Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities

Pamela J. Schofield A D , Mark S. Peterson B , Michael R. Lowe B , Nancy J. Brown-Peterson B and William T. Slack C

A US Geological Survey, Southeast Ecological Science Center, 7920 NW 71st Street, Gainesville, FL 32653, USA.

B Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA.

C US Army ERDC, Waterways Experiment Station EE-A, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.

D Corresponding author. Email: pschofield@usgs.gov

Marine and Freshwater Research 62(5) 439-449 http://dx.doi.org/10.1071/MF10207
Submitted: 4 August 2010  Accepted: 28 December 2010   Published: 25 May 2011

Abstract

The physiological tolerances of non-native fishes is an integral component of assessing potential invasive risk. Salinity and temperature are environmental variables that limit the spread of many non-native fishes. We hypothesised that combinations of temperature and salinity will interact to affect survival, growth, and reproduction of Nile tilapia, Oreochromis niloticus, introduced into Mississippi, USA. Tilapia withstood acute transfer from fresh water up to a salinity of 20 and survived gradual transfer up to 60 at typical summertime (30°C) temperatures. However, cold temperature (14°C) reduced survival of fish in saline waters ≥10 and increased the incidence of disease in freshwater controls. Although fish were able to equilibrate to saline waters in warm temperatures, reproductive parameters were reduced at salinities ≥30. These integrated responses suggest that Nile tilapia can invade coastal areas beyond their point of introduction. However, successful invasion is subject to two caveats: (1) wintertime survival depends on finding thermal refugia, and (2) reproduction is hampered in regions where salinities are ≥30. These data are vital to predicting the invasion of non-native fishes into coastal watersheds. This is particularly important given the predicted changes in coastal landscapes due to global climate change and sea-level rise.

Additional keywords: dispersal, estuary, invasive species, osmoregulation, salinity.


References

Al-Amoudi, M. M. (1987). Acclimation of commercially cultured Oreochromis species to sea water – an experimental study. Aquaculture 65, 333–342.
Acclimation of commercially cultured Oreochromis species to sea water – an experimental study.CrossRef | open url image1

Avella, M., Berhaut, J., and Bornancin, M. (1993). Salinity tolerance of two tropical fishes, Oreochromis aureus and O. niloticus. I. Biochemical and morphological changes in the gill epithelium. Journal of Fish Biology 42, 243–254.
Salinity tolerance of two tropical fishes, Oreochromis aureus and O. niloticus. I. Biochemical and morphological changes in the gill epithelium.CrossRef | 1:CAS:528:DyaK3sXkt1Cqtbc%3D&md5=0826f4afed6b90cf887922e66699a56aCAS | open url image1

Azaza, M. S., Dhraïer, M. N., and Kraïem, M. M. (2008). Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology 33, 98–105.
Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia.CrossRef | open url image1

Beamish, F. W. H. (1970). Influence of temperature and salinity acclimation on temperature preferenda of the euryhaline fish Tilapia nilotica. Journal of the Fisheries Research Board of Canada 27, 1209–1214. open url image1

Beveridge, M. C. M., and McAndrew, B. J. (2000). ‘Tilapias: Biology and Exploitation.’ Fish and Fisheries Series No. 25. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Blanco, J. A., Narváez Barandica, J. C., and Viloria, E. A. (2007). ENSO and the rise and fall of a tilapia fishery in northern Colombia. Fisheries Research 88, 100–108.
ENSO and the rise and fall of a tilapia fishery in northern Colombia.CrossRef | open url image1

Brown, J. A., Scott, D. M., and Wilson, R. W. (2007). Do estuaries act as saline bridges to allow invasion of new freshwater systems by non-indigenous fish species? In ‘Biological Invaders in Inland Waters: Profiles, Distribution and Threats’. (Ed. F. Gherardi.) pp. 401–414. (Springer: Dordrecht, The Netherlands.)

Canonico, G. C., Arthington, A., McCrary, J. K., and Thieme, M. L. (2005). The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 15, 463–483.
The effects of introduced tilapias on native biodiversity.CrossRef | open url image1

Carlton, J. T. (2001). ‘Introduced Species in U.S. Coastal Waters: Environmental Impacts and Management Priorities.’ (Pew Oceans Commission: Arlington, VA.)

Casal, M. V. C. (2006). Global documentation of fish introductions: the growth in crisis and recommendations for action. Biological Invasions 8, 3–11.
Global documentation of fish introductions: the growth in crisis and recommendations for action.CrossRef | open url image1

Charo-Karisa, H., Rezk, M. A., Bovenhuis, H., and Komen, H. (2005). Heritability of cold tolerance in Nile tilapia, Oreochromis niloticus, juveniles. Aquaculture 249, 115–123.
Heritability of cold tolerance in Nile tilapia, Oreochromis niloticus, juveniles.CrossRef | open url image1

Chervinski, J. (1961). Laboratory experiments on the growth of Tilapia nilotica in various saline concentrations. Bamidgeh 13, 8–14. open url image1

Chervinski, J. (1982). Environmental physiology of tilapias. In ‘The Biology and Culture of Tilapias’. (Eds R. S. V. Pullin and R. H. Lowe-McConnell.) pp. 119–128. (International Center for Living Aquatic Resources Management: Manila, Philippines.)

Chervinski, J., and Lahav, M. (1976). The effect of exposure to low temperature on fingerlings of local tilapia (Tilapia aurea) (Steindachner) and imported tilapia (Tilapia vulacani) (Trewavas) and Tilapia nilotica (Linne) in Israel. Bamidgeh 28, 25–29. open url image1

Cohen, A. N., and Carlton, J. T. (1998). Accelerating invasion rate in a highly invaded estuary. Science 279, 555–558.
Accelerating invasion rate in a highly invaded estuary.CrossRef | 1:CAS:528:DyaK1cXotVOksw%3D%3D&md5=ed134275747d89a7cd43b50a26edb84cCAS | 9438847PubMed | open url image1

Costa-Pierce, B. A. (2003). Rapid evolution of an established feral tilapia (Oreochromis spp.): the need to incorporate invasion science into regulatory structures. Biological Invasions 5, 71–84.
Rapid evolution of an established feral tilapia (Oreochromis spp.): the need to incorporate invasion science into regulatory structures.CrossRef | open url image1

Courtenay, W. R., Jr (1997). Tilapias as non-indigenous species in the Americas: environmental, regulatory and legal issues. In ‘Tilapia Aquaculture in the Americas’. Vol. 1. (Eds B. A. Costa-Pierce and J. E. Rakocy.) pp. 18–33. (World Aquaculture Society: Baton Rouge, LA.)

Courtenay, W. R., Jr, and Williams, J. D. (1992). Dispersal of exotic species from aquaculture sources, with emphasis on freshwater fishes. In ‘Dispersal of Living Organisms into Aquatic Ecosystems’. (Eds A. Rosenfield and R. Mann.) pp. 49–81. (Maryland Sea Grant Program: College Park, MD.)

Cox, D. R., and Oakes, D. (1984). ‘Analysis of Survival Data.’ Monographs on Statistics and Applied Probability No. 21. (Chapman and Hall: New York.)

Denzer, H. W. (1968). Studies on the physiology of young tilapia. FAO Fisheries Report 44, 357–366. open url image1

DeSilva, S. S., and Perera, M. K. (1985). Effects of dietary protein level on growth, food conversion, and protein use in young Tilapia nilotica at four salinities. Transactions of the American Fisheries Society 114, 584–589.
Effects of dietary protein level on growth, food conversion, and protein use in young Tilapia nilotica at four salinities.CrossRef | open url image1

Duponchelle, F., and Panfili, J. (1998). Variations in age and size at maturity of female Nile tilapia, Oreochromis niloticus, populations from man-made lakes in Côte d’Ivoire. Environmental Biology of Fishes 52, 453–465.
Variations in age and size at maturity of female Nile tilapia, Oreochromis niloticus, populations from man-made lakes in Côte d’Ivoire.CrossRef | open url image1

Duponchelle, F., Cecchi, P., Corbin, D., Nunez, J., and Legendre, M. (1999). Spawning season variations of female Nile tilapia, Oreochromis niloticus, from man-made lakes of Côte d’Ivoire. Environmental Biology of Fishes 56, 375–387.
Spawning season variations of female Nile tilapia, Oreochromis niloticus, from man-made lakes of Côte d’Ivoire.CrossRef | open url image1

Duponchelle, F., Cecchi, P., Corbin, D., Nunez, J., and Legendre, M. (2000). Variations in fecundity and egg size of female Nile tilapia, Oreochromis niloticus, from man-made lakes of Côte d’Ivoire. Environmental Biology of Fishes 57, 155–170.
Variations in fecundity and egg size of female Nile tilapia, Oreochromis niloticus, from man-made lakes of Côte d’Ivoire.CrossRef | open url image1

Eleuterius, C. K. (1976a). Mississippi Sound: salinity distributions and indicated flow patterns. MASGC-76-023 Mississippi–Alabama Sea Grant Consortium, Ocean Springs, MS, USA.

Eleuterius, C. K. (1976b). Mississippi Sound: temporal and spatial distribution of nutrients. MASGC-76-024 Mississippi–Alabama Sea Grant Consortium, Ocean Springs, MS, USA.

Farmer, G. J., and Beamish, F. W. H. (1969). Oxygen consumption of Tilapia nilotica in relation to swimming speed and salinity. Journal of the Fisheries Board of Canada 26, 2807–2821.
| 1:CAS:528:DyaE3cXns1Wlsw%3D%3D&md5=68c7fbc1559370fa109810e1c0700d33CAS | open url image1

Febry, R., and Lutz, P. (1987). Energy partitioning in fish: the activity related cost of osmoregulation in a euryhaline cichlid. The Journal of Experimental Biology 128, 63–85. open url image1

Fryer, G., and Iles, T. D. (1972). ‘The Cichlid Fishes of the Great Lakes of Africa, their Biology and Distribution.’ (Oliver and Boyd: Edinburgh.)

Green, S. B., and Salkind, N. L. (2008). ‘Using SPSS for Windows and Macintosh. Analyzing and Understanding Data.’ 5th edn. (Pearson Prentice Hall: Upper Saddle River, NJ.)

Harris, L. G., and Tyrrell, M. C. (2001). Changing community states in the Gulf of Maine: synergism between invaders, overfishing and climate change. Biological Invasions 3, 9–21.
Changing community states in the Gulf of Maine: synergism between invaders, overfishing and climate change.CrossRef | open url image1

Kjesbu, O. S. (2009). Applied fish reproductive biology: contribution of individual reproductive potential to recruitment and fisheries management. In ‘Fish Reproductive Biology – Implications for Assessment and Management’. (Eds T. Jakosben, M. J. Fogarty, B. A. Megrey and E. Moksness.) pp. 293–332. (Wiley-Blackwell: West Sussex, UK.)

Leal-Flórez, J., Rueda, M., and Wolff, M. (2008). Role of the non-native fish Oreochromis niloticus in the long-term variations of abundance and species composition of the native ichthyofauna in a Caribbean estuary. Bulletin of Marine Science 82, 365–380. open url image1

Lemarié, G., Baroiller, J. F., Clota, F., Lazard, J., and Dosdat, A. (2004). A simple test to estimate the salinity resistance of fish with specific application to O. niloticus and S. melanotheron. Aquaculture 240, 575–587.
A simple test to estimate the salinity resistance of fish with specific application to O. niloticus and S. melanotheron.CrossRef | open url image1

Likongwe, J. S., Stecko, T. D., Stauffer, J. R., and Carline, R. F. (1996). Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linnaeus). Aquaculture 146, 37–46.
Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linnaeus).CrossRef | open url image1

Lodge, D. M., Stein, R. A., Brown, K. M., Covich, A. P., Gronmark, C., et al. (1998). Predicting impact of freshwater exotic species on native biodiversity: challenges in spatial scaling. Australian Journal of Ecology 23, 53–67.
Predicting impact of freshwater exotic species on native biodiversity: challenges in spatial scaling.CrossRef | open url image1

Lorenz, O. T., and O’Connell, M. T. (2008). Growth of non-native Rio Grande cichlids (Herichthys cyanoguttatus) at different salinities and in the presence of native bluegill (Lepomis macrochirus). Journal of Freshwater Ecology 23, 537–544.
Growth of non-native Rio Grande cichlids (Herichthys cyanoguttatus) at different salinities and in the presence of native bluegill (Lepomis macrochirus).CrossRef | open url image1

Lorenzen, K. (2000). Population dynamics and management. In ‘Tilapias: Biology and Exploitation’. Fish and Fisheries Series 25. (Eds C. M. Beveridge and B. J. McAndrews.) pp. 163–225. (Kluwer Academic: Dordrecht, The Netherlands.)

Lotan, R. (1960). Adaptability of Tilapia nilotica to various saline conditions. Bamidgeh 12, 96–100. open url image1

Love, J. W., and Rees, B. B. (2002). Seasonal differences in hypoxia tolerance in gulf killifish, Fundulus grandis (Fundulidae). Environmental Biology of Fishes 63, 103–115.
Seasonal differences in hypoxia tolerance in gulf killifish, Fundulus grandis (Fundulidae).CrossRef | open url image1

Lowe, M. R., Peterson, M. S., Brown-Peterson, N. J., Schofield, P. J., Slack, W. T., et al. (2009). Survival, growth, and reproduction of Nile tilapia in saline waters: projected effects of climate change and sea level rise on the distribution of an invasive species. In ‘Coastal and Estuarine Research Federation bi-annual meeting, Invasive Fish Biology, 1–5 November, Portland, OR’. Abstract available online: http://www.sgmeet.com/cerf2009/ [verified 1 December 2010].

McDonald, J. L., Peterson, M. S., and Slack, W. T. (2007). Morphology, density, and spatial patterning of reproductive bowers in an established alien population of Nile tilapia Oreochromis niloticus. Journal of Freshwater Ecology 22, 461–468.
Morphology, density, and spatial patterning of reproductive bowers in an established alien population of Nile tilapia Oreochromis niloticus.CrossRef | open url image1

McKinney, M. L., and Lockwood, J. L. (1999). Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14, 450–453.
Biotic homogenization: a few winners replacing many losers in the next mass extinction.CrossRef | 10511724PubMed | open url image1

Mires, D. (1995). The tilapias. In ‘Production of Aquatic Animals’. (Eds C. E. Nash and A. J. Novotny.) pp. 133–152. (Elsevier: New York.)

Naylor, R., Williams, S. L., and Strong, D. R. (2001). Aquaculture – a gateway for exotic species. Science 294, 1655–1656.
Aquaculture – a gateway for exotic species.CrossRef | 1:CAS:528:DC%2BD3MXosleqtb0%3D&md5=b0980022642a818e07a14a433d1cf3a4CAS | 11721035PubMed | open url image1

Panfili, J., Thior, D., Ecoutin, J.-M., Ndiaye, P., and Albaret, J.-J. (2006). Influence of salinity on the size at maturity for fish species reproducing in contrasting West African estuaries. Journal of Fish Biology 69, 95–113.
Influence of salinity on the size at maturity for fish species reproducing in contrasting West African estuaries.CrossRef | open url image1

Pauly, D., Moreau, J., and Prein, M. (1988). A comparison of overall growth performance of tilapia in open waters and aquaculture. In ‘The Second International Symposium on Tilapia in Aquaculture’. (Eds R. S. V. Pullin, T. Bhukaswan, K. Tanguthai and J. L. Maclean.) pp. 469–479. (International Center for Living Aquatic Resources Management: Manila, Philippines.)

Payne, A. I., and Collinson, R. I. (1983). A comparison of the biological characteristics of Sarotherodon niloticus (L) with those of S. aureus (Steindachner) and other tilapia of the delta and lower Nile. Aquaculture 30, 335–351.
A comparison of the biological characteristics of Sarotherodon niloticus (L) with those of S. aureus (Steindachner) and other tilapia of the delta and lower Nile.CrossRef | open url image1

Peña-Mendoza, B., Gómez-Márquez, J. L., Salgado-Urgate, I. H., and Ramírez-Noguera, D. (2005). Reproductive biology of Oreochromis niloticus (Perciformes: Cichlidae) at Emiliano Zapata dam, Morelos, Mexico. Revista de Biologia Tropical 53, 515–522.
| 17354460PubMed | open url image1

Peterson, M. S. (1988). Comparative physiological ecology of centrarchids in hyposaline environments. Canadian Journal of Fisheries and Aquatic Sciences 45, 827–833.
Comparative physiological ecology of centrarchids in hyposaline environments.CrossRef | open url image1

Peterson, M. S., Comyns, B. H., Rakocinski, C. F., and Fulling, G. L. (1999). Does salinity affect growth in juvenile Atlantic croaker, Micropogonias undulatus (Linnaeus)? Journal of Experimental Marine Biology and Ecology 238, 199–207.
Does salinity affect growth in juvenile Atlantic croaker, Micropogonias undulatus (Linnaeus)?CrossRef | open url image1

Peterson, M. S., Rakocinski, C. F., Comyns, B. H., and Fulling, G. L. (2000). Laboratory growth responses of juvenile Mugil to temperature and salinity: delineating optimal field growth conditions. Proceedings of the Gulf and Caribbean Fisheries Institute 51, 341–352. open url image1

Peterson, M. S., Slack, W. T., Brown-Peterson, N. J., and McDonald, J. L. (2004). Reproduction in nonnative environments: establishment of Nile tilapia, Oreochromis niloticus, in coastal Mississippi watersheds. Copeia 2004, 842–849.
Reproduction in nonnative environments: establishment of Nile tilapia, Oreochromis niloticus, in coastal Mississippi watersheds.CrossRef | open url image1

Peterson, M. S., Slack, W. T., and Woodley, C. M. (2005). The occurrence of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus) in coastal Mississippi, USA: ties to aquaculture and thermal effluent. Wetlands 25, 112–121.
The occurrence of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus) in coastal Mississippi, USA: ties to aquaculture and thermal effluent.CrossRef | open url image1

Rahel, F. J. (2002). Homogenization of freshwater faunas. Annual Review of Ecology, Evolution and Systematics 33, 291–315.
Homogenization of freshwater faunas.CrossRef | open url image1

Rahel, F. J. (2007). Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology 52, 696–710.
Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all.CrossRef | open url image1

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.CrossRef | open url image1

Ruiz, G. M., Fofonoff, P. W., Carlton, J. T., Wonham, M. J., and Hines, A. H. (2000). Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annual Review of Ecology Evolution and Systematics 31, 481–531.
Invasion of coastal marine communities in North America: apparent patterns, processes, and biases.CrossRef | open url image1

Savage, I. R. (1956). Contributions to the theory of order statistics – the two sample case. Annals of Mathematical Statistics 27, 590–615.
Contributions to the theory of order statistics – the two sample case.CrossRef | open url image1

Scavia, D., Field, J. C., Boesch, D. F., Buddemier, R. W., Burkett, V., et al. (2002). Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25, 149–164.
Climate change impacts on U.S. coastal and marine ecosystems.CrossRef | open url image1

Schofield, P. J., Slack, W. T., Peterson, M. S., and Gregoire, D. R. (2007). Assessment and control of an invasive aquatic species: an update on Nile tilapia (Oreochromis niloticus) in coastal Mississippi after Hurricane Katrina. Southeastern Fishes Council Proceedings 49, 9–15. open url image1

Schofield, P. J., Loftus, W. F., Kobza, R. M., Cook, M. I., and Slone, D. H. (2010). Tolerance of nonindigenous cichlid fishes (Cichlasoma urophthalmus, Hemichromis letourneuxi) to low temperature: laboratory and field experiments in south Florida. Biological Invasions 12, 2441–2457.
Tolerance of nonindigenous cichlid fishes (Cichlasoma urophthalmus, Hemichromis letourneuxi) to low temperature: laboratory and field experiments in south Florida.CrossRef | open url image1

Scordella, G., Lumare, F., Conides, A., and Papaconstantinou, C. (2003). First occurrence of the tilapia Oreochromis niloticus niloticus (Linnaeus, 1758) in Lesina Lagoon (eastern Italian coast). The Mediterranean Marine Science Journal 4, 41–47. open url image1

Scott, D. M., Wilson, R. W., and Brown, J. A. (2007). The osmoregulatory ability of the invasive species sunbleak Leucaspius delineatus and topmouth gudgeon Pseudorasbora parva at elevated salinities, and their likely dispersal via brackish waters. Journal of Fish Biology 70, 1606–1614.
The osmoregulatory ability of the invasive species sunbleak Leucaspius delineatus and topmouth gudgeon Pseudorasbora parva at elevated salinities, and their likely dispersal via brackish waters.CrossRef | open url image1

Scott, D. M., Wilson, R. W., and Brown, J. A. (2007). Can sunbleak Leucaspius delineatus or topmouth gudgeon Pseudorasbora parva disperse through saline waters? Journal of Fish Biology (Suppl. D), , 70–86. open url image1

Slack, W. T., Dugo, M. A., and Peterson, M. S. (2006). Habitat association and dispersion of non-indigenous Nile tilapia (Cichlidae: Oreochromis niloticus) in southern Mississippi waterbodies through the use of telemetry. Museum Technical Report 125. Jackson, Mississippi Museum of Natural Science.

Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., and Osman, R. W. (2002). Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences of the United States of America 99, 15 497–15 500.
Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions.CrossRef | 1:CAS:528:DC%2BD3sXjvVOi&md5=7ea6b54807d3de3dbde77198c2950ffbCAS | open url image1

Suresh, A. V., and Kwei Lin, C. (1992). Tilapia culture in saline waters: a review. Aquaculture 106, 201–226.
Tilapia culture in saline waters: a review.CrossRef | open url image1

Travis, J. M. J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings. Biological Sciences 270, 467–473.
Climate change and habitat destruction: a deadly anthropogenic cocktail.CrossRef | 1:STN:280:DC%2BD3s7ivVelsw%3D%3D&md5=edcbbd400755af3943b3ca76d27f33d9CAS | open url image1

Trewavas, E. (1983). ‘Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia.’ (British Museum of Natural History: London.)

Walther, G.-R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., et al. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution 24, 686–693.
Alien species in a warmer world: risks and opportunities.CrossRef | 19712994PubMed | open url image1

Watanabe, W. O., Kuo, C. M., and Huang, M. C. (1985). Salinity tolerance of Nile tilapia fry (Oreochromis niloticus), spawned and hatched at various salinities. Aquaculture 48, 159–176.
Salinity tolerance of Nile tilapia fry (Oreochromis niloticus), spawned and hatched at various salinities.CrossRef | open url image1

Watson, R. J. (2008). The effects of an artificially elevated thermal environment and seasonal acclimatization on the thermal tolerance of the western mosquitofish Gambusia affinis. M.Sc. Thesis, University of Texas at Arlington.

Wedemeyer, G. A., and McLeay, D. J. (1981). Methods for determining the tolerance of fishes to environmental stressors. In ‘Stress and Fish’. (Ed. A. D. Pickering.) pp. 247–275. (Academic Press: London.)

Zale, A. V., and Gregory, R. W. (1989). Effect of salinity on cold tolerance of juvenile blue tilapias. Transactions of the American Fisheries Society 118, 718–720.
Effect of salinity on cold tolerance of juvenile blue tilapias.CrossRef | open url image1

Zambrano, L., Martinez-Meyer, E., Menezes, N., and Peterson, A. T. (2006). Invasive potential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) in American freshwater systems. Canadian Journal of Fisheries and Aquatic Sciences 63, 1903–1910.
Invasive potential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) in American freshwater systems.CrossRef | open url image1



Export Citation