Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Periphyton communities in New Zealand streams impacted by acid mine drainage

Jonathan P. Bray A , Paul A. Broady A , Dev K. Niyogi A and Jon S. Harding A B
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.

B Corresponding author. Email: jon.harding@canterbury.ac.nz

Marine and Freshwater Research 59(12) 1084-1091 https://doi.org/10.1071/MF08146
Submitted: 5 May 2008  Accepted: 10 September 2008   Published: 19 December 2008

Abstract

Discharges from historic and current coal mines frequently generate waters low in pH (<3), high in heavy metals (e.g. Fe, Al) and cover streambeds in metal precipitates. The present study investigated periphyton communities at 52 stream sites on the West Coast, South Island, New Zealand, representing a range of impacts from acid mine drainage (AMD). Taxonomic richness was negatively related to acidity and metal oxides and biomass was negatively correlated with metal oxides, but positively related to acidity. Streams with low pH (<3.5) had low periphyton richness (14 taxa across all sites) and were dominated by Klebsormidium acidophilum, Navicula cincta and Euglena mutabilis. As pH increased, so did taxonomic richness while community dominance decreased and community composition became more variable. Canonical correspondence analyses of algal assemblages revealed patterns influenced by pH. These findings indicate that streams affected by AMD possess a predictable assemblage composition of algal species that can tolerate the extreme water chemistry and substrate conditions. The predictability of algal communities declines with decreasing stress, as other abiotic and biotic factors become increasingly more important.

Additional keywords: algal diversity, benthic algae, metal oxides, metals, pH.


Acknowledgements

This project was supported by the Foundation for Research Science & Technology (Grant CRL X0401). Biological collection was permitted by the New Zealand Department of Conservation, National Permit Number WC-20042-RES. We thank Phil Lindsay and Solid Energy Ltd for additional support during this study. JB was supported by the Dr Elizabeth Flint Scholarship from Landcare Research. Cathy Kilroy provided assistance with algal identifications, and Jon Pirker provided statistical advice. We thank Andrew Boulton and two anonymous referees for helpful comments on the manuscript.


References

Anthony M. K. (1999). Ecology of streams contaminated by acid mine drainage near Reefton, South Island. M.Sc. Thesis, University of Canterbury, Christchurch.

Biggs B. J. F. (1996). Patterns in benthic algae in streams. In ‘Algal Ecology: Freshwater Benthic Ecosystems’. (Eds R. J. Stevenson, M. L. Bothwell and R. I. Lowe.) pp. 31–56. (Academic Press: New York.)

Biggs, B. J. F. , and Close, M. E. (1989). Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology 22, 209–231.
CrossRef | CAS |

Biggs B., and Kilroy C. (2004). Periphyton. In ‘Freshwaters of New Zealand’. (Eds J. Harding, P. Mosley, C. Pearson and B. Sorrell.) pp. 15.1–15.21. (New Zealand Hydrological Society and New Zealand Limnological Society: Christchurch.)

Brake, S. S. , Dannelly, H. K. , and Connors, K. A. (2001). Controls on the nature and distribution of an alga in coal mine-waste environments and its potential impact on water quality. Environmental Geology 40, 458–469.
CrossRef | CAS |

Bray J. P. (2007). The ecology of algal assemblages across a gradient of acid mine drainage stress on the West Coast, South Island, New Zealand. M.Sc. Thesis, University of Canterbury, Christchurch.

DeNicola D. M. (1996). Periphyton responses to temperature at different ecological levels. In ‘Algal Ecology: Freshwater Benthic Ecosystems’. (Eds R. J. Stevenson, M. L. Bothwell and R. I. Lowe.) pp. 149–181. (Academic Press: New York.)

DeNicola, D. M. (2000). A review of diatoms found in highly acidic environments. Hydrobiologia 433, 111–122.
CrossRef |

DeNicola, D. M. , Hoagland, K. D. , and Roemer, S. C. (1992). Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. Journal of the North American Benthological Society 11, 391–404.
CrossRef |

Entwisle, T. J. (1989). Phenology of the Cladophora-Stigeoclonium community in two urban creeks of Melbourne. Australian Journal of Marine and Freshwater Research 40, 471–489.
CrossRef | CAS |

Griffith, M. B. , Hill, B. H. , Herlihy, A. T. , and Kaufmann, P. R. (2002). Multivariate analysis of periphyton assemblages in relation to environmental gradients in Colorado Rocky Mountain streams. Journal of Phycology 38, 83–95.
CrossRef |

Guasch, H. , Navarro, E. , Serra, A. , and Sabater, S. (2004). Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology 49, 463–473.
CrossRef | CAS |

Harding J. S. (2005). Impacts of metals and mining on stream communities. In ‘Metal Contaminants in New Zealand’. (Eds T. A. Moore, A. Black, A. A. Centeno, J. S. Harding and D. A. Trumm.) pp. 343–357. (Caxton Press, Christchurch.)

Hill, B. H. , Willingham, W. T. , Parrish, L. P. , and McFarland, B. H. (2000). Periphyton community responses to elevated metal concentrations in a Rocky Mountain stream. Hydrobiologia 428, 161–169.
CrossRef | CAS |

Jowett, I. G. , and Richardson, J. (1990). Microhabitat preferences of benthic invertebrates in a New Zealand river and the development of in-stream flow-habitat models for Deleatidium spp. New Zealand Journal of Marine and Freshwater Research 24, 19–30.


Kilroy, C. , Biggs, B. J. F. , Vyverman, W. , and Broady, P. A. (2006). Benthic diatom communities in subalpine pools in New Zealand: relationships to environmental variables. Hydrobiologia 561, 95–110.
CrossRef |

Kinross, J. H. , Christofi, P. A. , Read, P. A. , and Harriman, R. (1993). Filamentous algal communities related to pH in streams in The Trossachs, Scotland. Freshwater Biology 30, 301–317.
CrossRef |

Mulholland, P. J. , Elwood, J. W. , Palumbo, A. V. , and Stevenson, R. J. (1986). Effect of stream acidification on periphyton composition, chlorophyll, and productivity. Canadian Journal of Fisheries and Aquatic Sciences 43, 1846–1858.
CAS |

Murdock, J. N. , and Dodds, W. K. (2007). Linking benthic algal biomass to stream substratum topography. Journal of Phycology 43, 449–460.
CrossRef |

Niyogi, D. K. , McKnight, D. M. , and Lewis, W. M. (1999). Influences of water and substrate quality for periphyton in a montane stream affected by acid mine drainage. Limnology and Oceanography 44, 804–809.
CAS |

Niyogi, D. K. , Lewis, W. M. , and McKnight, D. M. (2002). Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5, 554–567.
CAS |

Novis, P. M. (2006). Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams and the significance of low-pH habitats. Phycologia  45, 293–301.
CrossRef |

Novis P., and Harding J. S. (2007). Extreme acidophiles: freshwater algae associated with acid mine drainage. In ‘Algae and Cyanobacteria in Extreme Environments’. (Ed. J. Seckbach.) pp. 443–463. (Springer: Dordrecht.)

Passy, S. I. (2007). Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86, 171–178.
CrossRef |

Peterson C. G. (2007). Ecology of non-marine algae: streams. In ‘Algae of Australia’. (Eds P. M. McCarthy and A. E. Orchard.) pp. 434–458. (CSIRO Publishing: Melbourne.)

Peterson, C. G. , Horton, M. , Marshall, M. C. , Valett, H. M. , and Dahm, C. N. (2001). Spatial and temporal variation in the influence of grazing macroinvertebrates on epilithic algae in a montane stream. Archiv fuer Hydrobiologie 153, 29–54.


Pfankuch D. J. (1975). ‘Stream Reach Inventory and Channel Stability Evaluation.’ (USDA Forest Service: Missoula, MT.)

Rosemond, A. D. , Mulholland, P. J. , and Elwood, J. W. (1993). Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology 74, 1264–1280.
CrossRef |

Sabater, S. , Buchaca, T. , Cambra, J. , Catalan, J. , and Guasch, H. , et al. (2003). Structure and function of benthic algal communities in an extremely acid river. Journal of Phycology 39, 481–489.
CrossRef | CAS |

Soldo, D. , and Behra, R. (2000). Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquatic Toxicology (Amsterdam, Netherlands) 47, 181–189.
CAS |

Stevenson, R. J. , Peterson, C. G. , Kirschtel, D. B. , King, C. C. , and Tuchman, N. C. (1991). Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology 27, 59–69.
CrossRef |

Stokes, P. M. (1986). Ecological effects of acidification on primary producers in aquatic systems. Water, Air, and Soil Pollution 30, 421–438.
CrossRef |

Tease, B. , and Coler, R. A. (1984). The effect of mineral acids and aluminium from coal leachate on substrate periphyton composition and productivity. Journal of Freshwater Ecology 2, 459–467.
CAS |

Verb, R. G. , and Vis, M. L. (2000). Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. Journal of the North American Benthological Society 19, 274–288.
CrossRef |

Verb, R. G. , and Vis, M. L. (2001). Macroalgal communities from an acid mine drainage impacted watershed. Aquatic Botany 71, 93–107.
CrossRef |

Verb, R. G. , and Vis, M. L. (2005). Periphyton assemblages as bioindicators of mine-drainage in unglaciated Western Allegheny Plateau lotic systems. Water, Air, and Soil Pollution 161, 227–265.
CrossRef | CAS |

Winterbourn, M. J. , McDiffett, W. F. , and Eppley, S. J. (2000). Aluminium and iron burdens of aquatic biota in New Zealand streams contaminated by acid mine drainage: effects of trophic level. The Science of the Total Environment 254, 45–54.
CrossRef | CAS | PubMed |

Younger P. L., Banwart S. A., and Hedin R. S. (2002). ‘Mine Water – Hydrology, Pollution, Remediation.’ (Kluwer: Dordrecht.)



Rent Article (via Deepdyve) Export Citation Cited By (24)