas flow in Eleocharis sphacelata R. Br.: methane transport and release from wetlands. Aquatic Botany 47, 197–212.
CrossRef |

Talley, T. S. , and Levin, L. A. (2001). Modification of sediment and macrofauna by an invasive marsh plant. Biological Invasions 3, 51–68.
CrossRef |

Van der Putten, W. H. (1997). Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on reed die-back and progression (1993–1994). Aquatic Botany 59, 263–275.
CrossRef |

Vretare Strand, V. , and Weisner, S. E. B. (2002). Interactive effects of pressurized ventilation, water depth and substrate conditions on Phragmites australis. Oecologia 131, 490–497.
CrossRef |

White, S. , and Ganf, G. G. (1998). The influence of convective flow on rhizome length in Typha domingensis over a water depth gradient. Aquatic Botany 62, 57–70.
CrossRef |



Rent Article (via Deepdyve) Export Citation Cited By (7)