Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Diversity of cyanobacteria and cyanotoxins in Hartbeespoort Dam, South Africa

Andreas Ballot A B D , Morten Sandvik B , Thomas Rundberget A B , Christo J. Botha C and Christopher O. Miles B
+ Author Affiliations
- Author Affiliations

A Norwegian Institute for Water Research, N-0349 Oslo, Norway.

B Norwegian Veterinary Institute, N-0106 Oslo, Norway.

C Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa.

D Corresponding author. Email: andreas.ballot@niva.no

Marine and Freshwater Research 65(2) 175-189 https://doi.org/10.1071/MF13153
Submitted: 12 February 2013  Accepted: 10 July 2013   Published: 18 October 2013

Abstract

The South African Hartbeespoort Dam is known for the occurrence of heavy Microcystis blooms. Although a few other cyanobacterial genera have been described, no detailed study on those cyanobacteria and their potential toxin production has been conducted. The diversity of cyanobacterial species and toxins is most probably underestimated. To ascertain the cyanobacterial composition and presence of cyanobacterial toxins in Hartbeespoort Dam, water samples were collected in April 2011. In a polyphasic approach, 27 isolated cyanobacterial strains were classified morphologically and phylogenetically and tested for microcystins (MCs), cylindrospermopsin (CYN), saxitoxins (STXs) and anatoxin-a (ATX) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and screened for toxin-encoding gene fragments. The isolated strains were identified as Sphaerospermopsis reniformis, Sphaerospermopsis aphanizomenoides, Cylindrospermopsis curvispora, Raphidiopsis curvata, Raphidiopsis mediterrranea and Microcystis aeruginosa. Only one of the Microcystis strains (AB2011/53) produced microcystins (35 variants). Forty-one microcystin variants were detected in the environmental sample from Hartbeespoort Dam, suggesting the existence of other microcystin producing strains in Hartbeespoort Dam. All investigated strains tested negative for CYN, STXs and ATX and their encoding genes. The mcyE gene of the microcystin gene cluster was found in the microcystin-producing Microcystis strain AB2011/53 and in eight non-microcystin-producing Microcystis strains, indicating that mcyE is not a good surrogate for microcystin production in environmental samples.

Additional keywords: Cylindrospermopsis, Hartbeespoort Dam, microcystin, Microcystis, Raphidiopsis,Sphaerospermopsis.


References

Allanson, B. R., and Gieskes, J. M. T. M. (1961). Investigations into the ecology of polluted inland waters in the Transvaal, Part II: An introduction to the limnology of Hartbeespoort Dam with special reference to the effect of industrial and domestic pollution. Hydrobiologia 18, 77–94.

Ashton, P. J., Chutter, P. M., Cochrane, K. L., De Moor, F. C., Hely-Hutchinson, J. R., Jarvis, A. C., Robarts, R. D., Scott, W. E., Thornton, J. A., Twinch, A. J., Zohary, T., Bostock, L. B., Combrink, S., Fenn, T. A., Grimbeek, L. M., Herbst, H. M., Hills, M. J., Mitchell, R. F., Pais Madeira, A. M., and van Blommestein, S. D. (1985). Limnology of Hartbeespoort. National Scientific Programmes Unit: CSIR, SANSP Report 110, 1985, pp. 1– 279, http://hdl.handle.net/10204/2425.

Ballot, A., Dadheech, P. K., Haande, S., and Krienitz, L. (2008). Morphological and phylogenetic analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from tropical inland water bodies. Microbial Ecology 55, 608–618.
Morphological and phylogenetic analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from tropical inland water bodies.CrossRef | 17704858PubMed |

Ballot, A., Fastner, J., Lentz, M., and Wiedner, C. (2010a). First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 56, 964–971.
First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany.CrossRef | 1:CAS:528:DC%2BC3cXhtVyjtLvM&md5=a9ec1e9e0c9103aa9cdab9a875cdd613CAS | 20615427PubMed |

Ballot, A., Fastner, J., and Wiedner, C. (2010b). Paralytic shellfish poisoning toxin producing cyanobacterium Aphanizomenon gracile in northeast Germany. Applied and Environmental Microbiology 76, 1173–1180.
Paralytic shellfish poisoning toxin producing cyanobacterium Aphanizomenon gracile in northeast Germany.CrossRef | 1:CAS:528:DC%2BC3cXisVKms78%3D&md5=e4c2cf36f4503ef2751f6408f013eab3CAS | 20048055PubMed |

Botes, D. P., Kauger, H., and Viljoen, C. C. (1982a). Isolation and characterization of four toxins from the blue-green alga, Microcystis aeruginosa. Toxicon 20, 945–954.
Isolation and characterization of four toxins from the blue-green alga, Microcystis aeruginosa.CrossRef | 1:CAS:528:DyaL3sXms1ygtw%3D%3D&md5=f4323d2346c6cb34a099cb75274f4d3aCAS | 6819659PubMed |

Botes, D. P., Viljoen, C. C., Kruger, H., Wessels, P. L., and Williams, D. H. (1982b). Configuration assignments of the amino acid residues and the presence of N-methyldehydroalanine in toxins from the blue–green alga, Microcystis aeruginosa. Toxicon 20, 1037–1042.
Configuration assignments of the amino acid residues and the presence of N-methyldehydroalanine in toxins from the blue–green alga, Microcystis aeruginosa.CrossRef | 1:CAS:528:DyaL3sXhtVaqtrc%3D&md5=0c078536135f738f0684f919d13d59adCAS | 6819658PubMed |

Botes, D. P., Tuinman, A. A., Wessels, P. L., Viljoen, C. C., and Kruger, H. (1984). The structure of cyanoginosin-LA, a cyclic heptapeptide toxin from the cyanobacterium Microcystis aeruginosa. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry , 2311–2318.
The structure of cyanoginosin-LA, a cyclic heptapeptide toxin from the cyanobacterium Microcystis aeruginosa.CrossRef | 1:CAS:528:DyaL2MXitVChtL8%3D&md5=b06386d809be80580e39f0360bd67fcfCAS |

Carmichael, W. W. (2001). Health effect of toxin-producing cyanobacteria: “The CyanoHABs” Human and Ecological Risk Assessment 7, 1393–1407.
Health effect of toxin-producing cyanobacteria: “The CyanoHABs”CrossRef |

Christiansen, G., Molitor, C., Philmus, B., and Kurmayer, R. (2008). Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Molecular Biology and Evolution 25, 1695–1704.
Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element.CrossRef | 1:CAS:528:DC%2BD1cXpvFOjtrw%3D&md5=5081f65e68c99f08c8452f82f49917cfCAS | 18502770PubMed |

Cochrane, K. L. (1987). The biomass and yield of the dominant fish species in Hartbeespoort Dam, South Africa. Hydrobiologia 146, 89–96.
The biomass and yield of the dominant fish species in Hartbeespoort Dam, South Africa.CrossRef |

Conradie, K. R., and Barnard, S. (2012). The dynamics of toxic Microcystis strains and microcystin production in two hypertrofic South African reservoirs. Harmful Algae 20, 1–10.
The dynamics of toxic Microcystis strains and microcystin production in two hypertrofic South African reservoirs.CrossRef | 1:CAS:528:DC%2BC38XhslGjsLvL&md5=6872d57c0adee7243b49d9949d74ca2aCAS |

Cronberg, G., and Annadotter, H. (2006). Manual on aquatic cyanobacteria: a photo guide and synopsis of their toxicology. International Society for the Study of Harmful Algae and United Nations Educational, Scientific and Cultural Organisation, Denmark, pp. 1–105.

Cronberg, G., and Komárek, J. (2004). Some nostocalean cyanoprokaryotes from lentic habitats of Eastern and Southern Africa. Nova Hedwigia 78, 71–106.
Some nostocalean cyanoprokaryotes from lentic habitats of Eastern and Southern Africa.CrossRef |

Diehnelt, C. W., Dugan, N. R., Peterman, S. M., and Budde, W. L. (2006). Identification of microcystin toxins from a strain of Microcystis aeruginosa by liquid chromatography introduction into a hybrid linear ion trap-fourier transform ion cyclotron resonance mass spectrometer. Analytical Chemistry 78, 501–512.
Identification of microcystin toxins from a strain of Microcystis aeruginosa by liquid chromatography introduction into a hybrid linear ion trap-fourier transform ion cyclotron resonance mass spectrometer.CrossRef | 1:CAS:528:DC%2BD2MXht12rtb7F&md5=d2b945b828eda5041debe151bd769ab0CAS | 16408933PubMed |

Gugger, M., Molica, R., Le Berre, B., Dufour, P., Bernard, C., and Humbert, J. F. (2005). Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents. Applied and Environmental Microbiology 71, 1097–1100.
Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents.CrossRef | 1:CAS:528:DC%2BD2MXhsVKgtb8%3D&md5=84359879bff54f21b7c82b0faf6e48f1CAS | 15691973PubMed |

Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.CrossRef | 14530136PubMed |

Haande, S., Rohrlack, T., Ballot, A., Røberg, K., Skulberg, R., Beck, M., and Wiedner, C. (2008). Genetic characterisation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) isolates from Africa and Europe. Harmful Algae 7, 692–701.
Genetic characterisation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) isolates from Africa and Europe.CrossRef | 1:CAS:528:DC%2BD1cXovFemtLw%3D&md5=93dabd2deda28654d324ec7e09cbdd51CAS |

Hall, T. (2007). BioEdit: biological sequence alignment editor for Win95/98/NT/2K/XP [Online]. Website last modified on June 27, 2007 (accessed on September 13, 2011). Available at http://www.mbio.ncsu.edu/BioEdit/bioedit.html.

Hambright, K. D., and Zohary, T. (2000). Phytoplankton species diversity control through competitive exclusion and physical disturbances. Limnology and Oceanography 45, 110–122.
Phytoplankton species diversity control through competitive exclusion and physical disturbances.CrossRef |

Harding, W. R., Thornton, J. A., Steyn, G., Panuska, J., and Morrison, I. R. (2004). Hartbeespoort Dam Remediation Project (Phase 1) Final Report (Volume I). Available at http://www.dwaf.gov.za/Harties/documents/ActionPlanVol1Oct04full.pdf [accessed 5 November 2012]

Hawkins, P. R., Chandrasena, N. R., Jones, G. J., Humpage, A. R., and Falconer, I. R. (1997). Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake. Toxicon 35, 341–346.
Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake.CrossRef | 1:CAS:528:DyaK2sXhsl2msb8%3D&md5=f8b55edac4d5c62f31cc8caa1fd23dedCAS | 9080590PubMed |

Hepperle, D. (2008). Align vers. 07/2008, multisequence alignment-editor and preparation/manipulation of phylogenetic datasets. Error!Hyperlink reference not valid. 2009]

Hitzfeld, B. C., Höger, S. J., and Dietrich, D. R. (2000). Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives 108, 113–122.
| 1:CAS:528:DC%2BD3cXit12rsb0%3D&md5=470de4ded328f9ce7dfaf08e869d65f3CAS | 10698727PubMed |

Horecká, M., and Komárek, J. (1979). Taxonomic position of three planktonic blue–green algae from the genera Aphanizomenon and Cylindrospermopsis. Preslia 51, 289–312.

Janse van Vuuren, S., and Kriel, G. P. (2008). Cylindrospermopsis raciborskii, a toxic invasive cyanobacterium in South African fresh waters. African Journal of Aquatic Science 33, 17–26.
Cylindrospermopsis raciborskii, a toxic invasive cyanobacterium in South African fresh waters.CrossRef |

Komárek, J., and Anagnostidis, K. (1998) Cyanoprokaryota I. Teil: Chroococcales, In ‘Süsswasserflora von Mitteleuropa 19/1’. (Eds. H. Ettl, G. Gärtner G, H. Heynig and D. Mollenhauer.) (Spektrum Akademischer Verlag.)

Komárek, J., and Komárkova, J. (2006). Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology 6, 1–32.

Kotai, J. 1972. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae. Publication B-11/69. Norwegian Institute for Water Research, Oslo, Norway.

Kurmayer, R., Christiansen, G., Fastner, J., and Börner, T. (2004). Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environmental Microbiology 6, 831–841.
Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp.CrossRef | 1:CAS:528:DC%2BD2cXntVKisbw%3D&md5=98eed1205a07af05867df3747a00aecaCAS | 15250885PubMed |

Li, R., and Watanabe, M. M. (1999). Anabaena eucompacta sp. nov. (Nostocales, Cyanobacteria), a new planktonic species with tightly spiraled filaments from Japan. Bulletin of the National Science Museum, Tokyo Serie B 25, 89–94.

Li, R., Carmichael, W. W., Brittain, S., Eaglesham, G. K., Shaw, G. R., Mahakhant, A., Noparatnaraporn, N., Yongmanitchai, W., Kaya, K., and Watanabe, M. M. (2001). Isolation and identification of the cyanotoxin cylindrospermopsin and deoxy-cylindrospermopsin from a Thailand strain of Cylindrospermopsis raciborskii (Cyanobacteria). Toxicon 39, 973–980.
Isolation and identification of the cyanotoxin cylindrospermopsin and deoxy-cylindrospermopsin from a Thailand strain of Cylindrospermopsis raciborskii (Cyanobacteria).CrossRef | 1:CAS:528:DC%2BD3MXit1ars74%3D&md5=3b9e18487cd1081e52b605e249dcc391CAS | 11223086PubMed |

Mbukwa, E. A., Msagati, T. A. M., and Mamba, B. B. (2012). Quantitative variations of intracellular microcystin-LR, -RR and -YR in samples collected from four locations in Hartbeespoort Dam in North West Province (South Africa) during the 2010/2011 summer season. International Journal of Environmental Research and Public Health 9, 3484–3505.
Quantitative variations of intracellular microcystin-LR, -RR and -YR in samples collected from four locations in Hartbeespoort Dam in North West Province (South Africa) during the 2010/2011 summer season.CrossRef | 1:CAS:528:DC%2BC38Xhs1WhurrL&md5=7b42a7b21cb32c94ef921b35c21a2719CAS | 23202758PubMed |

McGregor, G. B., and Fabbro, L. D. (2000). Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management. Lakes and Reservoirs: Research and Management 5, 195–205.
Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management.CrossRef |

Mihali, T. K., Kellmann, R., Muenchhoff, J., Barrow, K. D., and Neilan, B. A. (2008). Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Applied and Environmental Microbiology 74, 716–722.
Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis.CrossRef | 1:CAS:528:DC%2BD1cXhvVSqu7o%3D&md5=63bf24bb496bf0fde72e2b4d42f9d533CAS | 18065631PubMed |

Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., Davies, W., Gabrielsen, T. M., Rudi, K., and Jakobsen, K. S. (2003). Natural variation in the microcystin synthetase operon mcy ABC and impact on microcystin production in Microcystis strains. Journal of Bacteriology 185, 2774–2785.
Natural variation in the microcystin synthetase operon mcy ABC and impact on microcystin production in Microcystis strains.CrossRef | 1:CAS:528:DC%2BD3sXjt1Gmsrs%3D&md5=8e7a3ac8fe5698d62a2a0e16ba80f691CAS | 12700256PubMed |

Miles, C. O., Sandvik, M., Nonga, H. E., Rundberget, T., Wilkins, A. L., Rise, F., and Ballot, A. (2012). Thiol derivatization for LC-MS identification of microcystins in complex matrices. Environmental Science & Technology 46, 8937–8944.
Thiol derivatization for LC-MS identification of microcystins in complex matrices.CrossRef | 1:CAS:528:DC%2BC38XhtFSju77K&md5=46df2fcb7ab60ff5c1bb04721d6cf561CAS |

Miles, C. O., Sandvik, M., Haande, S., Nonga, H. E., and Ballot, A. (2013a). LC-MS analysis with thiol derivatization to differentiate [Dhb7]- from [Mdha7]-microcystins: analysis of cyanobacterial blooms, Planktothrix cultures and European crayfish from Lake Steinsfjorden, Norway. Environmental Science & Technology 47, 4080–4087.
LC-MS analysis with thiol derivatization to differentiate [Dhb7]- from [Mdha7]-microcystins: analysis of cyanobacterial blooms, Planktothrix cultures and European crayfish from Lake Steinsfjorden, Norway.CrossRef | 1:CAS:528:DC%2BC3sXkslahtrk%3D&md5=f1f134eaef2a8ff85c8bf83d6f80c1d6CAS |

Miles, C. O., Sandvik, M., Nonga, H. E., Rundberget, T., Wilkins, A. L., Rise, F., and Ballot, A. (2013b). Identification of microcystins in a Lake Victoria cyanobacterial bloom using LC-MS with thiol derivatization. Toxicon 70, 21–31.
Identification of microcystins in a Lake Victoria cyanobacterial bloom using LC-MS with thiol derivatization.CrossRef | 1:CAS:528:DC%2BC3sXpsVCgsrk%3D&md5=c90fffcce16150bbb7b4970683162378CAS | 23567039PubMed |

Mohamed, Z. A. (2007). First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranea (Cyanoprokaryota) in Egyptian freshwaters. FEMS Microbiology Ecology 59, 749–761.
First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranea (Cyanoprokaryota) in Egyptian freshwaters.CrossRef | 1:CAS:528:DC%2BD2sXjsV2jsrs%3D&md5=39555061f4c6af6e175cd77787fabbdbCAS | 17069621PubMed |

Moustafa, A., Loram, J. E., Hackett, J. D., Anderson, D. M., Plumley, F. G., and Bhattacharya, D. (2009). Origin of saxitoxin biosynthetic genes in cyanobacteria. PLoS ONE 4, e5758.
Origin of saxitoxin biosynthetic genes in cyanobacteria.CrossRef | 19484122PubMed |

Moustaka-Gouni, M., Kormas, K. A., Vardaka, E., Katsiapi, M., and Gkelis, S. (2009). Raphidiopsis mediterranea Skuja represents non-heterocytous life-cycle stages of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju in Lake Kastoria (Greece), its type locality: evidence by morphological and phylogenetic analysis. Harmful Algae 8, 864–872.
Raphidiopsis mediterranea Skuja represents non-heterocytous life-cycle stages of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju in Lake Kastoria (Greece), its type locality: evidence by morphological and phylogenetic analysis.CrossRef |

Namikoshi, M., Rinehart, K. L., Sakai, R., Sivonen, K., and Carmichael, W. W. (1990). Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue–green alga) Nostoc sp. strain 152. The Journal of Organic Chemistry 55, 6135–6139.
Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue–green alga) Nostoc sp. strain 152.CrossRef | 1:CAS:528:DyaK3MXnt1Sj&md5=5bc869a3d7f469b39052ae367a48a0fbCAS |

Namikoshi, M., Murakamia, T., Watanabe, M. F., Oda, T., Yamada, J., Tsujimura, S., Nagaia, H., and Oishi, S. (2003). Simultaneous production of homoanatoxin-a, anatoxin-a, and a new non-toxic 4-hydroxyhomoanatoxin-a by the cyanobacterium Raphidiopsis mediterranea Skuja. Toxicon 42, 533–538.
Simultaneous production of homoanatoxin-a, anatoxin-a, and a new non-toxic 4-hydroxyhomoanatoxin-a by the cyanobacterium Raphidiopsis mediterranea Skuja.CrossRef | 1:CAS:528:DC%2BD3sXnsF2ksrc%3D&md5=15d021c6a2eb49671dad82b46ec49bd0CAS | 14529735PubMed |

Neffling, M. R. (2010). Fast LC-MS detection of cyanobacterial peptide hepatotoxins-method development for determination of total contamination levels in biological materials. Ph.D. Thesis, Åbo Akademi University, Turku, Finland.

Neilan, B. A., Jacobs, D., and Goodman, A. (1995). Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Applied and Environmental Microbiology 6, 3875–3883.

Noguchi, T., Shinohara, A., Nishizawa, A., Asayama, M., Nakano, T., Hasegawa, M., Harada, K., Nishizawa, T., and Shirai, M. (2009). Genetic analysis of the microcystin biosynthesis gene cluster in Microcystis strains from four bodies of eutrophic water in Japan. The Journal of General and Applied Microbiology 55, 111–123.
Genetic analysis of the microcystin biosynthesis gene cluster in Microcystis strains from four bodies of eutrophic water in Japan.CrossRef | 1:CAS:528:DC%2BD1MXlsFyqsrw%3D&md5=0b32a64e9a6c1f2ba8c7a4e7e6863ff7CAS | 19436128PubMed |

Oberholster, P. J., and Botha, A. M. (2010). Use of remote sensing and molecular markers to detect toxic cyanobacterial hyperscum crust: a case study on Lake Hartbeespoort, South Africa. African Journal of Biotechnology 9, 8791–8799.
| 1:CAS:528:DC%2BC3MXhtlOktw%3D%3D&md5=043ee3e7fb3ddccf3d834eac1b9b6fcbCAS |

Paerl, H. W., and Huisman, J. (2009). Climate change: a catalyst for global expansion ofharmful cyanobacterial blooms. Environmental Microbiology Reports 1, 27–37.
Climate change: a catalyst for global expansion ofharmful cyanobacterial blooms.CrossRef | 1:CAS:528:DC%2BD1MXotlaktrk%3D&md5=fee780fa191e2ec135e98b20f76fdc01CAS | 23765717PubMed |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.CrossRef | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=6aff26d0e412326d9e17b06a56932ff6CAS | 18397919PubMed |

Puddick, J. (2012). Spectroscopic investigations of oligopeptides from aquatic cyanobacteria. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand.

Puddick, J., Prinsep, M. R., Wood, S. A., Miles, C. O., Rise, F., Cary, S. C., Hamilton, D. P., and Wilkins, A. L. (2013). Structural characterization of 40 new microcystins containing tryptophan and oxidized tryptophan residues. Marine Drugs 11, 3025–3045.
Structural characterization of 40 new microcystins containing tryptophan and oxidized tryptophan residues.CrossRef | 1:CAS:528:DC%2BC3sXhsVWhs7nN&md5=f06a62c1824e2b2dc40bd9e5bc1d8107CAS | 23966035PubMed |

Rantala, A., Fewer, D. P., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Börner, T., Sivonen, K., and Sill, K. (2004). Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences 101, 568–573.
| 1:CAS:528:DC%2BD2cXmsFGntQ%3D%3D&md5=78cdb19fdd080a7904947859b15a3f5eCAS |

Rasmussen, J. P., Giglio, S., Monis, P. T., Campbell, R. J., and Saint, C. P. (2008). Development and field testing of a real-time PCR assay for cylindrospermopsin producing cyanobacteria. Journal of Applied Microbiology 104, 1503–1515.
Development and field testing of a real-time PCR assay for cylindrospermopsin producing cyanobacteria.CrossRef | 1:CAS:528:DC%2BD1cXmvVCntr4%3D&md5=7653fa0668bc52d6aa21c00fbd90c4d6CAS | 18179541PubMed |

Rourke, W. A., Murphy, C. J., Pitcher, G., van de Riet, J. M., Burns, B. G., Thomas, K. M., and Quilliam, M. A. (2008). Rapid postcolumn methodology for determination of paralytic shellfish toxins in shellfish tissue. Journal of AOAC International 91, 589–597.
| 1:CAS:528:DC%2BD1cXntlWqtLo%3D&md5=1edfaf3d32ced027702a5360924797d8CAS | 18567305PubMed |

Saker, M. L., and Neilan, B. A. (2001). Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from Northern Australia. Applied and Environmental Microbiology 67, 1839–1845.
Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from Northern Australia.CrossRef | 1:CAS:528:DC%2BD3MXis1egtb0%3D&md5=73d1285e857dedd7e89a41d8ac9969e8CAS | 11282641PubMed |

Saqrane, S., and Oudra, B. (2009). CyanoHAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks. Toxins 1, 113–122.
CyanoHAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks.CrossRef | 1:CAS:528:DC%2BC3cXpsl2kug%3D%3D&md5=502c146361f67e73fa935e372a992ae1CAS | 22069535PubMed |

Sivonen, K., and Jones, G. (1999). Cyanobacterial toxins. In ‘Toxic Cyanobacteria in Water: a Guide to Public Health Significance, Monitoring and Management. The World Health Organization’. (Eds I. Chorus and J. Bertram.) pp. 41–111. (E. and F.N. Spon: London, UK.).

Soto-Liebe, K., Murillo, A., Krock, B., Stucken, K., Fuentes-Valdés, J. J., Trefault, N., Cembella, A., and Vásquez, M. (2010). Reassessment of the toxin profile of Cylindrospermopsis raciborskii T3 and function of putative sulfotransferases in synthesis of sulfated and sulfonated PSP toxins. Toxicon 56, 1350–1361.
Reassessment of the toxin profile of Cylindrospermopsis raciborskii T3 and function of putative sulfotransferases in synthesis of sulfated and sulfonated PSP toxins.CrossRef | 1:CAS:528:DC%2BC3cXhtlGntb%2FJ&md5=eb53e1a3700d96538b72a3bc698abb1dCAS | 20692275PubMed |

Steyn, D. J., Toerien, D. F., and Visser, J. H. (1975). Eutrophication levels of some South African empoundments. II Hartbeespoort Dam. Water S.A. 1, 93–101.
| 1:CAS:528:DyaE2sXkt1ylu78%3D&md5=67188c071a809148e8da4d7ecd9f143fCAS |

Stucken, K., John, U., Cembella, A., Murillo, A. A., Soto-Liebe, K., Fuentes-Valdes, J. J., Friedel, M., Plominsky, A. M., Vasquez, M., and Glöckner, G. (2010). The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications. PLoS ONE 5, e9235.
The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications.CrossRef | 20169071PubMed |

Sukenik, A., Hadas, O., Kaplan, A., and Quesada, A. (2012). Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes–physiological, regional,and global driving forces. Frontiers in Microbiology 3, 86.
Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes–physiological, regional,and global driving forces.CrossRef | 22408640PubMed |

Swofford, D. L. (2002). ‘PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0 b10.’ (Sinauer: Sunderland, MA.)

Thomazeau, S., Houdan-Fourmont, A., Couté, A., Duval, C., Couloux, A., Rousseau, F., and Bernard, C. (2010). The contribution of sub-saharan African strains to the phylogeny of cyanobacteria: focusing on the Nostocaceae (Nostocales, cyanobacteria). Journal of Phycology 46, 564–579.
The contribution of sub-saharan African strains to the phylogeny of cyanobacteria: focusing on the Nostocaceae (Nostocales, cyanobacteria).CrossRef | 1:CAS:528:DC%2BC3cXovFCmu7w%3D&md5=1100ed3b627f2db94ed30a1ddc953f58CAS |

Tillett, D., Dittmann, E., Erhard, M., von Döhren, H., Börner, T., and Neilan, B. A. (2000). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chemistry & Biology 7, 753–764.
Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system.CrossRef | 1:CAS:528:DC%2BD3cXotVWitrw%3D&md5=3c8dfce5a9ad5769950f7743391ee704CAS |

Toerien, D. F., Scott, W. E., and Pitout, M. J. (1976). Microcystis toxins, isolation, identification, implications. Water S.A. 2, 160–162.
| 1:CAS:528:DyaE2sXhvVChurw%3D&md5=c72cd5e331763330104646e13992b73eCAS |

Tooming-Klunderud, A., Fewer, D. P., Rohrlack, T., Jokela, J., Rouhiainen, L., Sivonen, K., Kristensen, T., and Jakobsen, K. S. (2008). Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evolutionary Biology 8, 256.
Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera.CrossRef | 18808704PubMed |

Van Ginkel, C. E. (2003). A National Survey of the incidence of cyanobacterial blooms and toxin production in major impoundments. Internal Report No. N/0000/00/DEQ/0503. Resource Quality Services, Department of Water Affairs and Forestry. Pretoria, South Africa.

Watanabe, M. (1995). Studies on planctonic blue–green algae 5. A new species of Cylindrospermopsis (Nostocaceae) from Japan. Bulletin of the National Science Museum. Tokyo Serie B 21, 45–48.

Water Research Commission (2008). ‘SA’s Water History—Taming the Poort.’ Water Research Commission. 2008–06. http://www.ewisa.co.za/misc/DamNWHartebeespoort/Harties%20history%20WW%20May-June%2008.pdf [accessed 12 December 2011]

Werner, V. R., Laughinghouse, H. D., Fiore, M. F., Sant’Anna, C. L., Hoff, C., Santos, K. R. D., Neuhaus, E. B., Molica, R. J. R., Honda, R. Y., and Echenique, R. O. (2012). Morphological and molecular studies of Sphaerospermopsis torques-reginae (Cyanobacteria, Nostocales) from South American water blooms. Phycologia 51, 228–238.
Morphological and molecular studies of Sphaerospermopsis torques-reginae (Cyanobacteria, Nostocales) from South American water blooms.CrossRef |

Wicks, R. J., and Thiel, P. G. (1990). Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environmental Science & Technology 24, 1413–1418.
Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir.CrossRef | 1:CAS:528:DyaK3cXlslOkur8%3D&md5=77a16fac51206811fd484fbcd23e16bfCAS |

Wood, S. A., Rasmussen, J. P., Holland, P. T., Campbell, R., and Crowe, A. L. M. (2007). First report of the cyanotoxin anatoxin-a from Aphanizomenon issatschenkoi (Cyanobacteria). Journal of Phycology 43, 356–365.
First report of the cyanotoxin anatoxin-a from Aphanizomenon issatschenkoi (Cyanobacteria).CrossRef | 1:CAS:528:DC%2BD2sXltVKlsrs%3D&md5=fe042675391f5089786d500d2108f242CAS |

World Health Organization (1998). ‘Guidelines for Drinking-water Quality.’ 2nd edn. Addendum to volume 2, Health criteria and other supporting information. (World Health Organization: Geneva.)

Zapomělová, E., Hrouzek, P., Řeháková, K., Šabacká, M., Stibal, M., Caisová, L., Komárková, J., and Lukešová, A. (2008). Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition. Folia Microbiologica 53, 333–341.
Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition.CrossRef | 18759118PubMed |

Zapomělová, E., Jezberová, J., Hrouzek, P., Hisem, D., Řeháková, K., and Komárková, J. (2009). Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (Cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). Journal of Phycology 45, 1363–1373.
Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (Cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana).CrossRef |

Zapomělová, E., Jezberová, J., Hrouzek, P., Hisem, D., Řeháková, K., and Komárková, J. (2010). Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (Cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). Journal of Phycology 46, 415.
Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (Cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana).CrossRef |

Zohary, T. (1985). Hyperscums of the cyanobacterium Microcystis aeruginosa in a hypertrophic lake (Hartbeespoort Dam, South Africa). Journal of Plankton Research 7, 399–409.
Hyperscums of the cyanobacterium Microcystis aeruginosa in a hypertrophic lake (Hartbeespoort Dam, South Africa).CrossRef |

Zohary, T., and Pais-Madeira, A. M. (1990). Structural, physical and chemical characteristics of Microcystis aeruginosa hyperscums from a hypertrophic lake. Freshwater Biology 23, 339–352.
Structural, physical and chemical characteristics of Microcystis aeruginosa hyperscums from a hypertrophic lake.CrossRef | 1:CAS:528:DyaK3cXlsVyrsrs%3D&md5=a10130710479afa360ef8c897909df1dCAS |


Full Text PDF (547 KB) Export Citation Cited By (20)