Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Hyperbenthic and pelagic predators regulate alternate key planktonic copepods in shallow temperate estuaries

R. J. Wasserman A C , T. J. F. Vink B , R. Kramer A and P. W. Froneman A

A Department of Zoology and Entomology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa.

B Department of Botany, Coastal and Marine Research Unit, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa.

C Corresponding author. Email: ryanwas21@gmail.com

Marine and Freshwater Research 65(9) 791-801 http://dx.doi.org/10.1071/MF13233
Submitted: 6 September 2013  Accepted: 28 November 2013   Published: 16 June 2014

Abstract

Although predation has been identified as an important community driver, the role of predator diversity in structuring estuarine zooplankton has not been assessed. As such, we investigated the effects of two different zooplanktivorous fish species on the estuarine zooplankton community during a 12-day mesocosm study. Three experimental treatments were established, whereby natural zooplankton communities were subject to either (1) no predatory pressure, (2) predation by a pelagic predator (Monodactylus falciformis) or (3) predation by a hyper-benthic predator (Glossogobius callidus). The pelagic feeding M. falciformis fed largely on the numerically dominant mid-water copepod species, Paracartia longipatella. In contrast, the hyper-benthic fish had a greater predatory impact on the less numerically dominant copepod, Pseudodiaptomus hessei, which demonstrates strong diel vertical migration. Variations in prey-population regulation are ascribed to the distinct behavioural differences of the predators, and mediated by the differences in behaviour of the copepod species.

Additional keywords: copepod prey, diel vertical migration, niche partitioning, trophic interactions, zooplanktivorous fish.


References

Amarasekare, P., Hoopes, M. F., Mouquet, N., and Holyoak, M. (2004). Mechanisms of coexistence in competitive metacommunities. American Naturalist 164, 310–326.
Mechanisms of coexistence in competitive metacommunities.CrossRef | 15478087PubMed | open url image1

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46. open url image1

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). ‘PERMANOVA+ for PRIMER: a Guide to Software and Statistical Methods.’ (Primer-e: Plymouth, UK.)

Banse, K. (1995). Zooplankton: pivotal role in the control of ocean production: I. Biomass and production. ICES Journal of Marine Science: Journal du Conseil 52, 265–277.
Zooplankton: pivotal role in the control of ocean production: I. Biomass and production.CrossRef | open url image1

Bate, G. C., and Heelas, B. V. (1975). Studies on the nitrite nutrition of two indignenous Rhodesian grasses. Journal of Applied Ecology 12, 941–952.
Studies on the nitrite nutrition of two indignenous Rhodesian grasses.CrossRef | 1:CAS:528:DyaE2sXhsFCmt7c%3D&md5=83fc611fb39723a6c882f1e6ac30760eCAS | open url image1

Beddington, J. R., Free, C. A., and Lawton, J. H. (1976). Concepts of stability and resilience in predator–prey models. Journal of Animal Ecology 45, 791–816.
Concepts of stability and resilience in predator–prey models.CrossRef | open url image1

Boltovskoy, D. (1999). ‘South Atlantic Zooplankton.’ (Backhuys: Leiden, The Netherlands.)

Brooks, J. L., and Dodson, S. I. (1965). Predation, body size, and composition of plankton. Science 150, 28–35.
Predation, body size, and composition of plankton.CrossRef | 1:STN:280:DC%2BC3cvltlWqsA%3D%3D&md5=a7d722c83b89d9c1ca55c6d23a7dce02CAS | 17829740PubMed | open url image1

Burks, R. L., Lodge, D. M., Jeppesen, E., and Lauridsen, T. L. (2002). Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47, 343–365.
Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral.CrossRef | open url image1

Buskey, E. J., Lenz, P. H., and Hartline, D. K. (2012). Sensory perception, neurobiology, and behavioral adaptations for predator avoidance in planktonic copepods. Adaptive Behavior 20, 57–66.
Sensory perception, neurobiology, and behavioral adaptations for predator avoidance in planktonic copepods.CrossRef | open url image1

Chalcraft, D. R., and Resetarits, W. J. (2003). Mapping functional similarity of predators on the basis of trait similarities. American Naturalist 162, 390–402.
Mapping functional similarity of predators on the basis of trait similarities.CrossRef | 14582003PubMed | open url image1

Chave, J., Muller-Landau, H. C., and Levin, S. A. (2002). Comparing classical community models: theoretical consequences for patterns of diversity. American Naturalist 159, 1–23.
Comparing classical community models: theoretical consequences for patterns of diversity.CrossRef | 18707398PubMed | open url image1

DeWitt, T. J., Sih, A., and Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution 13, 77–81.
Costs and limits of phenotypic plasticity.CrossRef | 1:STN:280:DC%2BC3M7itFygsQ%3D%3D&md5=e7a612b9b6fdc1164bf2122e88e3b5dbCAS | open url image1

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., Jackson, J. B., Marquis, R. J., Oksanen, L., Oksanen, T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., Shurin, J. B., Sinclair, A. R., Soule, M. E., Virtanen, R., and Wardle, D. A. (2011). Trophic downgrading of planet Earth. Science 333, 301–306.
Trophic downgrading of planet Earth.CrossRef | 1:CAS:528:DC%2BC3MXos1ylur0%3D&md5=7efdfef8632bb1e1a9f2ef8abd51222cCAS | 21764740PubMed | open url image1

Fancett, M. S., and Kimmerer, W. J. (1985). Vertical migration of the demersal copepod Pseudodiaptomus as a means of predator avoidance. Journal of Experimental Marine Biology and Ecology 88, 31–43.
Vertical migration of the demersal copepod Pseudodiaptomus as a means of predator avoidance.CrossRef | open url image1

Fey, K., Banks, P. B., Oksanen, L., and Korpimäki, E. (2009). Does removal of an alien predator from small islands in the Baltic Sea induce a trophic cascade? Ecography 32, 546–552.
Does removal of an alien predator from small islands in the Baltic Sea induce a trophic cascade?CrossRef | open url image1

Fretwell, S. D. (1987). Food chain dynamics: the central theory of ecology? Oikos 50, 291–301.
Food chain dynamics: the central theory of ecology?CrossRef | open url image1

Froneman, P. W. (2000). Feeding studies on selected zooplankton in a temperate estuary, South Africa. Estuarine, Coastal and Shelf Science 51, 543–552.
Feeding studies on selected zooplankton in a temperate estuary, South Africa.CrossRef | 1:CAS:528:DC%2BD3MXjtFylsg%3D%3D&md5=24698d6e1a7e1848d3392e5c1660be54CAS | open url image1

Froneman, P. W. (2002). Response of the plankton to three different hydrological phases of the temporarily open/closed Kasouga Estuary, South Africa. Estuarine, Coastal and Shelf Science 55, 535–546.
Response of the plankton to three different hydrological phases of the temporarily open/closed Kasouga Estuary, South Africa.CrossRef | 1:CAS:528:DC%2BD38Xot1KmsLc%3D&md5=bc6aa92527d3258ee3f83cc5f16b38a2CAS | open url image1

Froneman, P. W. (2004). Zooplankton community structure and biomass in a southern African temporarily open/closed estuary. Estuarine, Coastal and Shelf Science 60, 125–132.
Zooplankton community structure and biomass in a southern African temporarily open/closed estuary.CrossRef | 1:CAS:528:DC%2BD2cXjtlCjsbc%3D&md5=9dce60511d3d4b448ade145ff9ed3d24CAS | open url image1

Gilbert, B., Srivastava, D. S., and Kirby, K. R. (2008). Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos 117, 944–950.
Niche partitioning at multiple scales facilitates coexistence among mosquito larvae.CrossRef | open url image1

Gobler, C. J., Cullison, L. A., Koch, F., Harder, T. M., and Krause, J. W. (2005). Influence of freshwater flow, ocean exchange, and seasonal cycles on phytoplankton – nutrient dynamics in a temporarily open estuary. Estuarine, Coastal and Shelf Science 65, 275–288.
Influence of freshwater flow, ocean exchange, and seasonal cycles on phytoplankton – nutrient dynamics in a temporarily open estuary.CrossRef | open url image1

Griffen, B. D. (2006). Detecting emergent effects of multiple predator species. Oecologia 148, 702–709.
Detecting emergent effects of multiple predator species.CrossRef | 16568277PubMed | open url image1

Hart, R. C., and Allanson, B. R. (1976). The distribution and diel vertical migration of Pseudodiaptomus hessei (Mrázek) (Calanoida: Copepoda) in a subtropical lake in southern Africa. Freshwater Biology 6, 183–198.
The distribution and diel vertical migration of Pseudodiaptomus hessei (Mrázek) (Calanoida: Copepoda) in a subtropical lake in southern Africa.CrossRef | open url image1

Henninger, T. O., Froneman, P. W., and Hodgson, A. N. (2008). The population dynamics of the estuarine isopod Exosphaeroma hylocoetes (Barnard, 1940) within three temporarily open/closed southern African estuaries. African Zoology 43, 202–217.
The population dynamics of the estuarine isopod Exosphaeroma hylocoetes (Barnard, 1940) within three temporarily open/closed southern African estuaries.CrossRef | open url image1

Heyns, E., and Froneman, P. W. (2010). Spatial and temporal patterns in the hyperbenthic community structure in a warm temperate southern African permanently open estuary. Estuarine, Coastal and Shelf Science 88, 105–115.
Spatial and temporal patterns in the hyperbenthic community structure in a warm temperate southern African permanently open estuary.CrossRef | open url image1

Holzmueller, E. J., Gibson, D. J., and Suchecki, P. F. (2012). Accelerated succession following an intense wind storm in an oak-dominated forest. Forest Ecology and Management 279, 141–146.
Accelerated succession following an intense wind storm in an oak-dominated forest.CrossRef | open url image1

Houde, E. D., and Rutherford, E. S. (1993). Recent trends in estuarine fisheries: predictions of fish production and yield. Estuaries 16, 161–176.
Recent trends in estuarine fisheries: predictions of fish production and yield.CrossRef | open url image1

Humes, A. G. (1994). How many copepods? Hydrobiologia 292–293, 1–7.
How many copepods?CrossRef | open url image1

Iglesias, C., Goyenola, G., Mazzeo, N., Meerhoff, M., Rodó, E., and Jeppesen, E. (2007). Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia 584, 179–189.
Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges.CrossRef | 1:CAS:528:DC%2BD2sXlsVeqtb4%3D&md5=f8bacf72334910f3ef519edfffb56644CAS | open url image1

Isla, J. A., and Perissinotto, R. (2004). Effects of temperature, salinity and sex on the basal metabolic rate of the estuarine copepod Pseudodiaptomus hessei. Journal of Plankton Research 26, 579–583.
Effects of temperature, salinity and sex on the basal metabolic rate of the estuarine copepod Pseudodiaptomus hessei.CrossRef | open url image1

Jerling, H. L., and Wooldridge, T. H. (1989). The developmental stages of Pseudodiaptomus hessei (Copepoda: Calanoida). South African Journal of Zoology 24, 139–145. open url image1

Jerling, H. L., and Wooldridge, T. H. (1995). Plankton distribution and abundance in the Sundays River Estuary, South Africa, with comments on potential feeding interactions. South African Journal of Marine Science 15, 169–184.
Plankton distribution and abundance in the Sundays River Estuary, South Africa, with comments on potential feeding interactions.CrossRef | open url image1

Kabacoff, R. I. (2011). ‘R in Action: Data Analysis and Graphics with R.’ (Manning Publications Co.: New York.)

Kibirige, I., and Perissinotto, R. (2003). The zooplankton community of the Mpenjati Estuary, a South African temporarily open/closed system. Estuarine, Coastal and Shelf Science 58, 727–741.
The zooplankton community of the Mpenjati Estuary, a South African temporarily open/closed system.CrossRef | open url image1

Kouassi, E., Pagano, M., Saint-Jean, L., Arfi, R., and Bouvy, M. (2001). Vertical migrations and feeding rhythms of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) in a tropical lagoon (Ebrié, Côte d’Ivoire). Estuarine, Coastal and Shelf Science 52, 715–728.
Vertical migrations and feeding rhythms of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) in a tropical lagoon (Ebrié, Côte d’Ivoire).CrossRef | 1:CAS:528:DC%2BD3MXltlGhsbo%3D&md5=5b1ce6fb6a03fd8199673c0a67d19684CAS | open url image1

Lampert, W. (1989). The adaptive significance of diel vertical migration of zooplankton. Functional Ecology 3, 21–27.
The adaptive significance of diel vertical migration of zooplankton.CrossRef | open url image1

Lorenzen, C. J. (1966). A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Research and Oceanographic Abstracts 13, 223–227.
A method for the continuous measurement of in vivo chlorophyll concentration.CrossRef | open url image1

Mehner, T., and Thiel, R. (1999). A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. Environmental Biology of Fishes 56, 169–181.
A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere.CrossRef | open url image1

Møller, E. F. (2005). Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. Journal of Plankton Research 27, 27–35.
Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon.CrossRef | open url image1

Møller, E. F. (2007). Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis. Limnology and Oceanography 52, 79–84.
Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis.CrossRef | open url image1

Montoya-Maya, P. H., and Strydom, N. A. (2009). Description of larval fish composition, abundance and distribution in nine south and west coast estuaries of South Africa. African Zoology 44, 75–92.
Description of larval fish composition, abundance and distribution in nine south and west coast estuaries of South Africa.CrossRef | open url image1

Mos, B., Cowden, K. L., Nielsen, S. J., and Dworjanyn, S. A. (2011). Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture. PLoS ONE 6, e28054.
Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture.CrossRef | 1:CAS:528:DC%2BC3MXhs1KhtL%2FM&md5=1ed6bb97de9f33003512a10d6194d5b9CAS | 22162755PubMed | open url image1

Muška, M., Tušer, M., Frouzová, J., Draštík, V., Čech, M., Jůza, T., Kratochvíl, M., Mrkvička, T., Peterka, J., Prchalová, M., Říha, M., Vašek, M., and Kubečka, J. (2013). To migrate, or not to migrate: partial diel horizontal migration of fish in a temperate freshwater reservoir. Hydrobiologia 707, 17–28.
To migrate, or not to migrate: partial diel horizontal migration of fish in a temperate freshwater reservoir.CrossRef | open url image1

Nemec, A. F. L. (1996). ‘Analysis of Repeated Measures and Time Series: an Introduction with Forestry Examples.’ 6th edn. (Province of British Columbia, Ministry of Forests Research Program: Victoria, Canada.)

O’Connor, N. E., Grabowski, J. H., Ladwig, L. M., and Bruno, J. F. (2008). Simulated predator extinctions: predator identity affects survival and recruitment of oysters. Ecology 89, 428–438.
Simulated predator extinctions: predator identity affects survival and recruitment of oysters.CrossRef | 18409432PubMed | open url image1

Pagano, M., Kouassi, E., Saint-Jean, L., Arfi, R., and Bouvy, M. (2003). Feeding of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) on natural particles in a tropical lagoon (Ebrié, Côte d’Ivoire). Estuarine, Coastal and Shelf Science 56, 433–445.
Feeding of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) on natural particles in a tropical lagoon (Ebrié, Côte d’Ivoire).CrossRef | open url image1

Parsons, T. R., Maita, Y., and Lalli, C. M. (1984). ‘A Manual of Chemical and Biological Methods for Seawater Analysis.’ (Pergamon Press: Oxford, UK.)

Perissinotto, R., Nozais, C., Kibirige, I., and Anandraj, A. (2003). Planktonic food webs and benthic–pelagic coupling in three South African temporarily-open estuaries. Acta Oecologica 24, S307–S316.
Planktonic food webs and benthic–pelagic coupling in three South African temporarily-open estuaries.CrossRef | open url image1

Persson, L. (1999). Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85, 385–397.
Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road.CrossRef | open url image1

Polis, G. A. (1994). Food webs, trophic cascades and community structure. Australian Journal of Ecology 19, 121–136.
Food webs, trophic cascades and community structure.CrossRef | open url image1

R Development Core Team (2013). ‘R: a Language and Environment for Statistical Computing.’ Available at http://www.R-project.org/ [accessed 25 August 2013].

Saba, G. K., Steinberg, D. K., and Bronk, D. A. (2011). The relative importance of sloppy feeding, excretion, and fecal pellet leaching in the release of dissolved carbon and nitrogen by Acartia tonsa copepods. Journal of Experimental Marine Biology and Ecology 404, 47–56.
The relative importance of sloppy feeding, excretion, and fecal pellet leaching in the release of dissolved carbon and nitrogen by Acartia tonsa copepods.CrossRef | open url image1

Schmitz, O. J. (2007). Predator diversity and trophic interactions. Ecology 88, 2415–2426.
Predator diversity and trophic interactions.CrossRef | 18027743PubMed | open url image1

Schmitz, O. J., Krivan, V., and Ovadia, O. (2004). Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters 7, 153–163.
Trophic cascades: the primacy of trait-mediated indirect interactions.CrossRef | open url image1

Sih, A., Englund, G., and Wooster, D. (1998). Emergent impacts of multiple predators on prey. Trends in Ecology & Evolution 13, 350–355.
Emergent impacts of multiple predators on prey.CrossRef | 1:STN:280:DC%2BC3M7itF2lsQ%3D%3D&md5=339fe0d72cfcf0aaefc278a163ee6c61CAS | open url image1

Sokol-Hessner, L., and Schmitz, O. J. (2002). Aggregate effects of multiple predator species on a shared prey. Ecology 83, 2367–2372.
Aggregate effects of multiple predator species on a shared prey.CrossRef | open url image1

Sommer, U. (2008). Trophic cascades in marine and freshwater plankton. International Review of Hydrobiology 93, 506–516.
Trophic cascades in marine and freshwater plankton.CrossRef | open url image1

Strydom, N. A., Whitfield, A. K., and Wooldridge, T. H. (2003). The role of estuarine type in characterizing early stage fish assemblages in warm temperate estuaries, South Africa. African Zoology 38, 29–43. open url image1

Vumazonke, L. U., Mainoane, T. S., Bushula, T., and Pakhomov, E. A. (2008). A preliminary investigation of winter daily food intake by four small teleost fish species from the Igoda Estuary, Eastern Cape, South Africa. African Journal of Aquatic Science 33, 83–86.
A preliminary investigation of winter daily food intake by four small teleost fish species from the Igoda Estuary, Eastern Cape, South Africa.CrossRef | open url image1

Walter, T. C. (1987). Review of the taxonomy and distribution of the demersal copepod genus Pseudodiaptomus (Calanoida: Pseudodiaptomidae) from southern Indo-West Pacific waters. Marine and Freshwater Research 38, 363–396.
Review of the taxonomy and distribution of the demersal copepod genus Pseudodiaptomus (Calanoida: Pseudodiaptomidae) from southern Indo-West Pacific waters.CrossRef | open url image1

Warfe, D. M., and Barmuta, L. A. (2004). Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141, 171–178.
Habitat structural complexity mediates the foraging success of multiple predator species.CrossRef | 15300485PubMed | open url image1

Warlen, S. M., and Burke, J. S. (1990). Immigration of larvae of fall/winter spawning marine fishes into a North Carolina estuary. Estuaries 13, 453–461.
Immigration of larvae of fall/winter spawning marine fishes into a North Carolina estuary.CrossRef | open url image1

Wasserman, R. J. (2012). Feeding ecology of the early life-history stages of two dominant gobiid species in the headwaters of a warm-temperate estuary. Estuarine, Coastal and Shelf Science 109, 11–19.
Feeding ecology of the early life-history stages of two dominant gobiid species in the headwaters of a warm-temperate estuary.CrossRef | open url image1

Wasserman, R. J., and Froneman, P. W. (2013). Risk effects on copepods: preliminary experimental evidence for the suppression of clutch size by predatory early life-history fish. Journal of Plankton Research 35, 421–426.
Risk effects on copepods: preliminary experimental evidence for the suppression of clutch size by predatory early life-history fish.CrossRef | open url image1

Wasserman, R. J., and Strydom, N. A. (2011). The importance of estuary head waters as nursery areas for young estuary- and marine-spawned fishes in temperate South Africa. Estuarine, Coastal and Shelf Science 94, 56–67.
The importance of estuary head waters as nursery areas for young estuary- and marine-spawned fishes in temperate South Africa.CrossRef | open url image1

Wasserman, R. J., Strydom, N. A., and Wooldridge, T. H. (2010). Larval fish dynamics in the Nxaxo–Ngqusi Estuary complex in the warm temperate–subtropical transition zone of South Africa. African Zoology 45, 63–77.
Larval fish dynamics in the Nxaxo–Ngqusi Estuary complex in the warm temperate–subtropical transition zone of South Africa.CrossRef | open url image1

Wasserman, R. J., Noyon, M., Avery, T. S., and Froneman, P. W. (2013). Trophic level stability-inducing effects of predaceous early juvenile fish in an estuarine mesocosm study. PLoS ONE 8, e61019.
Trophic level stability-inducing effects of predaceous early juvenile fish in an estuarine mesocosm study.CrossRef | 1:CAS:528:DC%2BC3sXmtVehtb8%3D&md5=7af0df7e1cf5f91326438af8ff5b1e1aCAS | 23565294PubMed | open url image1

Wheeler, B. (2010a). ‘lmPerm: Permutation Tests for Linear Models. R Package Version 1.1–2.’ Available at http://CRAN.R-project.org/package=lmPerm [accessed 25 August 2013].

Wheeler, R. E. (2010b). ‘Permutation Tests for Linear Models in R.’ Available at http://cran.r-project.org/web/packages/lmPerm/vignettes/lmPerm.pdf [accessed 10 September 2013].

Wheeler, R. E. (2010c). ‘Permutation Tests for Linear Models in R.’ Available at http://cran.r-project.org/web/packages/lmPerm/vignettes/lmPerm.pdf [accessed 25 August 2013].

Whitfield, A. K. (1992). A characterization of southern African estuarine systems. Southern African Journal of Aquatic Sciences 18, 89–103.
A characterization of southern African estuarine systems.CrossRef | open url image1

Whitfield, A. K. (1998). ‘Biology and Ecology of Fishes in South African Estuaries.’ Ichthyological Monographs of the J.L.B. Smith Institute of Ichthyology, Vol. 2.

Wooldridge, T. H., and Melville-Smith, R. (1979). Copepod succession in two South African estuaries. Journal of Plankton Research 1, 329–341.
Copepod succession in two South African estuaries.CrossRef | open url image1



Export Citation