Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Biogeography and life history ameliorate the potentially negative genetic effects of stocking on Murray cod (Maccullochella peelii peelii)

Meaghan L. Rourke A B D F , Helen C. McPartlan B E , Brett A. Ingram C and Andrea C. Taylor A
+ Author Affiliations
- Author Affiliations

A Australian Centre for Biodiversity, School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia.

B Primary Industries Research Victoria, Department of Primary Industries, Attwood, Vic. 3049, Australia.

C Marine and Freshwater Fisheries Research Institute, Fisheries Victoria, Department of Primary Industries, Alexandra, Vic. 3714, Australia.

D Present address: Narrandera Fisheries Centre, Industry and Investment NSW, Narrandera, NSW 2700, Australia.

E Present address: Primary Care Research Unit, Department of General Practice, University of Melbourne, Carlton, Vic. 3053, Australia.

F Corresponding author. Email: meaghan.rourke@industry.nsw.gov.au

Marine and Freshwater Research 61(8) 918-927 https://doi.org/10.1071/MF10037
Submitted: 15 February 2010  Accepted: 20 May 2010   Published: 13 August 2010

Abstract

Stocking wild fish populations with hatchery-bred fish has numerous genetic implications for fish species worldwide. In the present study, 16 microsatellite loci were used to determine the genetic effects of nearly three decades of Murray cod (Maccullochella peelii peelii) stocking in five river catchments in southern Australia. Genetic parameters taken from scale samples collected from 1949 to 1954 before the commencement of stocking were compared with samples collected 16 to 28 years after stocking commenced, and with samples from a local hatchery that supplements these catchments. Given that the five catchments are highly connected and adult Murray cod undertake moderate migrations, we predicted that there would be minimal population structuring of historical samples, whereas contemporary samples may have diverged slightly and lost genetic diversity as a result of stocking. A Bayesian Structure analysis indicated genetic homogeneity among the catchments both pre- and post-stocking, indicating that stocking has not measurably impacted genetic structure, although allele frequencies in one catchment changed slightly over this period. Current genetic diversity was moderately high (HE = 0.693) and had not changed over the period of stocking. Broodfish had a similar level of genetic diversity to the wild populations, and effective population size had not changed substantially between the two time periods. Our results may bode well for stocking programs of species that are undertaken without knowledge of natural genetic structure, when river connectivity is high, fish are moderately migratory and broodfish are sourced locally.

Additional keywords: effective population size, genetic diversity, historical scale samples, microsatellite, Murray–Darling Basin.


Acknowledgements

This work was supported by an Australian Postgraduate Award through Monash University, the Victorian Government’s Our Rural Landscapes Initiative, the Recreational Fishing Trust and the Holsthworth Wildlife Research Fund. We thank Queensland DPI, NSW Industry and Investment and Fisheries Victoria for providing Murray cod stocking records. We also thank J. Douglas, R. Strongman, J. Lieschke, A. King, D. Crook, A. Bearlin, K. Pomorin, D. Gilligan, B. Zampatti, D. Bray, D. Tikel, N. Murray, B. Malcolm, J. Pritchard and countless recreational anglers for assisting with sample collection. We are grateful to S. Rowland and J. Douglas for sharing their extensive knowledge of Murray cod, and to two anonymous reviewers for suggesting improvements to the manuscript. The research was conducted under animal ethics approvals from the Department of Primary Industries (AEC Fish Nov 05 0001) and Monash University (BSCI/2005/02).


References

Anderson, J. R. , Morison, A. K. , and Ray, D. J. (1992). Age and growth of Murray cod, Maccullochella peelii (Perciformes : Percichthyidae), in the lower Murray-Darling Basin, Australia, from thin sectioned otoliths. Australian Journal of Marine and Freshwater Research 43, 983–1013.
CrossRef |

Anon, (1971). Murray cod takes long distance title. Fisherman 4, 24.


Anon, (2002). Murray netting ban aims to enhance native fish stocks. Southern Fisheries 9, 11.


Bearlin A. R., and Tikel D. (2002). Conservation genetics of Murray-Darling Basin fish; silver perch (Bidyanus bidyanus), Murray cod (Maccullochella peelii), and trout cod (M. macquariensis). In ‘Managing Fish Translocation and Stocking in the Murray-Darling Basin. Statement, Recommendations and Supporting Papers, Canberra, 25–26 September 2002’. (Ed. B. Phillips.) pp. 59–83. (Union Offset Printers: Canberra.)

Berthier, P. , Beaumont, M. A. , Cornuet, J. , and Luikart, G. (2002). Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a general approach. Genetics 160, 741–751.
PubMed |

Cadwallader, P. L. (1977). J. O. Langtry’s 1949–50 Murray River investigations. Fish and Wildlife Paper, Victoria 13, 1–70.


Carlsson, J. , Olsén, K. H. , Nilsson, J. , Øverli, Ø. , and Stabell, O. B. (1999). Microsatellites reveal fine-scale genetic structure in stream-living brown trout. Journal of Fish Biology 55, 1290–1303.
CrossRef |

Conover, D. O. , Clarke, L. M. , Munch, S. B. , and Wagner, G. N. (2006). Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. Journal of Fish Biology 69, 21–47.
CrossRef |

Cornuet, J. M. , and Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014.
PubMed |

Crow J. F., and Kimura M. (1970). ‘An Introduction to Population Genetics Theory.’ (Harper and Row: New York.)

DeWoody, J. , Nason, J. D. , and Hipkins, V. D. (2006). Mitigating scoring errors in microsatellite data from wild populations. Molecular Ecology Notes 6, 951–957.
CrossRef |

Di Rienzo, A. , Peterson, A. C. , Garza, J. C. , Valdes, A. M. , and Slatkin, M. , et al. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America 91, 3166–3170.
CrossRef | PubMed |

England, P. R. , Osler, G. H. R. , Woodworth, L. M. , Montgomery, M. E. , and Briscoe, D. A. , et al. (2003). Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conservation Genetics 4, 595–604.
CrossRef |

England, P. , Cornuet, J.-M. , Berthier, P. , Tallmon, D. , and Luikart, G. (2006). Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conservation Genetics 7, 303–308.
CrossRef |

Excoffier, L. , Laval, G. , and Schneider, S. (2005). Arlequin (version 3.0). An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
PubMed |

Falush, D. , Stephens, M. , and Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
PubMed |

Faulks, L. K. , Gilligan, D. M. , and Beheregaray, L. B. (2010). Evolution and maintenance of divergent lineages in an endangered freshwater fish, Macquaria australasica. Conservation Genetics 11, 921–934.
CrossRef |

Frankham R., Ballou J. D., and Briscoe D. A. (2002). ‘Introduction to Conservation Genetics.’ (Cambridge University Press: Cambridge, UK.)

Franklin I. R. (1980). Evolutionary change in small populations. In ‘Conservation Biology: An Evolutionary–Ecological Perspective’. (Eds M. E. Soule and B. A. Wilcox.) pp. 135–149. (Sinauer: Sunderland, MA.)

Franklin, I. R. , and Frankham, R. (1998). How large must populations be to retain evolutionary potential? Animal Conservation 1, 69–70.
CrossRef |

Gomez-Uchida, D. , and Banks, M. A. (2006). Estimation of effective population size for the long-lived darkblotched rockfish Sebastes crameri. The Journal of Heredity 97, 603–606.
CrossRef | PubMed |

Goudet, J. (1995). FSTAT (vers. 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.


Hill, W. G. (1981). Estimation of effective population size from data on linkage disequilibrium. Genetical Research 38, 209–216.
CrossRef |

Humphries, P. (2005). Spawning time and early life history of Murray cod, Maccullochella peelii peelii (Mitchell) in an Australian river. Environmental Biology of Fishes 72, 393–407.
CrossRef |

Jug, T. , Berrebi, P. , and Snoj, A. (2005). Distribution of non-native trout in Slovenia and their introgression with native trout populations as observed through microsatellite DNA analysis. Biological Conservation 123, 381–388.
CrossRef |

Koehn, J. D. , and Harrington, D. J. (2006). Environmental conditions and timing for the spawning of Murray cod (Maccullochella peelii peelii) and the endangered trout cod (M. macquariensis) in southeastern Australian rivers. River Research and Applications 22, 327–342.
CrossRef |

Koehn, J. D. , McKenzie, J. A. , O’ Mahony, D. J. , Nicol, S. J. , and O’ Connor, J. P. , et al. (2009). Movements of Murray cod (Maccullochella peelii peelii) in a large Australian lowland river. Ecology of Freshwater Fish 18, 594–602.
CrossRef |

Koskinen, M. T. , Sundell, P. , Piironen, J. , and Primmer, C. R. (2002). Genetic assessment of spatiotemporal evolutionary relationships and stocking effects in grayling (Thymallus thymallus, Salmonidae). Ecology Letters 5, 193–205.
CrossRef |

Kuo, C. , and Janzen, F. J. (2004). Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (Terrapene ornata). Conservation Genetics 5, 425–437.
CrossRef |

Lake J. S. (1971). ‘Freshwater Fishes and Rivers of Australia.’ (Thomas Nelson: Sydney.)

Largiadèr, C. R. , and Scholl, A. (1995). Effects of stocking on the genetic diversity of brown trout populations of the Adriatic and Danubian drainages in Switzerland. Journal of Fish Biology 47(Suppl. A), 209–225.
CrossRef |

Larsen, P. F. , Hansen, M. M. , Nielsen, E. E. , Jensen, L. F. , and Loeschcke, V. (2005). Stocking impact and temporal stability of genetic composition in a brackish northern pike population (Esox lucius L.), assessed using microsatellite DNA analysis of historical and contemporary samples. Heredity 95, 136–143.
CrossRef | PubMed |

Larsen, P. F. , Nielsen, E. E. , Williams, T. D. , and Loeschcke, V. (2008). Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity 101, 247–259.
CrossRef | PubMed |

Launey, S. , Morin, J. , Minery, S. , and Laroche, J. (2006). Microsatellite genetic variation reveals extensive introgression between wild and introduced stocks, and a new evolutionary unit in French pike Esox lucius L. Journal of Fish Biology 68(Suppl. B), 193–216.
CrossRef |

Lehmann, T. , Hawley, W. A. , Grebert, H. , and Collins, F. H. (1998). The effective population size of Anopheles gambiae in Kenya: implications for population structure. Molecular Biology and Evolution 15, 264–276.
PubMed |

Lippé, C. , Dumont, P. , and Bernatchez, L. (2006). High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Castostomidae, Pisces): the positive sides of a long generation time. Molecular Ecology 15, 1769–1780.
CrossRef | PubMed |

Loughnan, S. R. , Baranski, M. D. , Robinson, N. A. , Jones, P. L. , and Burridge, C. P. (2004). Microsatellite loci for studies of wild and hatchery Australian Murray cod Maccullochella peelii peelii (Percichthyidae). Molecular Ecology Notes 4, 382–384.
CrossRef |

Luikart, G. , and Cornuet, J. M. (1998). Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology 12, 228–237.
CrossRef |

Luikart, G. , Allendorf, F. W. , Cornuet, J. M. , and Sherwin, W. B. (1998). Distortion of allele frequency distributions provides a test for recent population bottlenecks. The Journal of Heredity 89, 238–247.
CrossRef | PubMed |

Madeira, M. J. , Gómez-Moliner, B. J. , and Machordom Barbé, A. (2005). Genetic introgression on freshwater fish populations caused by restocking programmes. Biological Invasions 7, 117–125.
CrossRef |

Maudet C., Miller C., Bassano B., Breitenmoser-Wursten C., Gauthier D., et al. (2002). Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex [Capra ibex (ibex)]. Molecular Ecology 11, 421–436doi:10.1046/J.0962-1083.2001.01451.X

Miller L. M., and Kapuscinski A. R. (2003). Genetic guidelines for hatchery supplementation programs. In ‘Population Genetics Principles and Applications for Fisheries Scientists’. (Ed. E. M. Hallerman.) pp. 329–355. (American Fisheries Society: Bethesda.)

Nei M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York.)

Nielsen, E. E. , Hansen, M. M. , and Bach, L. A. (2001). Looking for a needle in a haystack: discovery of indigenous Atlantic salmon (Salmo salar L.) in stocked populations. Conservation Genetics 2, 219–232.
CrossRef |

Palstra, F. P. , and Ruzzante, D. E. (2008). Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology 17, 3428–3447.
CrossRef | PubMed |

Peakall, R. , and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
CrossRef |

Peel D., Ovenden J. R., and Peel S. L. (2004). NeEstimator: software for estimating effective population size (Version 1.3). Department of Primary Industries and Fisheries, Queensland Government, Queensland.

Piry, S. , Luikart, G. , and Cornuet, J.-M. (1999). BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. The Journal of Heredity 90, 502–503.
CrossRef |

Pritchard, J. K. , Stephens, M. , and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
PubMed |

Raymond, M. , and Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.


Reynolds, L. F. (1983). Migration patterns of five fish species in the Murray-Darling River System. Australian Journal of Marine and Freshwater Research 34, 857–871.
CrossRef |

Rice, W. F. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
CrossRef |

Rourke, M. , Nheu, J. , Mountford, H. , Lade, J. , and Ingram, B. , et al. (2007). Isolation and characterization of 102 new microsatellite loci in Murray cod, Maccullochella peelii peelii (Percichthyidae), and assessment of cross-amplification in 13 Australian native and six introduced freshwater species. Molecular Ecology Notes 7, 1258–1264.
CrossRef |

Rourke, M. L. , McPartlan, H. C. , Ingram, B. A. , and Taylor, A. C. (2009). Polygamy and low effective population size in a captive Murray cod (Maccullochella peelii peelii) population: genetic implications for wild restocking programs. Marine and Freshwater Research 60, 873–883.


Rowland S. J. (1988). ‘Murray Cod.’ (Agfact, NSW Agriculture and Fisheries: Grafton.)

Rowland, S. J. (1989). Aspects of the history and fishery of the Murray Cod, Maccullochella peeli (Mitchell) (Percichthyidae). Proceedings of the Linnean Society of New South Wales 111, 201–213.


Rowland S. J. (1995). Stocking of freshwater fishes and policy in New South Wales. Translocation issues in Western Australia. Fisheries Management Paper No. 83. Fisheries Department of Western Australia, Perth.

Rowland, S. J. (1998). Aspects of the reproductive biology of Murray cod, Maccullochella peelii peelii. Proceedings of the Linnean Society of New South Wales 120, 147–162.


Rowland S. J. (2005). Overview of the history, fishery, biology and aquaculture of Murray cod (Maccullochella peelii peelii). In ‘Management of Murray Cod in the Murray-Darling Basin. Statement, Recommendations and Supporting Papers, Canberra, 3–4 June 2004’. (Eds M. Lintermans and B. Phillips.) pp. 38–61. (Murray-Darling Basin Commission: Canberra.)

Rowland S. J., and Tully P. (2004). Hatchery quality assurance program for Murray cod (Maccullochella peelii peelii) golden perch (Macquaria ambigua) and silver perch (Bidyanus bidyanus). New South Wales Department of Primary Industries, Sydney.

Ryman, N. , and Laikre, L. (1991). Effects of supportive breeding on the genetically effective population size. Conservation Biology 5, 325–329.
CrossRef |

Ryman, N. , and Palm, S. (2006). POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology Notes 6, 600–602.
CrossRef |

Wan, Q. H. , Fang, S. G. , and Li, Y. N. (2003). The loss of genetic diversity in Dabry’s sturgeon (Acipenser dabryanus, Dumeril) as revealed by DNA fingerprinting. Aquatic Conservation: Marine & Freshwater Ecosystems 13, 225–231.
CrossRef |

Wang, J. , and Ryman, N. (2001). Genetic effects of multiple generations of supportive breeding. Conservation Biology 15, 1619–1631.
CrossRef |

Waples, R. S. (1989). A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121, 379–391.
PubMed |

Waples, R. S. (2005). Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology 14, 3335–3352.
CrossRef | PubMed |

Waples, R. S. (2006). A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked loci. Conservation Genetics 7, 167–184.
CrossRef |

Waples, R. S. , and Do, C. (2008). LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8, 753–756.
CrossRef |

Welcomme, R. L. , and Bartley, D. M. (1998). Current approaches to the enhancement of fisheries. Fisheries Management and Ecology 5, 351–382.
CrossRef |

Wirgin, I. , Waldman, J. , Stabile, J. , Lubinski, B. , and King, T. (2002). Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus. Journal of Applied Ichthyology 18, 313–319.
CrossRef |

Zhao, N. , Ai, W. , Shao, Z. , Brosse, S. , and Chang, J. (2005). Microsatellites assessment of Chinese sturgeon (Acipenser sinensis Gray) genetic variability. Journal of Applied Ichthyology 21, 7–13.
CrossRef |



Rent Article (via Deepdyve) Export Citation Cited By (11)

View Altmetrics