Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

When habitat complexity increases predation risk: experiments with invasive and neotropical native fishes

Alejandra F. G. N. Santos A E , Emili García-Berthou B , Carmino Hayashi C and Luciano N. Santos D
+ Author Affiliations
- Author Affiliations

A Department of Zootechny and Sustainable Socioenvironmental Development, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.

B Institute of Aquatic Ecology, University of Girona, E-17071, Girona, Catalonia, Spain.

C Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.

D Department of Ecology and Marine Resources, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil.

E Corresponding author. Email: alejandrafilippo@hotmail.com

Marine and Freshwater Research 64(8) 752-760 https://doi.org/10.1071/MF12264
Submitted: 19 September 2012  Accepted: 12 March 2013   Published: 5 July 2013

Abstract

We tested the predator–prey relationships between a native piscivore (Salminus brasiliensis) and introduced and native fish species of the Paraná River, Brazil. We hypothesised that S. brasiliensis can exert biotic resistance against invasive fishes but not at the same degree for all species. Three invasive (Cichla piquiti, Oreochromis niloticus and Ictalurus punctatus) and two native (Astyanax altiparanae and Prochilodus lineatus) species were offered as prey to S. brasiliensis in 300 L aquaria trials at three levels of cover (0%, 50% and 100% of artificial macrophytes). S. brasiliensis had a greater ability to capture prey in complex habitats, so predation success did not decrease with habitat complexity and even increased on I. punctatus. Prey survival was variable through time and among species, being high for I. punctatus. The three most consumed species (P. lineatus, C. piquiti, and O. niloticus) were less active and occupied the aquaria surfaces, changing strongly their behaviour with habitat complexity. Except for P. lineatus and C. piquiti, S. brasiliensis preferably preyed on smaller individuals of the other species. Our experiments support that S. brasiliensis is an interesting candidate to resist the invasion by C. piquiti and O. niloticus but not to control the abundance of I. punctatus.

Additional keywords: biotic resistance, invasive species, Paraná River basin, predator–prey interactions, Salminus brasiliensis.


References

Agostinho, A. A., Pelicice, F. M., Petry, A. C., Gomes, L. C., and Júlio Júnior, H. F. (2007). Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Health & Management 10, 174–186.
Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation.Crossref | GoogleScholarGoogle Scholar |

Almany, G. R. (2004). Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141, 105–113.
Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes.Crossref | GoogleScholarGoogle Scholar | 15197644PubMed |

Bajer, P. G., Chizinski, C. J., Silbernagel, J. J., and Sorensen, P. W. (2012). Variation in native micro-predator abundance explains recruitment of a mobile invasive fish, the common carp in a naturally unstable environment. Biological Invasions 14, 1919–1929.
Variation in native micro-predator abundance explains recruitment of a mobile invasive fish, the common carp in a naturally unstable environment.Crossref | GoogleScholarGoogle Scholar |

Barletta, M., Jaureguizar, A. J., Baigun, C., Fontoura, N. F., Agostinho, A. A., Almeida-Val, V. M., Val, A. L., Torres, R. A., Jimenes-Segura, L. F., Giarrizzo, T., Fabré, N. N., Batista, V. S., Lasso, C., Taphorn, D. C., Costa, M. F., Chaves, P. T., Vieira, J. P., and Corrêa, M. F. (2010). Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. Journal of Fish Biology 76, 2118–2176.
Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3crhtlensg%3D%3D&md5=89ee0dd32992a022a4b9922912efea0cCAS | 20557657PubMed |

Bosher, B. T., Newton, S. H., and Fine, M. L. (2006). The spines of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: an experimental study. Ethology 112, 188–195.
The spines of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: an experimental study.Crossref | GoogleScholarGoogle Scholar |

Bozza, A. N., and Hahn, N. S. (2010). Uso de recursos alimentares por peixes imaturos e adultos de espécies piscívoras em uma planície de inundação neotropical. Biota Neotropica 10, 217–226.
Uso de recursos alimentares por peixes imaturos e adultos de espécies piscívoras em uma planície de inundação neotropical.Crossref | GoogleScholarGoogle Scholar |

Britton, J. R., and Orsi, M. L. (2012). Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Reviews in Fish Biology and Fisheries 22, 555–565.
Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin.Crossref | GoogleScholarGoogle Scholar |

Bulla, C. K., Gomes, L. C., Miranda, L. E., and Agostinho, A. A. (2011). The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil. Neotropical Ichthyology 9, 403–409.
The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil.Crossref | GoogleScholarGoogle Scholar |

Clavero, M., and García-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution 20, 110.
Invasive species are a leading cause of animal extinctions.Crossref | GoogleScholarGoogle Scholar |

Corrêa, C. E., Petry, A. C., and Hahn, N. S. (2009). A influência do ciclo hidrológico na dieta e estrutura trófica da ictiofauna do rio Cuiabá, Pantanal Mato-Grossense, Brasil. Iheringia. Série Zoologia 99, 456–463.
A influência do ciclo hidrológico na dieta e estrutura trófica da ictiofauna do rio Cuiabá, Pantanal Mato-Grossense, Brasil.Crossref | GoogleScholarGoogle Scholar |

Dias, R. M., Bailly, D., Antônio, R. R., Suzuki, H. I., and Agostinho, A. A. (2005). Colonization of the Corumbá Reservoir (Corumbá River, Paraná River Basin, Goiás State, Brazil) by the “lambari” Astyanax altiparanae (Tetragonopterinae; Characidae). Brazilian Archives of Biology and Technology 48, 467–476.
Colonization of the Corumbá Reservoir (Corumbá River, Paraná River Basin, Goiás State, Brazil) by the “lambari” Astyanax altiparanae (Tetragonopterinae; Characidae).Crossref | GoogleScholarGoogle Scholar |

Diggle, P. J., Heagerty, P., Liang, K. Y., and Zeger, S. L. (2002). ‘The Analysis of Longitudinal Data.’ 2nd edn. (Oxford University Press: Oxford.)

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L., and Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81, 163–182.
Freshwater biodiversity: importance, threats, status and conservation challenges.Crossref | GoogleScholarGoogle Scholar | 16336747PubMed |

Fine, M. L., and Ladich, F. (2003). Sound production, spine locking and related adaptations. In ‘Catfishes’. (Eds B. G. Kapoor, G. Arratia, M. Chardon and M. Diogo.) pp. 248–290. (Science Publishers: Enfield.)

Fox, J., and Weisberg, S. (2010). Cox proportional-hazards regression for survival data in R. An appendix to an R companion to applied regression, 2nd edn. Available at http://socserv.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Cox-Regression.pdf

García-Berthou, E. (2007). The characteristics of invasive fishes: what has been learned so far? Journal of Fish Biology 71, 33–55.
The characteristics of invasive fishes: what has been learned so far?Crossref | GoogleScholarGoogle Scholar |

Juanes, F., Buckel, J. A., and Scharf, F. S. (2002). Feeding ecology of piscivorous fishes. In ‘Handbook of Fish Biology and Fisheries’. (Eds P. J. B. Hart and J. D. Reynolds.) pp. 267–284. (Blackwell Publishing: Oxford.)

Júlio Júnior, H. F., Dei Tós, C., Agostinho, A. A., and Pavanelli, C. S. (2009). A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin. Neotropical Ichthyology 7, 709–718.
A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin.Crossref | GoogleScholarGoogle Scholar |

Kovalenko, K. E., Dibble, E. D., Agostinho, A. A., Cantanhêde, G., and Fugi, R. (2010a). Direct and indirect effects of an introduced piscivore, Cichla kelberi and their modification by aquatic plants. Hydrobiologia 638, 245–253.
Direct and indirect effects of an introduced piscivore, Cichla kelberi and their modification by aquatic plants.Crossref | GoogleScholarGoogle Scholar |

Kovalenko, K. E., Dibble, E. D., Agostinho, A. A., and Pelicice, F. (2010b). Recognition of non-native peacock bass, Cichla kelberi by native prey: testing the naiveté hypothesis. Biological Invasions 12, 3071–3080.
Recognition of non-native peacock bass, Cichla kelberi by native prey: testing the naiveté hypothesis.Crossref | GoogleScholarGoogle Scholar |

Kullander, S. O., and Ferreira, E. J. G. (2006). A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae). Ichthyological Exploration of Freshwaters 17, 289–398.

Marr, S. M., Marchetti, M. P., Olden, J. D., García-Berthou, E., Morgan, D. L., Arismendi, I., Day, J. A., Griffiths, C. L., and Skelton, P. H. (2010). Freshwater fish introductions in Mediterranean-climate regions: are there commonalities in the conservation problem? Diversity & Distributions 16, 606–619.
Freshwater fish introductions in Mediterranean-climate regions: are there commonalities in the conservation problem?Crossref | GoogleScholarGoogle Scholar |

Meerhoff, M., Iglesias, C., Teixeira de Mello, F., Clemente, J. M., Jensen, E., Lauridsen, T. L., and Jeppesen, E. (2007). Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52, 1009–1021.
Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes.Crossref | GoogleScholarGoogle Scholar |

Newbrey, M. G., Bosek, M. A., Jennings, M. J., and Cook, J. E. (2005). Branching complexity and morphological characteristics of coarse woody structure as lacustrine fish habitat. Canadian Journal of Fisheries and Aquatic Sciences 62, 2110–2123.
Branching complexity and morphological characteristics of coarse woody structure as lacustrine fish habitat.Crossref | GoogleScholarGoogle Scholar |

Pelicice, F. M., Agostinho, A. A., and Thomaz, S. M. (2005). Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecologica 27, 9–16.
Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period.Crossref | GoogleScholarGoogle Scholar |

Persson, L., and Eklöv, P. (1995). Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76, 70–81.
Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach.Crossref | GoogleScholarGoogle Scholar |

Pitcher, T. J., and Parrish, J. K. (1993). Functions of shoaling behaviour in teleosts. In ‘Behaviour of Teleost Fishes’. (Ed. T. J. Pitcher.) pp. 363–440. (Chapman & Hall: London.)

Prince, J. S., Leblanc, W. G., and Maciá, S. (2004). Design and analysis of multiple choice feeding preference data. Oecologia 138, 1–4.
Design and analysis of multiple choice feeding preference data.Crossref | GoogleScholarGoogle Scholar | 14557867PubMed |

Santos, A. F. G. N., Santos, L. N., García-Berthou, E., and Hayashi, C. (2009). Could native predators help to control invasive fishes? Microcosm experiments with the Neotropical characid Brycon orbignyanus. Ecology Freshwater Fish 18, 491–499.
Could native predators help to control invasive fishes? Microcosm experiments with the Neotropical characid Brycon orbignyanus.Crossref | GoogleScholarGoogle Scholar |

Santos, A. F. G. N., Alcaraz, C., Santos, L. N., Hayashi, C., and García-Berthou, E. (2012). Experimental assessment of the effects of a Neotropical nocturnal piscivore (Pseudoplatystoma corruscans) on juvenile native and invasive fishes. Neotropical Ichthyology 10, 167–176.
Experimental assessment of the effects of a Neotropical nocturnal piscivore (Pseudoplatystoma corruscans) on juvenile native and invasive fishes.Crossref | GoogleScholarGoogle Scholar |

Sass, G. G., Gille, C. M., Hinke, J. T., and Kitchell, J. F. (2006). Whole-lake influences of littoral structural complexity and prey body morphology on fish predator-prey interactions. Ecology Freshwater Fish 15, 301–308.
Whole-lake influences of littoral structural complexity and prey body morphology on fish predator-prey interactions.Crossref | GoogleScholarGoogle Scholar |

Sato, M., Kawaguchi, Y., Nakajima, J., Mukai, T., Shimatani, Y., and Onikura, N. (2010). A review of the research on introduced freshwater fishes: new perspectives, the need for research, and management implications. Landscape and Ecology Engineering 6, 99–108.
A review of the research on introduced freshwater fishes: new perspectives, the need for research, and management implications.Crossref | GoogleScholarGoogle Scholar |

Savino, J. F., and Stein, R. A. (1982). Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation. Transactions of the American Fisheries Society 111, 255–266.
Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation.Crossref | GoogleScholarGoogle Scholar |

Teplitsky, C., and Laurila, A. (2007). Flexible defense strategies: competition modifies investment in behavioral vs. morphological defenses. Ecology 88, 1641–1646.
Flexible defense strategies: competition modifies investment in behavioral vs. morphological defenses.Crossref | GoogleScholarGoogle Scholar | 17645010PubMed |

Thompson, K. A., Hill, J. E., and Nico, L. G. (2012). Eastern mosquitofish resists invasion by nonindigenous poeciliids through agonistic behaviors. Biological Invasions 14, 1515–1529.
Eastern mosquitofish resists invasion by nonindigenous poeciliids through agonistic behaviors.Crossref | GoogleScholarGoogle Scholar |

Vitule, J. R. S., Freire, C. A., and Simberloff, D. (2009). Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10, 98–108.
Introduction of non-native freshwater fish can certainly be bad.Crossref | GoogleScholarGoogle Scholar |

Wolter, C., and Arlinghaus, R. (2003). Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13, 63–89.
Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance.Crossref | GoogleScholarGoogle Scholar |