Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay

James W. Fourqurean A F , Gary A. Kendrick B , Laurel S. Collins C , Randolph M. Chambers D and Mathew A. Vanderklift E
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, 3000 NE 151st St., North Miami, FL 33181 USA.

B Oceans Institute and School of Plant Biology, University of Western Australia, Perth, Western Australia, 35 Stirling Highway, Crawley, WA, Australia.

C Department of Earth and the Environment and Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.

D Keck Environmental Laboratory, College of William and Mary, Wake Drive, Williamsburg, VA 23187, USA.

E CSIRO Wealth from Oceans Flagship, Wembley, Western Australia, Australia.

F Corresponding author. Email: jim.fourqurean@fiu.edu

Marine and Freshwater Research 63(11) 967-983 https://doi.org/10.1071/MF12101
Submitted: 14 April 2012  Accepted: 24 July 2012   Published: 26 November 2012

Abstract

Seagrass meadows in Florida Bay and Shark Bay contain substantial stores of both organic carbon and nutrients. Soils from both systems are predominantly calcium carbonate, with an average of 82.1% CaCO3 in Florida Bay compared with 71.3% in Shark Bay. Soils from Shark Bay had, on average, 21% higher organic carbon content and 35% higher phosphorus content than Florida Bay. Further, soils from Shark Bay had lower mean dry bulk density (0.78 ± 0.01 g mL–1) than those from Florida Bay (0.84 ± 0.02 mg mL–1). The most hypersaline regions of both bays had higher organic carbon content in surficial soils. Profiles of organic carbon and phosphorus from Florida Bay indicate that this system has experienced an increase in P delivery and primary productivity over the last century; in contrast, decreasing organic carbon and phosphorus with depth in the soil profiles in Shark Bay point to a decrease in phosphorus delivery and primary productivity over the last 1000 y. The total ecosystem stocks of stored organic C in Florida Bay averages 163.5 MgCorg ha–1, lower than the average of 243.0 MgCorg ha–1 for Shark Bay; but these values place Shark and Florida Bays among the global hotspots for organic C storage in coastal ecosystems.


References

Agrawal, A., Nepstad, D., and Chhatre, A. (2011). Reducing emissions from deforestation and forest degradation. Annual Review of Environment and Resources 36, 373–396.
Reducing emissions from deforestation and forest degradation.Crossref | GoogleScholarGoogle Scholar |

Armitage, A. R., Frankovich, T. A., and Fourqurean, J. W. (2011). Long-term effects of adding nutrients to an oligotrophic coastal environment. Ecosystems (New York, N.Y.) 14, 430–444.
Long-term effects of adding nutrients to an oligotrophic coastal environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVSgsbw%3D&md5=3f2524190ae4afc6ab7cc2270122f161CAS |

Atkinson, M. J. (1987). Low phosphorus sediments in a hypersaline marine bay. Estuarine, Coastal and Shelf Science 24, 335–347.
Low phosphorus sediments in a hypersaline marine bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksVGrs7g%3D&md5=dd50bd1e4d5e7dea82658d7f3f3074baCAS |

Berner, R. A. (1980). ‘Early Diagenesis: a Theoretical Approach.’ (Princeton University Press: Princeton, NJ.)

Bosence, D. (1989). Surface sublittoral sediments of Florida Bay. Bulletin of Marine Science 44, 434–453.

Bouillon, S., and Boschker, H. T. S. (2006). Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 3, 175–185.
Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslGgsL4%3D&md5=a84a0d7cf2293fdc218f56cbdacaff21CAS |

Burdige, D. J., and Zimmerman, R. C. (2002). Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnology and Oceanography 47, 1751–1763.
Impact of sea grass density on carbonate dissolution in Bahamian sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1KqtLs%3D&md5=69867f0763a90a7610e74ca057a4178cCAS |

Burdige, D. J., Zimmerman, R. C., and Hu, X. P. (2008). Rates of carbonate dissolution in permeable sediments estimated from pore-water profiles: The role of sea grasses. Limnology and Oceanography 53, 549–565.
Rates of carbonate dissolution in permeable sediments estimated from pore-water profiles: The role of sea grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFKjur4%3D&md5=fd7abf86a64c6b0cd96072832d517bc9CAS |

Burkholder, D. A., Fourqurean, J. W., and Heithaus, M. R. (). Spatial pattern in seagrass stoichiometry indicates both N-limited and P-limited regions of an iconic P-limited subtropical bay. Marine Ecology Progress Series , .

Carruthers, T. J. B., Dennison, W. C., Kendrick, G. A., Waycott, M., Walker, D. I., and Cambridge, M. L. (2007). Seagrasses of south-west Australia: A conceptual synthesis of the world’s most diverse and extensive seagrass meadows. Journal of Experimental Marine Biology and Ecology 350, 21–45.
Seagrasses of south-west Australia: A conceptual synthesis of the world’s most diverse and extensive seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Chambers, R. M., Fourqurean, J. W., Macko, S. A., and Hoppenot, R. (2001). Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment. Limnology and Oceanography 46, 1278–1286.
Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVSktLg%3D&md5=5174ffb09472e571e4f0214bb1190b85CAS |

Cheng, J., Collins, L. S., and Holmes, C. (2012). Four thousand years of habitat change in Florida Bay, as indicated by benthic foraminifera. Journal of Foraminiferal Research 42, 3–17.

Childers, D. L., Boyer, J. N., Davis, S. E., Madden, C. J., Rudnick, D. T., and Sklar, F. H. (2006). Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnology and Oceanography 51, 602–616.
Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFaqurk%3D&md5=7a8708213df9ad53ca3cb2b59dc6bffeCAS |

Davies, T. D., and Cohen, A. D. (1989). Composition and significance of the peat deposits of Florida Bay. Bulletin of Marine Science 44, 387–398.

de Kanel, J., and Morse, J. W. (1978). The chemistry of orthophosphate uptake from seawater onto calcite and aragonite. Geochimica et Cosmochimica Acta 42, 1335–1340.
The chemistry of orthophosphate uptake from seawater onto calcite and aragonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtFSnu7g%3D&md5=499c2241f6160e228d1d7b376dc1e1c5CAS |

Demas, G. P., Rabenhorst, M. C., and Stevenson, J. C. (1996). Subaqueous soils: A pedological approach to the study of shallow-water habitats. Estuaries 19, 229–237.
Subaqueous soils: A pedological approach to the study of shallow-water habitats.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M., Middelburg, J. J., and Caraco, N. (2005). Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8.
Major role of marine vegetation on the oceanic carbon cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFGnt7c%3D&md5=aa7b555359f5a020b3913e19ba4ef80aCAS |

Ferdie, M., and Fourqurean, J. W. (2004). Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnology and Oceanography 49, 2082–2094.
Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment.Crossref | GoogleScholarGoogle Scholar |

Fourqurean, J. W., and Robblee, M. B. (1999). Florida Bay: a history of recent ecological changes. Estuaries 22, 345–357.
Florida Bay: a history of recent ecological changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVOmsbY%3D&md5=345965c3752d2e381cc7a34bf1850d5dCAS |

Fourqurean, J. W., Zieman, J. C., and Powell, G. V. N. (1992). Phosphorus limitation of primary production in Florida Bay: Evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37, 162–171.
Phosphorus limitation of primary production in Florida Bay: Evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xktleitbs%3D&md5=5bee7e8b99f1608ecb2b3c8104e86969CAS |

Fourqurean, J. W., Jones, R. D., and Zieman, J. C. (1993). Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuarine, Coastal and Shelf Science 36, 295–314.
Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVKjsb0%3D&md5=b37dbcb38d3f6ba9726736af93ab236eCAS |

Fourqurean, J. W., Durako, M. J., Hall, M. O., and Hefty, L. N. (2002). Seagrass distribution in south Florida: a multi-agency coordinated monitoring program. In ‘The Everglades, Florida Bay, and the Coral Reefs of the Florida Keys’. (Eds J. W. Porter and K. G. Porter.) pp. 497–522. (CRC Press: Boca Raton, FL.)

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., and Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5, 505–509.
Seagrass ecosystems as a globally significant carbon stock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntF2msbg%3D&md5=e514c80682a6964f0a4634764cf474e6CAS |

Fraser, M. W., Kendrick, G. A., Grierson, P. F., Fourqurean, J. W., Vanderklift, M. A., and Walker, D. I. (2012). Nutrient status of seagrasses cannot be inferred from system-scale distribution of phosphorus in Shark Bay, Western Australia. Marine and Freshwater Research 63, 1015–1026.
Nutrient status of seagrasses cannot be inferred from system-scale distribution of phosphorus in Shark Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Hemminga, M. A., Harrison, P. G., and van Lent, F. (1991). The balance of nutrient losses and gains in seagrass meadows. Marine Ecology Progress Series 71, 85–96.
The balance of nutrient losses and gains in seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Herbert, D. A., and Fourqurean, J. W. (2008). Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow. Ecosystems (New York, N.Y.) 11, 688–700.
Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOnt7bE&md5=5fecf075999ccf2cc16b183eb683a6e5CAS |

IPCC (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC National Greenhouse Gas Inventories Programme, Hayama, Kanagawa.

Jensen, H. S., McGlathery, K. J., Marino, R., and Howarth, R. W. (1998). Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnology and Oceanography 43, 799–810.
Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1Slsr4%3D&md5=31a319981225612a85ee2982e392ab0bCAS |

Jensen, H. S., Nielsen, O. I., Koch, M. S., and de Vicente, I. (2009). Phosphorus release with carbonate dissolution coupled to sulfide oxidation in Florida Bay seagrass sediments. Limnology and Oceanography 54, 1753–1764.
Phosphorus release with carbonate dissolution coupled to sulfide oxidation in Florida Bay seagrass sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrt7jL&md5=2ab2d92d2b856ab48ce9018e009e52e5CAS |

Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marba, N., and Middelburg, J. J. (2010). Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochemical Cycles 24, GB4026.
Seagrass sediments as a global carbon sink: isotopic constraints.Crossref | GoogleScholarGoogle Scholar |

Koch, M. S., Benz, R. E., and Rudnick, D. T. (2001). Solid-phase phosphorus pools in highly organic carbonate sediments of north-eastern Florida Bay. Estuarine, Coastal and Shelf Science 52, 279–291.
Solid-phase phosphorus pools in highly organic carbonate sediments of north-eastern Florida Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsF2itbo%3D&md5=c6fd3a2107ac9b9880629f88d5f27eefCAS |

Leong, L. S., and Tanner, P. A. (1999). Comparison of methods for determination of organic carbon in marine sediment. Marine Pollution Bulletin 38, 875–879.
Comparison of methods for determination of organic carbon in marine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnslOqsr0%3D&md5=9e1faaac7319c9bef0dd87d7a96f04a8CAS |

Logan, B. W., Davies, G. R., Read, J. F., and Cebulski, D. E. (1970). Carbonate sedimentation and environments, Shark Bay, Western Australia. American Association of Petroleum Geologists Memoir 13, 223pp.

Logan, B. W., Read, J. F., Hagan, G. M., Hoffman, P., Brown, R. G., Woods, P. J., and Gebelein, C. D. (1974). Evolution and diagenesis of Quaternary carbonate sequences, Shark Bay, Western Australia. American Association of Petroleum Geologists Memoir 22, 358pp.

Nuttle, W. K., Fourqurean, J. W., Cosby, B. J., Zieman, J. C., and Robblee, M. B. (2000). Influence of net freshwater supply on salinity in Florida Bay. Water Resources Research 36, 1805–1822.
Influence of net freshwater supply on salinity in Florida Bay.Crossref | GoogleScholarGoogle Scholar |

Orem, W. H., Holmes, C. W., Kendall, C., Lerch, H. E., Bates, A. L., Silva, S. R., Boylan, A., Corum, M., Marot, M., and Hedgeman, C. (1999). Geochemistry of Florida Bay sediments: nutrient history at five sites in eastern and central Florida Bay. Journal of Coastal Research 15, 1055–1071.

Playford, P. E. (1990). Geology of the Shark Bay area, Western Australia. In ‘Research in Shark Bay: Report of the France-Australe Bicentenary Expedition Committee’. (Eds P. F. Berry, S. D. Bradshaw and B. R. Wilson.) pp. 13–31. (Western Australian Museum: Perth.)

Robblee, M. B., Barber, T. R., Carlson, P. R., Durako, M. J., Fourqurean, J. W., Muehlstein, L. K., Porter, D., Yarbro, L. A., Zieman, R. T., and Zieman, J. C. (1991). Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series 71, 297–299.
Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA).Crossref | GoogleScholarGoogle Scholar |

Rudnick, D. T., Chen, Z., Childers, D. L., Boyer, J. N., and Fontaine, T. D. I. (1999). Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershed. Estuaries 22, 398–416.
Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVOmtr4%3D&md5=674667a389529e48a4a5f1a143d43565CAS |

Sansone, F. J., Hollibaugh, J. T., Vink, S. M., Chambers, R. M., Joye, S. B., and Popp, B. N. (1994). Diver-operated piston corer for coastal use. Estuaries 17, 716–720.
Diver-operated piston corer for coastal use.Crossref | GoogleScholarGoogle Scholar |

Short, F. T., Davis, M. W., Gibson, R. A., and Zimmermann, C. F. (1985). Evidence for phosphorus limitation in carbonate sediments of the seagrass Syringodium filiforme. Estuarine, Coastal and Shelf Science 20, 419–430.
Evidence for phosphorus limitation in carbonate sediments of the seagrass Syringodium filiforme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkvVOisro%3D&md5=8ed0b6e7f9fe5bcca93edb0e8788992bCAS |

Smith, S. V. (1984). Phosphorus versus nitrogen limitation in the marine environment. Limnology and Oceanography 29, 1149–1160.
Phosphorus versus nitrogen limitation in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtVSgsbc%3D&md5=c503cae7abba17d48781fdc68d3a801fCAS |

Smith, S. V., and Atkinson, M. J. (1983). Mass balance of carbon and phosphorus in Shark Bay, Western Australia. Limnology and Oceanography 28, 625–639.
Mass balance of carbon and phosphorus in Shark Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltFSgsLY%3D&md5=28825cacfaab30d66e36e58af857e441CAS |

Smith, S. V., and Veeh, H. H. (1989). Mass balance of biogeochemically active materials (C,N,P) in a hypersaline gulf. Estuarine, Coastal and Shelf Science 29, 195–215.
Mass balance of biogeochemically active materials (C,N,P) in a hypersaline gulf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFWlurY%3D&md5=c485ea30c92eef35232d753a1431a310CAS |

Swart, P. K., and Price, R. (2002). Origin of salinity variations in Florida Bay. Limnology and Oceanography 47, 1234–1241.
Origin of salinity variations in Florida Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWhurY%3D&md5=87d880a176c76bf369a7d7eba336b7d7CAS |

Wachnicka, A., Gaiser, E., Collins, L., Frankovich, T., and Boyer, J. (2010). Distribution of diatoms and development of diatom-based models for inferring salinity and nutrient concentrations in Florida Bay (U.S.A.) and adjacent coastal wetlands. Estuaries and Coasts 33, 1080–1098.
Distribution of diatoms and development of diatom-based models for inferring salinity and nutrient concentrations in Florida Bay (U.S.A.) and adjacent coastal wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGgsbfP&md5=da7f817b3ac3f4f3e5975aa86815b5bfCAS |

Walker, D. I., Kendrick, G. A., and McComb, A. J. (1988). The Distribution of Seagrass Species in Shark Bay, Western-Australia, with Notes on Their Ecology. Aquatic Botany 30, 305–317.
The Distribution of Seagrass Species in Shark Bay, Western-Australia, with Notes on Their Ecology.Crossref | GoogleScholarGoogle Scholar |

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12 377–12 381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslGjsbo%3D&md5=7e1510411eb7aca56add4bf0902bc0c6CAS |

Xu, Y., Jaffe, R., Wachnicka, A., and Gaiser, E. E. (2006). Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: Paleoenvironmental indicators of diatom-derived organic matter inputs. Organic Geochemistry 37, 847–859.
Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: Paleoenvironmental indicators of diatom-derived organic matter inputs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFaksr0%3D&md5=9540883242fd32cf4f7dee9357fb3629CAS |

Xu, Y., Holmes, C. W., and Jaffé, R. (2007). Paleoenvironmental assessment of recent environmental changes in Florida Bay, USA: A biomarker based study. Estuarine, Coastal and Shelf Science 73, 201–210.
Paleoenvironmental assessment of recent environmental changes in Florida Bay, USA: A biomarker based study.Crossref | GoogleScholarGoogle Scholar |

Zieman, J. C., Fourqurean, J. W., and Iverson, R. L. (1989). Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bulletin of Marine Science 44, 292–311.