Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Compensatory growth in tadpoles after transient salinity stress

Zoe E. Squires A B , Paul C. E. Bailey A , Richard D. Reina A and Bob B. B. M. Wong A C
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Monash University, Vic. 3800, Australia.

B Present address: Department of Zoology, The University of Melbourne, Vic. 3000, Australia.

C Corresponding author. Email: bob.wong@sci.monash.edu.au

Marine and Freshwater Research 61(2) 219-222 https://doi.org/10.1071/MF09123
Submitted: 28 May 2009  Accepted: 6 August 2009   Published: 25 February 2010

Abstract

Many freshwater habitats worldwide are being degraded by an anthropogenic increase in salinity. Although salt concentrations are known to fluctuate with variable freshwater inflows, we know little about what effects this may have on freshwater organisms. Using a species of frog, Litoria ewingii, we measured tadpole growth both during and after salt stress to determine their capacity to compensate or recover from this stress. During exposure to ecologically relevant concentrations of salt (5%, 10% and 15% seawater), tadpoles grew slower and were significantly smaller than those in our freshwater control (0.4% seawater). Upon return to fresh water, previously salt-exposed tadpoles grew faster than those in the control group, and by the eighth day of the ‘recovery’ period, no longer differed significantly in size. The results of our study demonstrate a capacity for tadpoles to compensate for a period of environmental stress by temporarily increasing growth rate when the stress abates.

Additional keywords: anthropogenic disturbance, compensatory growth, ecotoxicology, tree frog.


Acknowledgements

We thank I. Stewart, G. Farrington, A. Svensson, S. Hamilton-Brown, M. Logan and Ozwater Gardens for logistic and technical support, as well as the editor and anonymous referees for helpful suggestions on the text. Funding was from Monash University (R.D.R.) and the Australian Research Council (B.B.M.W.). This study conformed to current Australian law and was conducted under Monash University animal ethics approval BSCI2004/10.


References

Altwegg, R. (2002). Predator-induced life-history plasticity under time constraints in pool frogs. Ecology 83, 2542–2551.
CrossRef |

Blake, R. W. , and Chan, K. H. S. (2006). Cyclic feeding and subsequent compensatory growth do not significantly impact standard metabolic rate or critical swimming speed in rainbow trout. Journal of Fish Biology 69, 818–827.
CrossRef | CAS |

Capellán, E. , and Nicieza, A. G. (2007). Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. Journal of Animal Ecology 76, 1026–1035.
CrossRef | PubMed |

Chinathamby, K. , Reina, R. , Bailey, P. C. E. , and Lees, B. K. (2006). Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, Litoria ewingii. Australian Journal of Zoology 54, 97–105.
CrossRef |

Christy, M. T. , and Dickman, C. R. (2002). Effects of salinity on tadpoles of the green and golden bell frog (Litoria aurea). Amphibia-Reptilia 23, 1–11.
CrossRef |

Collins, S. J. , and Russell, R. W. (2009). Toxicity of road salt to Nova Scotia amphibians. Environmental Pollution 157, 320–324.
CrossRef | CAS | PubMed |

Fraser, D. , Weir, L. , Darwish, T. , Eddington, J. , and Hutchings, J. (2007). Divergent compensatory growth responses within species: linked to contrasting migrations in salmon? Oecologia 153, 543–553.
CrossRef | PubMed |

Gervasi, S. S. , and Foufopoulos, J. (2008). Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Functional Ecology 22, 100–108.


Gomez-Mestre, I. , and Tejedo, M. (2003). Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 57, 1889–1899.
PubMed |

Gomez-Mestre, I. , Tejedo, M. , Ramayo, E. , and Estepa, J. (2004). Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiological and Biochemical Zoology 77, 267–274.
CrossRef | CAS | PubMed |

Halpern, B. , Walbridge, S. , Selkoe, K. , Kappel, C. , and Micheli, F. , et al. (2008). A global map of human impact on marine ecosystems. Science 319, 948–952.
CrossRef | CAS | PubMed |

Hart, B. T. , Lake, P. S. , Webb, J. A. , and Grace, M. R. (2003). Ecological risk to aquatic systems from salinity increases. Australian Journal of Botany 51, 689–702.
CrossRef | CAS |

Hoverman, J. T. , and Relyea, R. A. (2008). Temporal environmental variation and phenotypic plasticity: a mechanism underlying priority effects. Oikos 117, 23–32.
CrossRef |

Jasienski, M. (2008). The potential for recovery growth in stunted larvae of Rana sylvatica and its decline with developmental stages in R. temporaria. Amphibia-Reptilia 29, 399–404.


Karraker, N. E. , Gibbs, J. P. , and Vonesh, J. R. (2008). Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecological Applications 18, 724–734.
CrossRef | PubMed |

Laurila, A. , and Kujasalo, J. (1999). Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles. Journal of Animal Ecology 68, 1123–1132.
CrossRef |

Mahajan, S. , and Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444, 139–158.
CrossRef | CAS | PubMed |

Metcalfe, N. B. , and Monaghan, P. (2001). Compensation for a bad start: grow now, pay later? Trends in Ecology & Evolution 16, 254–260.
CrossRef |

Räsänen, K. , Laurila, A. , and Merilä, J. (2002). Carry-over effects of embryonic acid conditions on development and growth of Rana temporaria tadpoles. Freshwater Biology 47, 19–30.
CrossRef |

Rios-López, N. (2008). Effects of increased salinity on tadpoles of two anurans from a Caribbean coastal wetland in relation to their natural abundance. Amphibia-Reptilia 29, 7–18.
CrossRef |

Sanzo, D. , and Hecnar, S. (2006). Effects of de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environmental Pollution 140, 247–256.
CrossRef | CAS | PubMed |

Schoeppner, N. M. , and Relyea, R. A. (2009). Phenotypic plasticity in response to fine-grained environmental variation in predation. Functional Ecology 23, 587–594.
CrossRef |

Smith, M. J. , Schreiber, E. S. G. , Scroggie, M. P. , Kohout, M. , and Ough, K. , et al. (2007). Associations between anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinisation. Freshwater Biology 52, 75–84.
CrossRef |

Squires, Z. E. , Bailey, P. C. E. , Reina, R. D. , and Wong, B. B. M. (2008). Environmental deterioration increases tadpole vulnerability to predation. Biology Letters 4, 392–394.
CrossRef | PubMed |

Vitousek, P. , Mooney, H. , Lubchenco, J. , and Melillo, J. (1997). Human domination of Earth’s ecosystems. Science 277, 494–499.
CrossRef | CAS |

Vonesh, J. R. , and Bolker, B. M. (2005). Compensatory larval responses shift trade-offs associated with predator-induced hatching plasticity. Ecology 86, 1580–1591.
CrossRef |

Williams, W. D. (2001). Anthropogenic salinisation of inland waters. Hydrobiologia 466, 329–337.
CrossRef |

Williamson, I. , and Bull, C. M. (1999). Population ecology of the Australian frog Crinia signifera larvae. Wildlife Research 26, 81–99.
CrossRef |

Yan, M.-J. , Li, Z.-J. , and Xiong, B.-X. (2005). Food intake, growth and feed utilization of pufferfish (Takifugu fasciatus) after different salinity pretreatments. Acta Hydrobiologica Sinica 29, 142–145.



Rent Article (via Deepdyve) Export Citation Cited By (16)