Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Lead–radium dating provides a framework for coordinating age estimation of Patagonian toothfish (Dissostichus eleginoides) between fishing areas

A. H. Andrews A H , J. R. Ashford B , C. M. Brooks C , K. Krusic-Golub D , G. Duhamel E , M. Belchier F , C. C. Lundstrom G and G. M. Cailliet C

A NOAA Fisheries, Pacific Islands Fisheries Science Center, 99–193 Aiea Heights Drive #417, Aiea, HI 96701, USA.

B Center for Quantitative Fisheries Ecology, Old Dominion University, 800 West 46th Street, Norfolk, VA 23508, USA.

C Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA.

D Fish Ageing Services Pty Ltd 15 Alison Street, Portarlington, Vic. 3223, Australia.

E Museum National d’Histoire Naturelle, France.

F British Antarctic Survey Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.

G University of Illinois–Urbana Champaign, Department of Geology, 245 Natural History Building, 1301 W. Green Street, Urbana, IL 61801, USA.

H Corresponding author. Email: allen.andrews@noaa.gov

Marine and Freshwater Research 62(7) 781-789 http://dx.doi.org/10.1071/MF10225
Submitted: 25 August 2010  Accepted: 18 March 2011   Published: 25 July 2011

Abstract

Patagonian toothfish (Dissostichus eleginoides) or ‘Chilean sea bass’ support a valuable and controversial fishery, yet their life history is not well understood and longevity estimates range from ~20 to >50 years. In this study, lead–radium dating provided valid ages for juvenile to older adult groups, which were consistent with the counting of otolith growth zones in transverse otolith sections, and longevity estimates exceeding 30 years. Lead–radium dating revealed minor biases between the radiometric age and interpretation of growth zone counting for regional fishing areas monitored by two facilities, Center for Quantitative Fisheries Ecology (CQFE) and the Central Ageing Facility (CAF), using different age estimation techniques. For CQFE, under-ageing of ~3.3 years was observed for individuals with estimated ages under 20 years. For the CAF, ages were overestimated for young fish and underestimated for the oldest fish. Lead–radium dating detected underlying problems in coordinating age estimation between geographically separated fish stocks, and provided a framework to objectively assess otolith interpretation and growth modelling between laboratories based on age-validated data.

Additional keywords: age bias, age validation, Chilean sea bass, connectivity, lead-210, longevity, Nototheniidae, radiometric age, radium-226.


References

Agnew, D. J., Heaps, L., Jones, C., Watson, A., Berkieta, K., et al. (1999). Depth distribution and spawning pattern of Dissostichus eleginoides at South Georgia. CCAMLR Science 6, 19–36. open url image1

Andrews, A. H. (2009). Lead-radium dating of two deep-water fishes from the southern hemisphere, Patagonian toothfish (Dissostichus eleginoides) and orange roughy (Hoplostethus atlanticus). Ph.D. Thesis, Rhodes University.

Andrews, A. H., Cailliet, G. M., and Coale, K. H. (1999). Age and growth of the Pacific grenadier (Coryphaenoides acrolepis) with age estimate validation using an improved radiometric ageing technique. Canadian Journal of Fisheries and Aquatic Sciences 56, 1339–1350.
Age and growth of the Pacific grenadier (Coryphaenoides acrolepis) with age estimate validation using an improved radiometric ageing technique.CrossRef | open url image1

Andrews, A. H., Coale, K. H., Nowicki, J. L., Lundstrom, C., Palacz, Z., et al. (1999). Application of an ion-exchange separation technique and thermal ionization mass spectrometry to 226Ra determination in otoliths for radiometric age determination of long-lived fishes. Canadian Journal of Fisheries and Aquatic Sciences 56, 1329–1338.
Application of an ion-exchange separation technique and thermal ionization mass spectrometry to 226Ra determination in otoliths for radiometric age determination of long-lived fishes.CrossRef | 1:CAS:528:DyaK1MXmtFarsbk%3D&md5=afa26bcebd7986ac7b978b13b3de255fCAS | open url image1

Andrews, A. H., Tracey, D. M., and Dunn, M. R. (2009). Lead-radium dating of orange roughy (Hoplostethus altanticus): validation of a centenarian life span. Canadian Journal of Fisheries and Aquatic Sciences 66, 1130–1140.
Lead-radium dating of orange roughy (Hoplostethus altanticus): validation of a centenarian life span.CrossRef | 1:CAS:528:DC%2BD1MXotlegtr8%3D&md5=048912461c5c557aef12691e3742647eCAS | open url image1

Ashford, J. R., Wischniowski, S., Jones, C. M., and Bobko, S. (2001). A comparison between otoliths and scales for use in estimating the age of Dissostichus eleginoides from South Georgia. CCAMLR Science 8, 75–92. open url image1

Ashford, J. R., Jones, C. M., Bobko, S., and Everson, I. (2002). Length-at-age of juvenile Patagonian toothfish, Dissostichus eleginoides. CCAMLR Science 9, 1–10. open url image1

Ashford, J. P., Horn, P., Krusic-Golub, K., Belchier, M., and Andrews, A. (2003). Report of the CCAMLR otolith network. WG-FSA 03(October), 2003. (CCAMLR: North Hobart.)

Ashford, J., Duhamel, G., Jones, C., and Bobko, S. (2005). Age, growth and mortality of Patagonian toothfish (Dissostichus eleginoides) caught off Kerguelen. CCAMLR Science 12, 29–41. open url image1

Ashford, J. R., Arkhipkin, A. I., and Jones, C. M. (2006). Can the chemistry of otolith nuclei determine population structure of Patagonian toothfish Dissostichus eleginoides? Journal of Fish Biology 69, 708–721.
Can the chemistry of otolith nuclei determine population structure of Patagonian toothfish Dissostichus eleginoides?CrossRef | 1:CAS:528:DC%2BD28XhtFamtLrP&md5=60a89a5d56cf06d1a8e0eb80ff00982dCAS | open url image1

Ashford, J. R., Jones, C. M., Hofmann, E. E. M., Everson, I., Moreno, C. A., et al. (2008). Otolith chemistry indicates population structuring by the Antarctic Circumpolar Current. Canadian Journal of Fisheries and Aquatic Sciences 65, 135–146.
Otolith chemistry indicates population structuring by the Antarctic Circumpolar Current.CrossRef | 1:CAS:528:DC%2BD1cXktVWlsr0%3D&md5=2018460410bdb44dedd889703390aad6CAS | open url image1

Beamish, R. J., McFarlane, G. A., and Benson, G. A. (2006). Longevity overfishing. Progress in Oceanography 68, 289–302. open url image1

Bennett, J. T., Boehlert, G. W., and Turekian, K. K. (1982). Confirmation of longevity in Sebastes diploproa (Pisces:Scorpaenidae) from 210Pb/226Ra measurements in otoliths. Marine Biology 71, 209–215.
Confirmation of longevity in Sebastes diploproa (Pisces:Scorpaenidae) from 210Pb/226Ra measurements in otoliths.CrossRef | open url image1

Brooks, C. M., Andrews, A. H., Ashford, J. A., Ramanna, N., Jones, C. D., et al. (2011). Age estimation and lead-radium dating of Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea. Polar Biology 34, 329–338.
Age estimation and lead-radium dating of Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea.CrossRef | open url image1

Butterworth, D. S., and Brandão, A. (2005). Experiences in Southern Africa in the management of deep-sea fisheries. In ‘Deep Sea 2003: Conference on the Governance and Management of Deep-Sea Fisheries’. (Ed. R. Shotton.) pp. 226–234. (FAO: Rome.)

Cailliet, G. M., and Andrews, A. H. (2008). Age-validated longevity of fishes: Its importance for sustainable fisheries. In ‘Fisheries for Global Welfare and Environment’. (Eds K. Tsukamoto, T. Kawamura, T. Takeuchi, T. D. Beard, Jr. and M. J. Kaiser.) pp. 103–120. (TERRAPUB: Tokyo.)

Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197–242.
Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods.CrossRef | open url image1

Campana, S. E., Zwanenburg, K. T. C., and Smith, N. J. (1990). 210Pb/226Ra determination of longevity in redfish. Canadian Journal of Fisheries and Aquatic Sciences 47, 163–165.
210Pb/226Ra determination of longevity in redfish.CrossRef | open url image1

CARE (2006). ‘Manual for Generalized Age Determination Procedures for Groundfish.’ (Pacific States Marine Fisheries Commission: Portland, OR.)

Cassia, M. C. (1998). Comparison of age readings from scales and otoliths of the Patagonian toothfish (Dissostichus eleginoides) from South Georgia. CCAMLR Science 5, 191–203. open url image1

Chikov, V. N., and Melnikov, Y. S. (1990). On the question of fecundity of the Patagonian toothfish, Dissostichus eleginoides, in the region of the Kerguelen Islands. Journal of Ichthyology 30, 122–125. open url image1

Clark, M. R., Vinnichenko, V. I., Gordon, J. D. M., Beck-Bulat, G. Z., Kukharev, N. N., et al. (2007). Large-scale distant-water trawl fisheries on seamounts. In ‘Seamounts: Ecology, Fisheries & Conservation’. (Eds T. J. Pitcher, T. Morato, P. J. B. Hart, M. R. Clark, N. Haggan and R. S. Santos.) pp. 361–399. (Blackwell: Oxford.)

De Oliveira, E., Bez, N., and Duhamel, G. (2006). Local fishing efficiencies estimated from observers’ recordings of Patagonian toothfish (Dissostichus eleginoides). In ‘Deep Sea 2003: Conference on the Governance and Management of Deep-Sea Fisheries’. (Ed. R. Shotton.) pp. 211–224. (FAO: Rome.)

Druffel, E. R. M. (2002). Radiocarbon in corals: records of the carbon cycle, surface circulation and climate. Oceanography 15, 122–127. open url image1

Duhamel, G. (1981). Characteristiques biologiques des principales especes de poissons du plateau continental des Iles Kerguelen. Cybium 5, 19–32. open url image1

Eastman, J. T. (1993). ‘Antarctic Fish Biology: Evolution in a Unique Environment’. (Academic Press: San Diego.)

Everson, I., and Murray, A. (1999). Size at sexual maturity of Patagonian toothfish (Dissostichus eleginoides). CCAMLR Science 6, 37–46. open url image1

Evseenko, S. A., Kock, K.-H., and Nevinsky, M. M. (1995). Early life history of the Patagonian toothfish, Dissostichus eleginoides, in the Atlantic sector of the Southern Ocean. Antarctic Science 7, 221–226.
Early life history of the Patagonian toothfish, Dissostichus eleginoides, in the Atlantic sector of the Southern Ocean.CrossRef | open url image1

Galuardi, B., Royer, F., Golet, W., Logan, J., Neilson, J., et al. (2010). Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Canadian Journal of Fisheries and Aquatic Sciences 67, 966–976.
Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm.CrossRef | open url image1

Horn, P. L. (2002). Age and growth of Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (D. mawsoni) in waters from the New Zealand subantarctic to the Ross Sea, Antarctica. Fisheries Research 56, 275–287.
Age and growth of Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (D. mawsoni) in waters from the New Zealand subantarctic to the Ross Sea, Antarctica.CrossRef | open url image1

Hureau, J. C., and Ozouf-Costaz, C. (1980). Age determination and growth of Dissostichus eleginoides Smitt, 1989, from Kerguelen and Crozet Islands. Cybium 8, 23–32. open url image1

Hutchinson, C. E., Kastelle, C. R., and Kimura, D. K. (2007). Using radiometric ages to develop conventional ageing methods for shortraker rockfish (Sebastes borealis). In ‘Biology, Assessment, and Management of North Pacific Rockfishes’. (Eds J. Heifetz, J. Dicosimo, A. J. Gharrett, M. S. Love, V. M. O’Connell and R. D. Stanley.) pp. 237–249. (Alaska Sea Grant: University of Alaska, Fairbanks.)

Kalish, J., Timmiss, T., Pritchard, J., Johnstone, J., and Duhamel, G. (2001). Validation and direct estimation of age and growth of Patagonian toothfish Dissostichus eleginoides based on otoliths. In ‘Use of the Bomb Radiocarbon Chronometer to Validate Fish Age’. (Ed. J. M. Kalish.) pp. 164–182. (Fisheries Research and Development Corporation: Canberra.)

Kimura, D. K., and Lyons, J. J. (1991). Between-reader bias and variability in the age determination process. U. S. Fish Bulletin 89, 53–60. open url image1

Knecht, G. B. (2006). ‘Hooked: Pirates, Poaching, and the Perfect Fish.’ (Rodale: Emmaus, PA, USA.)

Kohler, N. E., Casey, J. G., and Turner, P. A. (1998). NMFS cooperative shark tagging program, 1962–93: an atlas of shark tag and recapture data. Marine Fisheries Review 60, 1–87. open url image1

Krusic-Golub, K., and Williams, R. (2005). Age validation of Patagonian toothfish (Dissostichus eleginoides) from Heard and Macquarie Islands. Primary Industries Research Victoria: Queenscliff, Vic., Australia.

Krusic-Golub, K., Green, C., and Williams, R. (2005). First increment validation of Patagonian toothfish (Dissostichus eleginoides) from Heard Island. Scientific Paper WG-FSA-05/61. CCAMLR, North Hobart, Tas., Australia.

Lehodey, P., Grandperrin, R., and Marchal, P. (1997). Reproductive biology and ecology of a deep-demersal fish, alfonsino Beryx splendens, over the seamounts off New Caledonia. Marine Biology 128, 17–27.
Reproductive biology and ecology of a deep-demersal fish, alfonsino Beryx splendens, over the seamounts off New Caledonia.CrossRef | open url image1

Mace, P. M., Fenaughty, J. M., Coburn, R. P., and Doonan, I. J. (1990). Growth and productivity of orange roughy (Hoplostethus atlanticus) on the north Chatham Rise. New Zealand Journal of Marine and Freshwater Research 24, 105–119.
Growth and productivity of orange roughy (Hoplostethus atlanticus) on the north Chatham Rise.CrossRef | open url image1

Mees, C. C., and Rousseau, J. A. (1997). The potential yield of the lutjanid fish Pristipomoides filamentosus from the Mahé Plateau, Seychelles: managing with uncertainty. Fisheries Research 33, 73–87.
The potential yield of the lutjanid fish Pristipomoides filamentosus from the Mahé Plateau, Seychelles: managing with uncertainty.CrossRef | open url image1

Miller, D. G. M., Sabourenkov, E. N., and Ramm, D. C. (2005). CCAMLR’s approach to managing Antarctic marine living resources. In ‘Deep Sea 2003: Conference on the Governance and Management of Deep-Sea Fisheries’. (Ed. R. Shotton.) pp. 413–432. (FAO: Rome.)

National Environmental Trust (2004). ‘Black Market for White Gold: the Illegal Trade in Chilean Sea Bass.’ (National Environmental Trust: Washington, DC.)

Panfili, J., de Pontual, H., Troadec, H., and Wright, P. J. (2002). ‘Manual of Fish Sclerochronology.’ (Ifremer-IRD: Brest, France.)

Pulliam, H. R. (1988). Sources, sinks and population dynamics. American Naturalist 132, 652–661.
Sources, sinks and population dynamics.CrossRef | open url image1

Rogers, A. D., Morley, S., Fitzcharles, E., Jarvis, K., and Belchier, M. (2006). Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean sections of the Southern Ocean. Marine Biology 149, 915–924.
Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean sections of the Southern Ocean.CrossRef | open url image1

Shaw, P. W., Arkhipkin, A. I., and Al-Khairulla, H. (2004). Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange. Molecular Ecology 13, 3293–3303.
Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange.CrossRef | 1:CAS:528:DC%2BD2cXhtVWkurvK&md5=d0303c42e74dd8dbd984657c689db56eCAS | open url image1

Smith, J. N., Nelson, R., and Campana, S. E. (1991). The use of Pb-210/Ra-226 and Th-228/Ra-228 dis-equilibria in the ageing of otoliths of marine fish. In ‘Radionuclides in the Study of Marine Processes’. (Eds P. J. Kershaw and D. S. Woodhead.) pp. 350–359. (Elsevier: New York.)

Stuiver, M., and Polach, H. A. (1977). Discussion: reporting of 14C data. Radiocarbon 19, 355–363. open url image1

Thorrold, S. R., Latkoczy, C., Swart, P. K., and Jones, C. M. (2001). Natal homing in a marine fish metapopulation. Science 291, 297–299.
Natal homing in a marine fish metapopulation.CrossRef | 1:CAS:528:DC%2BD3MXktlKhtw%3D%3D&md5=f27dfa5e1f7101d3b9121639a380b2baCAS | open url image1

Watson, R., Kitchingman, A., and Cheung, W. W. (2007). Catches from world seamount fisheries. In ‘Seamounts: Ecology, Fisheries & Conservation’. (Eds T. J. Pitcher, T. Morato, P. J. B. Hart, M. R. Clark, N. Haggan and R. S. Santos.) pp. 400–412. (Blackwell: Oxford.)

Williams, R., Tuck, G. N., Constable, A. J., and Lamb, T. (2002). Movement, growth and available abundance to the fishery of Dissostichus eleginoides Smitt, 1898 at Heard Island, derived from tagging experiments. CCAMLR Science 9, 33–48. open url image1

Young, Z., Zuleta, A., Robotham, H., Aguayo, M., and Cid, L. (1992). Evaluación del stock de bacalao de profundidad entre las latitudes 47° y 57°S. Informe Tecnico. IFOP-SUBPESCA: Chile.

Young, Z., Gili, R., and Cid, L. (1995). Prospección de bacalao de profundidad entre las latitudes 43°S y 47°S. Informe Tecnico. IFOP-SUBPESCA: Chile.

Zakharov, G. P., and Frolkina, Z. A. (1976). Some data on the distribution and biology of the Patagonian toothfish (D. eleginoides) of southwestern Antarctica. Trudy AtlantNIRO 65, 143–150. open url image1

Zhivov, V. V., and Krivoruchko, V. M. (1990). On the biology of the Patagonian toothfish, Dissostichus eleginoides, of the Antarctic part of the Atlantic. Voprosy Ikhtiologii 30, 861–864. open url image1



Supplementary MaterialSupplementary Material 26 KB Export Citation