Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Predictive mapping of soft-bottom benthic biodiversity using a surrogacy approach

Zhi Huang A B , Matthew McArthur A , Rachel Przeslawski A , Justy Siwabessy A , Scott Nichol A and Brendan Brooke A
+ Author Affiliations
- Author Affiliations

A Coastal, Marine and Climate Change Group, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia.

B Corresponding author. Email: Zhi.Huang@ga.gov.au

Marine and Freshwater Research 65(5) 409-424 https://doi.org/10.1071/MF13104
Submitted: 18 April 2013  Accepted: 9 September 2013   Published: 18 December 2013

Abstract

A key requirement for informed marine-zone management is an understanding of the spatial patterns of marine biodiversity, often measured as species richness, total abundance or presence of key taxa. In the present study, we focussed on the diversity of benthic infauna and applied a predictive modelling approach to map biodiversity patterns for three study sites on the tropical Carnarvon shelf of Western Australia. A random forest decision tree model was used to generate spatial predictions of two measures of infaunal diversity, namely, species richness and total abundance. Results explained between 20% and 37% of the variance of each measure. The modelling process also identified potential physical surrogates for species richness and abundance, with sediment physical properties ranked as most important across the study region. Specifically, coarse-grained heterogeneous sediments were associated with higher infaunal species richness and total abundance. Seabed topographic properties were also important at the local scale. The study demonstrated the value of a surrogacy approach to the prediction of biodiversity patterns, particularly when the number of biological samples was limited. Such an approach may facilitate an understanding of ecosystem processes in the region and contribute to integrated marine management.

Additional keywords: Carnarvon shelf, infauna, surrogates, Western Australia.


References

Alongi, D. M., and Christoffersen, P. (1992). Benthic infauna and organism–sediment relations in a shallow, tropical coastal area – influence of outwelled mangrove detritus and physical disturbance. Marine Ecology Progress Series 81, 229–245.
Benthic infauna and organism–sediment relations in a shallow, tropical coastal area – influence of outwelled mangrove detritus and physical disturbance.CrossRef |

Austin, M. P. (2002). Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157, 101–118.
Spatial prediction of species distribution: an interface between ecological theory and statistical modelling.CrossRef |

Australian Hydrographic Service (2010). ‘Australian National Tide Tables.’ (Department of Defence: Canberra.)

Blott, S. J., and Pye, K. (2001). Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 1237–1248.
Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments.CrossRef |

Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal region 1. Model description and validation. Journal of Geophysical Research 104, 7649–7666.
A third-generation wave model for coastal region 1. Model description and validation.CrossRef |

Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123–140.
Bagging predictors.CrossRef |

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.
Random forests.CrossRef |

Brooke, B., Nichol, S., Hughes, M., McArthur, M., Anderson, T., Przeslawski, R., Siwabessy, J., Heyward, A., Battershill, C., Colquhoun, J., and Doherty, P. (2009). Carnarvon shelf survey post-survey report. Geoscience Australia, Record 2009/02. Available at http://www.ga.gov.au/image_cache/GA13723.pdf, [verified 30 October 2013].

Brown, C. J., Smith, S. J., Lawton, P., and Anderson, J. T. (2011). Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine, Coastal and Shelf Science 92, 502–520.
Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques.CrossRef |

Bureau of Meteorology (2010a). ‘Climate Statistics for Australian Locations: Carnarvon Airport.’ Available at www.bom.gov.au/climate/averages/tables/cw_006011_All.shtml [verified 14 April 2010].

Bureau of Meteorology (2010b). ‘North West Cape Project.’ Available at www.cawcr.gov.au/bmrc/wefor/research/nw_cape_project.htm [verified 14 April 2010].

Caro, T. M., and O’Doherty, G. (1999). On the use of surrogate species in conservation biology. Conservation Biology 13, 805–814.
On the use of surrogate species in conservation biology.CrossRef |

Chase, M. K., Kristan, W. B., Lynam, A. J., Price, M. V., and Rotenberry, J. T. (2000). Single species as indicators of species richness and composition in California coastal sage scrub birds and small mammals. Conservation Biology 14, 474–487.
Single species as indicators of species richness and composition in California coastal sage scrub birds and small mammals.CrossRef |

Collins, L. B., Zhu, Z. R., Wyrwoll, K. H., and Eisenhauer, A. (2003). Late Quaternary structure and development of the northern Ningaloo reef, Australia. Sedimentary Geology 159, 81–94.
Late Quaternary structure and development of the northern Ningaloo reef, Australia.CrossRef |

Commonwealth of Australia (2005). ‘National Marine Bioregionalisation of Australia. Summary.’ (Department of Environment and Heritage: Canberra.)

Connell, J. H. (1978). Diversity in tropical rainforests and coral reefs. Science 199, 1302–1310.
Diversity in tropical rainforests and coral reefs.CrossRef | 1:STN:280:DC%2BC3cvmtVCnuw%3D%3D&md5=1364652cfa172e876b9219aae668f6c5CAS | 17840770PubMed |

De’ath, G., and Fabricius, K. E. (2000). Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192.
Classification and regression trees: a powerful yet simple technique for ecological data analysis.CrossRef |

Dunstan, P. K., and Foster, S. D. (2011). RAD biodiversity: prediction of rank abundance distributions from deep water benthic assemblages. Ecography , .
RAD biodiversity: prediction of rank abundance distributions from deep water benthic assemblages.CrossRef |

Dunstan, P. K., Althaus, F., Williams, A., and Bax, N. J. (2012a). Characterising and predicting benthic biodiversity for conservation planning in deepwater environments. PLoS ONE 7, e36558.
Characterising and predicting benthic biodiversity for conservation planning in deepwater environments.CrossRef | 1:CAS:528:DC%2BC38XnslOqs7w%3D&md5=c57057dff7ade7e447b68534c9bf2f2cCAS | 22606271PubMed |

Dunstan, P. K., Bax, N. J., Foster, S. D., Williams, A., and Althaus, F. (2012b). Identifying hotspots for biodiversity management using rank abundance distributions. Diversity & Distributions 18, 22–32.
Identifying hotspots for biodiversity management using rank abundance distributions.CrossRef |

Džeroski, S., and Drummb, D. (2003). Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands. Ecological Modelling 170, 219–226.
Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands.CrossRef |

Ferrier, S. (2002). Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic Biology 51, 331–363.
Mapping spatial pattern in biodiversity for regional conservation planning: where to from here?CrossRef | 12028736PubMed |

Fisher, P., Wood, J., and Cheng, T. (2004). Where is Helvellyn? Fuzziness of multi-scale landscape morphometry. Transactions of the Institute of British Geographers 29, 106–128.
Where is Helvellyn? Fuzziness of multi-scale landscape morphometry.CrossRef |

Foster-Smith, R., Connor, D., and Davies, J. (2007). What is habitat mapping? In ‘MESH guide to habitat mapping, MESH Project, 2007, JNCC, Peterborough’. Available at http://www.searchmesh.net/default.aspx?page-1900 [verified 1 September 2013].

Francke, T., Lopez-Tarazon, J. A., and Schroder, B. (2008). Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests. Hydrological Processes 22, 4892–4904.
Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests.CrossRef |

Gavrilov, A. N., Duncan, A. J., McCauley, R. D., Parnum, I. M., Penrose, J. D., Siwabessy, P. J. W., Woods, A. J., and Tseng, Y.-T. (2005a). Characterization of the seafloor in Australia’s coastal zone using acoustic techniques. In ‘Proceedings of the International Conference in Underwater Acoustic Measurements: Technologies & Results, 28 June to 1 July 2005, Heraklion, Crete, Greece’.

Gavrilov, A. N., Siwabessy, P. J. W., and Parnum, I. M. (2005b). Multibeam echo sounder backscatter analysis: theory review, methods and application to Sydney Harbour swath data. CRC Milestone Report CA3.03. CMST report 2005–03 for the Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management. Centre for Marine Science and Technology, Curtin University of Technology, Perth, Australia.

Goff, J. A., Olson, H. C., and Duncan, C. S. (2000). Correlation of side-scan backscatter inensity with grain-size distribution of shelf sediments, New Jersey margin. Geo-Marine Letters 20, 43–49.
Correlation of side-scan backscatter inensity with grain-size distribution of shelf sediments, New Jersey margin.CrossRef |

Gogina, M., Glockzin, M., and Zettler, M. L. (2010). Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 2. Modelling and prediction. Journal of Marine Systems 80, 57–70.
Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 2. Modelling and prediction.CrossRef |

Guisan, A., and Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186.
Predictive habitat distribution models in ecology.CrossRef |

Haralick, R. M., Shanmugan, K., and Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3, 610–621.
Textural features for image classification.CrossRef |

Harris, P. T., and Hughes, M. G. (2012). Predicted benthic disturbance regimes on the Australian continental shelf: a modelling approach. Marine Ecology Progress Series 449, 13–25.
Predicted benthic disturbance regimes on the Australian continental shelf: a modelling approach.CrossRef |

Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Mller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe 8(12), 95 pp.

Heap, A. D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party. (2009). Seabed environments and subsurface geology of the Capel and Faust basins and Gifford Guyot, eastern Australia – post survey report. Geoscience Australia, Record 2009/22. Available at http://www.ga.gov.au/image_cache/GA14824.pdf [verified 30 October 2013]

Heck, K. L. J., van Belle, G., and Simberloff, D. (1975). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461.
Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size.CrossRef |

Hill, N. A., Pepper, A. R., Puotinen, M. L., Hughes, M. G., Edgar, G. J., Barrett, N. S., Stuart-Smith, R. D., and Leaper, R. (2010). Quantifying wave exposure in shallow temperate reef systems: applicability of fetch models for predicting algal biodiversity. Marine Ecology Progress Series 417, 83–95.
Quantifying wave exposure in shallow temperate reef systems: applicability of fetch models for predicting algal biodiversity.CrossRef |

Hirst, A. J. (2004). Broad-scale environmental gradients among estuarine benthic infaunal assemblages of south-eastern Australia: implications for monitoring estuaries. Marine and Freshwater Research 55, 79–92.
Broad-scale environmental gradients among estuarine benthic infaunal assemblages of south-eastern Australia: implications for monitoring estuaries.CrossRef |

Hochachka, W. M., Caruana, R., Fink, D., Munson, A., Riedewald, M., Sorokina, D., and Kelling, S. (2007). Data-mining discovery of pattern and process in ecological systems. The Journal of Wildlife Management 71, 2427–2437.
Data-mining discovery of pattern and process in ecological systems.CrossRef |

Holmes, K. W., Van Neil, K. P., Radford, B., Kendrick, G. A., and Grove, S. L. (2008). Modelling distribution of marine benthos from hydroacoustics and underwater video. Continental Shelf Research 28, 1800–1810.
Modelling distribution of marine benthos from hydroacoustics and underwater video.CrossRef |

Huang, Z., Brooke, B. P., and Harris, P. T. (2011). A new approach to mapping marine benthic habitats using physical environmental data. Continental Shelf Research 31, S4–S16.
A new approach to mapping marine benthic habitats using physical environmental data.CrossRef |

Huang, Z., McArthur, M., Radke, L., Anderson, T., Nichol, S., Siwabessy, J., and Brooke, B. (2012a). Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperate embayment. International Journal of Geographical Information Science 26, 2141–2160.
Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperate embayment.CrossRef |

Huang, Z., Nichol, S., Daniell, J., Siwabessy, P. J. W., and Brooke, B. P. (2012b). Predictive modelling of seabed sediment parameters using multibeam acoustic data: a case study on the Carnarvon shelf, Western Australia. International Journal of Geographical Information Science 26, 283–307.
Predictive modelling of seabed sediment parameters using multibeam acoustic data: a case study on the Carnarvon shelf, Western Australia.CrossRef |

Hughes, M. G., Harris, P. T., and Brooke, B. P. (2010). Seabed exposure and ecological disturbance on Australia’s continental shelf. Geoscience Australia, Record 2010/43. Available at http://www.ga.gov.au/image_cache/GA18970.pdf [verified 30 October 2013]

Hurlbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586.
The nonconcept of species diversity: a critique and alternative parameters.CrossRef |

Jenness, J. S. (2004). Calculating landscape surface area from digital elevation models. Wildlife Society Bulletin 32, 829–839.
Calculating landscape surface area from digital elevation models.CrossRef |

Kloser, R. J., Bax, N., Ryan, J. T., Williams, A., and Barker, B. A. (2001). Remote sensing of seabed types in the Australian South East Fishery; development and application of normal incident acoustic techniques and associated ‘ground truthing’. Marine and Freshwater Research 52, 475–489.
Remote sensing of seabed types in the Australian South East Fishery; development and application of normal incident acoustic techniques and associated ‘ground truthing’.CrossRef |

Kostylev, V. E., Erlandsson, J., Ming, M. Y., and Williams, G. A. (2005). The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecological Complexity 2, 272–286.
The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores.CrossRef |

Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T., and Taylor, P. (2006). Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series 321, 267–281.
Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees.CrossRef |

Lehmann, A., Overton, J. M., and Austin, M. P. (2002). Regression models for spatial prediction: their role for biodiversity and conservation. Biodiversity and Conservation 11, 2085–2092.
Regression models for spatial prediction: their role for biodiversity and conservation.CrossRef |

Lewis, D. W., and McConchie, D. (1994). ‘Analytical Sedimentology.’ (Chapman and Hall: New York.)

McArthur, M. A., Brooke, B. P., Przeslawski, R., Ryan, D. A., Lucieer, V. L., Nichol, S., McCallum, A. W., Mellin, C., Cresswell, I. D., and Radke, L. C. (2010). On the use of abiotic surrogates to describe marine benthic biodiversity. Estuarine, Coastal and Shelf Science 88, 21–32.
On the use of abiotic surrogates to describe marine benthic biodiversity.CrossRef |

Mellin, C., Bradshaw, C. J. A., Meekan, M. G., and Caley, M. J. (2010). Environmental and spatial predictors of species richness and abundance in coral reef fishes. Global Ecology and Biogeography 19, 212–222.
Environmental and spatial predictors of species richness and abundance in coral reef fishes.CrossRef |

Mellin, C., Caley, M. J., Meekan, M. G., Williams, A., Dunstan, P., Edgar, G. J., Przeslawski, R., Pitcher, C. R., and Bradshaw, C. J. A. (2011). Determining the effectiveness of biological surrogates for predicting biodiversity patterns. PLoS ONE 6, e20141.
Determining the effectiveness of biological surrogates for predicting biodiversity patterns.CrossRef | 1:CAS:528:DC%2BC3MXnvFegsbw%3D&md5=082b2da8c554d97d8c0c6afcec0cb576CAS | 21695119PubMed |

Müller, G., and Gastner, M. (1971). The ‘karonatebombe’ a simple device for the determination of the carbonate content in sediments, soils and other materials. Neues Jahrbuch fur Mineralogie – Monatshefte 10, 466–469.

Nichol, S. L., and Brooke, B. P. (2011). Shelf habitat distribution as legacy of Late Quaternary marine transgressions: a case study from a tropical carbonate province. Continental Shelf Research 31, 1845–1857.
Shelf habitat distribution as legacy of Late Quaternary marine transgressions: a case study from a tropical carbonate province.CrossRef |

Nichol, S. L., Anderson, T. J., McArthur, M., Barrett, N., Heap, A. D., Siwabessy, P. J. W., and Brooke, B. (2009). Southeast Tasmania temperate reef survey. Post survey report. Geoscience Australia, Record 2009/43. Available at http://www.ga.gov.au/image_cache/GA16757.pdf [verified 30 October 2013].

Pearce, A. F., and Griffiths, R. W. (1991). The mesoscale structure of the Leeuwin Current: a comparison of laboratory models and satellite imagery. Journal of Geophysical Research 96, 16 739–16 757.
The mesoscale structure of the Leeuwin Current: a comparison of laboratory models and satellite imagery.CrossRef |

Pitcher, C. R., Doherty, P., Arnold, P., Hooper, J., Gribble, N., Bartlett, C., Browne, M., Campbell, N., Cannard, T., Cappo, M., Carini, G., Chalmers, S., Cheers, S., Chetwynd, D., Colefax, A., Coles, R., Cook, S., Davie, P., De’ath, G., Devereux, D., Done, B., Donovan, T., Ehrke, B., Ellis, N., Ericson, G., Fellegara, I., Forcey, K., Furey, M., Gledhill, D., Good, N., Gordon, S., Haywood, M., Hendriks, P., Jacobsen, I., Johnson, J., Jones, M., Kinninmoth, S., Kistle, S., Last, P., Leite, A., Marks, S., McLeod, I., Oczkowicz, S., Robinson, M., Rose, C., Seabright, D., Sheils, J., Sherlock, M., Skelton, P., Smith, D., Smith, G., Speare, P., Stowar, M., Strickland, C., Van der Geest, C., Venables, W., Walsh, C., Wassenberg, T., Welna, A., and Yearsley, G. (2007). Seabed biodiversity on the continental shelf of the Great Barrier Reef World Heritage Area. Reef research task final report. AIMS/CSIRO/QM/QDPI CRC, Brisbane, Australia.

Pittman, S. J., Costa, B. M., and Battista, T. A. (2009). Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. Journal of Coastal Research 53, 27–38.
Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals.CrossRef |

Przeslawski, R., Currie, D., Sorokin, S. J., Ward, T., Althaus, F., and Williams, A. (2011). Utility of a spatial habitat classification system as a surrogate of marine benthic community structure for the Australian margin. ICES Journal of Marine Science 68, 1954–1962.
Utility of a spatial habitat classification system as a surrogate of marine benthic community structure for the Australian margin.CrossRef |

Przeslawski, R., McArthur, M., and Anderson, T. J. (2013). Infaunal biodiversity patterns from Carnarvon shelf (Ningaloo reef), Western Australia. Marine and Freshwater Research 64, 573–583.
Infaunal biodiversity patterns from Carnarvon shelf (Ningaloo reef), Western Australia.CrossRef |

Radke, L., Huang, Z., Przeslawski, R., McArthur, M., Anderson, T., Webster, I., Brooke, B., and Siwabessy, J. (2011). Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment. Marine and Freshwater Research 62, 1432–1438.
Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment.CrossRef | 1:CAS:528:DC%2BC3MXhsFCit7jM&md5=a1cc54c7a453920da63273db8c918a98CAS |

Reiss, H., Cunze, S., König, K., Neumann, H., and Kröncke, I. (2011). Species distribution modelling of marine benthos: a North Sea case study. Marine Ecology Progress Series 442, 71–86.
Species distribution modelling of marine benthos: a North Sea case study.CrossRef |

Ris, R. C., Holthuijsen, L. H., and Booij, N. (1999). A third-generation wave model for coastal regions 2. Verification. Journal of Geophysical Research 104, 7667–7681.
A third-generation wave model for coastal regions 2. Verification.CrossRef |

Sanders, H. L. (1968). Marine benthic diversity: a comparative study. American Naturalist 102, 243–282.
Marine benthic diversity: a comparative study.CrossRef |

Sherrod, P. H. (2008). DTREG. Available at http://www.dtreg.com [verified October 2008].

Siwabessy, P. J. W., Gavrilov, A. N., Duncan, A. J., and Parnum, I. M. (2006). ‘Analysis of Statistics of Backscatter Strength from Different Seafloor Habitats. Acoustics 2006.’ (Australian Acoustic Association: Christchurch, New Zealand.)

Weiss, A. D. (2001). Topographic Position and Landforms Analysis. ESRI International User Conference.’ 9-13 July 2001, ESRI, (San Diego, CA.)

Whitlatch, R. B. (1981). Animal–sediment relationships in intertidal marine benthic habitats: some determinants of deposit feeding species diversity. Journal of Experimental Marine Biology and Ecology 53, 31–45.
Animal–sediment relationships in intertidal marine benthic habitats: some determinants of deposit feeding species diversity.CrossRef |

Woo, M., Pattiaratchi, C., and Schroeder, W. (2006). Dynamics of the Ningaloo current off Point Cloates, Western Australia. Marine and Freshwater Research 57, 291–301.
Dynamics of the Ningaloo current off Point Cloates, Western Australia.CrossRef | 1:CAS:528:DC%2BD28XjvFGgsr8%3D&md5=8a4a86e52c5b8227330abbf6a5519a13CAS |

Wood, J. (1996). The geomorphological characterization of digital elevation models. Unpublished Ph.D. Thesis, Department of Geography, University of Leicester, UK.



Rent Article (via Deepdyve) Export Citation Cited By (8)

View Altmetrics