Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Community structure of reef fishes on a remote oceanic island (St Peter and St Paul’s Archipelago, equatorial Atlantic): the relative influence of abiotic and biotic variables

Osmar J. Luiz A G , Thiago C. Mendes B , Diego R. Barneche A , Carlos G. W. Ferreira C , Ramon Noguchi D , Roberto C. Villaça B , Carlos A. Rangel E , João L. Gasparini F and Carlos E. L. Ferreira B

A Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

B Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, RJ, 24001-970, Brazil.

C Departamento de Oceanografia, Instituto de Estudos do Mar Almirante Paulo Moreira, Arraial do Cabo, RJ, 28930-000, Brazil.

D Programa de Pós Graduação em Ecologia, Universidade Federal de Rio de Janeiro, Rio de Janeiro, RJ, 68020, Brazil.

E Projeto Ilhas do Rio, Instituto Mar Adentro, Rio de Janeiro, RJ, 22031-071, Brazil.

F Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.

G Corresponding author. Email: osmarjluiz@gmail.com

Marine and Freshwater Research 66(8) 739-749 https://doi.org/10.1071/MF14150
Submitted: 12 June 2014  Accepted: 24 September 2014   Published: 13 March 2015

Abstract

This study investigates the reef fish community structure of the world’s smallest remote tropical island, the St Peter and St Paul’s Archipelago, in the equatorial Atlantic. The interplay between isolation, high endemism and low species richness makes the St Peter and St Paul’s Archipelago ecologically simpler than larger and highly connected shelf reef systems, making it an important natural laboratory for ecology and biogeography, particularly with respect to the effects of abiotic and biotic factors, and the functional organisation of such a depauperate community. Boosted regression trees were used to associate density, biomass and diversity of reef fishes with six abiotic and biotic variables, considering the community both as a whole and segregated into seven trophic groups. Depth was the most important explanatory variable across all models, although the direction of its effect varied with the type of response variable. Fish density peaked at intermediate depths, whereas biomass and biodiversity were respectively positively and negatively correlated with depth. Topographic complexity and wave exposure were less important in explaining variance within the fish community than depth. No effects of the predictor biotic variables were detected. Finally, we notice that most functional groups are represented by very few species, highlighting potential vulnerability to disturbances.

Additional keywords: depth, functional groups, isolation, low species richness.


References

Almany, G. R. (2004). Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141, 105–113.
Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes.CrossRef | 15197644PubMed | open url image1

Barneche, D. R., Kulbicki, M., Floeter, S. R., Friedlander, A. M., Maina, J., and Allen, A. P. (2014). Scaling metabolism from individuals to reef-fish communities at broad spatial scales. Ecology Letters , .
Scaling metabolism from individuals to reef-fish communities at broad spatial scales.CrossRef | 24943721PubMed | open url image1

Baum, J. K., and Worm, B. (2009). Cascading top-down effects of changing oceanic predator abundances. Journal of Animal Ecology 78, 699–714.
Cascading top-down effects of changing oceanic predator abundances.CrossRef | 19298616PubMed | open url image1

Bellwood, D. R., Hoey, A. S., and Choat, J. H. (2003). Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters 6, 281–285.
Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs.CrossRef | open url image1

Caley, M. J., and St John, J. (1996). Refuge availability structures assemblages of tropical reef fishes. Journal of Animal Ecology 65, 414–428.
Refuge availability structures assemblages of tropical reef fishes.CrossRef | open url image1

Ceccarelli, D. M., Jones, G. P., and McCook, L. J. (2001). Territorial damselfishes as determinants of the structure of benthic communities on coral reefs. Oceanography and Marine Biology – an Annual Review 39, 355–389. open url image1

De’ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology 88, 243–251.
Boosted trees for ecological modeling and prediction.CrossRef | 17489472PubMed | open url image1

Denny, C. M. (2005). Distribution and abundance of labrids in northeastern New Zealand: the relationship between depth, exposure and pectoral fin aspect ratio. Environmental Biology of Fishes 72, 33–43.
Distribution and abundance of labrids in northeastern New Zealand: the relationship between depth, exposure and pectoral fin aspect ratio.CrossRef | open url image1

Duffy, J. E. (2003). Biodiversity loss, trophic skew and ecosystem functioning. Ecology Letters 6, 680–687.
Biodiversity loss, trophic skew and ecosystem functioning.CrossRef | open url image1

Dulvy, N. K., Freckleton, R. P., and Polunin, N. V. C. (2004). Coral reef cascades and the indirect effects of predator removal by exploitation. Ecology Letters 7, 410–416.
Coral reef cascades and the indirect effects of predator removal by exploitation.CrossRef | open url image1

Edwards, A. J. (1985). Saint Paul’s Rocks: a bibliographical review of the natural history of a mid-Atlantic island. Archives of Natural History 12, 31–49.
Saint Paul’s Rocks: a bibliographical review of the natural history of a mid-Atlantic island.CrossRef | open url image1

Elith, J., Leathwick, J. R., and Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology 77, 802–813.
A working guide to boosted regression trees.CrossRef | 1:STN:280:DC%2BD1cvgsFOqsQ%3D%3D&md5=6bf5cbdc5da9857e868eaf296231d27dCAS | 18397250PubMed | open url image1

Feitoza, B. M., Rocha, L. A., Luiz-Junior, O. J., Floeter, S. R., and Gasparini, J. L. (2003). Reef fishes of St Paul’s Rocks: new records and notes on biology and zoogeography. Aqua. Journal of Ichthyology and Aquatic Biology 7, 61–82. open url image1

Ferreira, C. E. L., and Gonçalves, J. E. A. (2006). Community structure and diet of roving herbivorous reef fishes in the Abrolhos Archipelago, south-western Atlantic. Journal of Fish Biology 69, 1533–1551.
Community structure and diet of roving herbivorous reef fishes in the Abrolhos Archipelago, south-western Atlantic.CrossRef | open url image1

Ferreira, C. E., Gonçalves, J. E., and Coutinho, R. (2001). Community structure of fishes and habitat complexity on a tropical rocky shore. Environmental Biology of Fishes 61, 353–369.
Community structure of fishes and habitat complexity on a tropical rocky shore.CrossRef | open url image1

Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P., and Joyeux, J.-C. (2004). Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography 31, 1093–1106.
Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison.CrossRef | open url image1

Ferreira, C. E. L., Luiz, O. J., Feitoza, B. M., Ferreira, C. G. W., Noguchi, R. C., Gasparini, J. L., Joyeux, J.-C., Godoy, E. A. S., Rangel, C. A., Rocha, L. A., Floeter, S. R., and Carvalho-Filho, A. (2009). Peixes recifais: síntese do atual conhecimento. In ‘O Arquipélago de São Pedro e São Paulo: 10 Anos de Estação Científica’ (Eds D. L. Viana, F. H. V. Hazin and M. A. C. Souza.) pp. 244–250. (SECIRM: Brasília).

Floeter, S. R., Krohling, W., Gasparini, J. L., Ferreira, C. E., and Zalmon, I. R. (2007). Reef fish community structure on coastal islands of the southeastern Brazil: the influence of exposure and benthic cover. Environmental Biology of Fishes 78, 147–160.
Reef fish community structure on coastal islands of the southeastern Brazil: the influence of exposure and benthic cover.CrossRef | open url image1

Floeter, S. R., Rocha, L. A., Robertson, D. R., Joyeux, J. C., Smith-Vaniz, W. F., Wirtz, P., Edwards, A. J., Barreiros, J. P., Ferreira, C. E. L., Gasparini, J. L., Brito, A., Falcón, J. M., Bowen, B. W., and Bernardi, G. (2008). Atlantic reef fish biogeography and evolution. Journal of Biogeography 35, 22–47. open url image1

Fonseca, C. R., and Ganade, G. (2001). Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology 89, 118–125.
Species functional redundancy, random extinctions and the stability of ecosystems.CrossRef | open url image1

Friedlander, A. M., and DeMartini, E. E. (2002). Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Marine Ecology Progress Series 230, 253–264.
Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators.CrossRef | open url image1

Friedlander, A. M., Ballesteros, E., Beets, J., Berkenpas, E., Gaymer, C. F., Gorny, M., and Sala, E. (2013). Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile. Aquatic Conservation: Marine and Freshwater Ecosystems 23, 515–531.
Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile.CrossRef | open url image1

Fulton, C. J., Bellwood, D. R., and Wainwright, P. C. (2005). Wave energy and swimming performance shape coral reef fish assemblages. Proceedings. Biological Sciences 272, 827–832.
Wave energy and swimming performance shape coral reef fish assemblages.CrossRef | 1:STN:280:DC%2BD2M3kvF2itA%3D%3D&md5=d9ae236189c08649ea0065f0e1933094CAS | open url image1

Gasparini, J. L., Luiz, O. J., and Sazima, I. (2008). Cleaners from the underground. Coral Reefs 27, 143.
Cleaners from the underground.CrossRef | open url image1

Graham, N. A., Wilson, S. K., Jennings, S., Polunin, N. V., Bijoux, J. P., and Robinson, J. (2006). Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences of the United States of America 103, 8425–8429.
Dynamic fragility of oceanic coral reef ecosystems.CrossRef | 1:CAS:528:DC%2BD28XlvFCht7k%3D&md5=aa3aa654635da81f833f02d324bd7455CAS | 16709673PubMed | open url image1

Graham, N. A., Spalding, M. D., and Sheppard, C. R. (2010). Reef shark declines in remote atolls highlight the need for multi-faceted conservation action. Aquatic Conservation: Marine and Freshwater Ecosystems 20, 543–548.
Reef shark declines in remote atolls highlight the need for multi-faceted conservation action.CrossRef | open url image1

Halpern, B. S., and Floeter, S. R. (2008). Functional diversity responses to changing species richness in reef fish communities. Marine Ecology Progress Series 364, 147–156.
Functional diversity responses to changing species richness in reef fish communities.CrossRef | open url image1

Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R., and Williams, D. M. (1988). Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bulletin of Marine Science 42, 459–479. open url image1

Harborne, A. R., Jelks, H. L., Smith-Vaniz, W. F., and Rocha, L. A. (2012). Abiotic and biotic controls of cryptobenthic fish assemblages across a Caribbean seascape. Coral Reefs 31, 977–990.
Abiotic and biotic controls of cryptobenthic fish assemblages across a Caribbean seascape.CrossRef | open url image1

Heinlein, J. M., Stier, A. C., and Steele, M. A. (2010). Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation. Coral Reefs 29, 527–532.
Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation.CrossRef | open url image1

Hixon, M. A. (2011). 60 years of coral reef fish ecology: past, present and future. Bulletin of Marine Science 87, 727–765.
60 years of coral reef fish ecology: past, present and future.CrossRef | open url image1

Hobbs, J. P. A., Jones, G. P., and Munday, P. L. (2010). Rarity and extinction risk in coral reef angelfishes on isolated islands: interrelationships among abundance, geographic range size and specialisation. Coral Reefs 29, 1–11.
Rarity and extinction risk in coral reef angelfishes on isolated islands: interrelationships among abundance, geographic range size and specialisation.CrossRef | open url image1

Hobbs, J. P. A., Jones, G. P., Munday, P. L., Connolly, S. R., and Srinivasan, M. (2012). Biogeography and the structure of coral reef fish communities on isolated islands. Journal of Biogeography 39, 130–139.
Biogeography and the structure of coral reef fish communities on isolated islands.CrossRef | open url image1

Hoey, A. S., and Bellwood, D. R. (2009). Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328.
Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs.CrossRef | open url image1

Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J., and Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75, 3–35.
Effects of biodiversity on ecosystem functioning: a consensus of current knowledge.CrossRef | open url image1

Jones, G. P., and Syms, C. (1998). Disturbance, habitat structure and the ecology of fishes on coral reefs. Australian Journal of Ecology 23, 287–297.
Disturbance, habitat structure and the ecology of fishes on coral reefs.CrossRef | open url image1

Kohler, K. E., and Gill, S. M. (2006). Coral point count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences 32, 1259–1269.
Coral point count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology.CrossRef | open url image1

Komyakova, V., Munday, P. L., and Jones, G. P. (2013). Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 8, e83178.
Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities.CrossRef | 24349455PubMed | open url image1

Krajewski, J. P., and Floeter, S. R. (2011). Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic composition. Environmental Biology of Fishes 92, 25–40.
Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic composition.CrossRef | open url image1

Legendre, P., and Legendre, L. (2012). ‘Numerical Ecology’, 3rd edn. (Elsevier Science: Amsterdam.)

Lubbock, R., and Edwards, A. (1981). The fishes of Saint Paul’s Rocks. Journal of Fish Biology 18, 135–157.
The fishes of Saint Paul’s Rocks.CrossRef | open url image1

Luckhurst, B. E., and Luckhurst, K. (1978). Analysis of the influence of substrate variables on coral reef fish communities. Marine Biology 49, 317–323.
Analysis of the influence of substrate variables on coral reef fish communities.CrossRef | open url image1

Luiz, O. J., and Edwards, A. J. (2011). Extinction of a shark population in the Archipelago of Saint Paul’s Rocks (equatorial Atlantic) inferred from the historical record. Biological Conservation 144, 2873–2881.
Extinction of a shark population in the Archipelago of Saint Paul’s Rocks (equatorial Atlantic) inferred from the historical record.CrossRef | open url image1

Luiz, O. J., Carvalho-Filho, A., Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., and Sazima, I. (2008). The reef fish assemblage of the Laje de Santos Marine State Park, southwestern Atlantic: annotated checklist with comments on abundance, distribution, trophic structure, symbiotic association, and conservation. Zootaxa 1807, 1–25. open url image1

MacArthur, R. H., and Wilson, E. O. (1967). ‘The Theory of Island Biogeography.’ (Princeton University Press: Princeton, NJ.)

Mason, N. W. H., Mouillot, D., Lee, W. G., and Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118.
Functional richness, functional evenness and functional divergence: the primary components of functional diversity.CrossRef | open url image1

McGehee, M. A. (1994). Correspondence between assemblages of coral reef fishes and gradients of water motion, depth, and substrate size off Puerto Rico. Marine Ecology Progress Series 105, 243–255.
Correspondence between assemblages of coral reef fishes and gradients of water motion, depth, and substrate size off Puerto Rico.CrossRef | open url image1

Messmer, V., Jones, G. P., Munday, P. L., Holbrook, S. J., Schmitt, R. J., and Brooks, A. J. (2011). Habitat biodiversity as a determinant of fish community structure on coral reefs. Ecology 92, 2285–2298.
Habitat biodiversity as a determinant of fish community structure on coral reefs.CrossRef | 22352168PubMed | open url image1

Milazzo, M., Palmeri, A., Falcón, J. M., Badalamenti, F., Garcìa-Charton, J. A., Sinopoli, M., Chemello, R., and Brito, A. (2011). Vertical distribution of two sympatric labrid fishes in the western Mediterranean and eastern Atlantic rocky subtidal: local shore topography does matter. Marine Ecology 32, 521–531.
Vertical distribution of two sympatric labrid fishes in the western Mediterranean and eastern Atlantic rocky subtidal: local shore topography does matter.CrossRef | open url image1

Mora, C., Aburto-Oropeza, O., Bocos, A. A., Ayotte, P. M., Banks, S., Bauman, A. G., Beger, M., Bessudo, S., Booth, D. J., Brokovich, E., Brooks, A., Chabanet, P., Cinner, J. E., Cortés, J., Cruz-Motta, J. J., Cupul-Magaña, A., DeMartini, E. E., Edgar, G. J., Feary, D. A., Ferse, C. A., Friedlander, A. M., Gaston, K. J., Gough, C., Graham, N. A. J., Green, A., Huzman, H., Hardt, M., Kulbicki, M., Letourneur, Y., López-Pérez, A., Loreau, M., Loya, Y., Martinez, C., Mascareñas-Osorio, I., Morove, T., Nadon, M.-O., Nakamura, Y., Paredes, G., Polunin, N. V. C., Pratchett, M. S., Reyes-Bonilla, H., Rivera, F., Sala, E., Sandin, S. A., Soler, G., Stuart-Smith, R., Tessier, E., Tittensor, D. P., Tupper, M., Usseglio, P., Vigliola, L., Wantiez, L., Willians, I., Wilson, S. K., and Zapata, F. A. (2011). Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biology 9, e1000606.
Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes.CrossRef | 1:CAS:528:DC%2BC3MXkvV2gtLY%3D&md5=18ae00bb5d227d19f69f5132dab95dc4CAS | 21483714PubMed | open url image1

Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C. E. T., Renaud, J., and Thuiller, W. (2013). Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology 11, e1001569.
Rare species support vulnerable functions in high-diversity ecosystems.CrossRef | 1:CAS:528:DC%2BC3sXptlyhu7k%3D&md5=317b13ded3b12dadd60e19028c8e8cdeCAS | 23723735PubMed | open url image1

Mouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias-Gonzales, J., Bender, M. G., Chabanet, P., Floeter, S. R., Friedlander, A., Vigliola, L., and Bellwood, D. R. (2014). Functional over-redundancy and high functional vulnerability in global fish faunas of tropical reefs. Proceedings of the National Academy of Sciences of the United States of America 111, 13 757–13 762.
Functional over-redundancy and high functional vulnerability in global fish faunas of tropical reefs.CrossRef | 1:CAS:528:DC%2BC2cXhsFCisbbE&md5=142fb13196012d2a87dff75f476949d5CAS | open url image1

Myers, R. A., and Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283.
Rapid worldwide depletion of predatory fish communities.CrossRef | 1:CAS:528:DC%2BD3sXjs1ynurw%3D&md5=7be6ba1eea0984b524ba545aefb981d3CAS | 12748640PubMed | open url image1

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H. (2013). vegan: Community Ecology Package. R. package version 2.0-8. Available at http://CRAN.R-project.org/package=vegan [Verified 15 November 2014].

Paddack, M. J., Reynolds, J. D., Aguilar, C., Appeldoorn, R. S., Beets, J., Burkett, E. W., Chittaro, P. M., Clarke, K., Esteves, R., Fonseca, A. C., Forrester, G. E., Friedlander, A. M., García-Sais, J., González-Sansón, G., Jordan, L. K. B., McClellan, D. B., Miller, M. W., Molloy, P. P., Mumby, P. J., Nagelkerken, I., Nemeth, M., Navas-Camacho, R., Pitt, J., Polunin, N. V. C., Reyes-Nivia, M. C., Robertson, D. R., Rodríguez-Ramírez, A., Salas, E., Smith, S. R., Spieler, R. E., Steele, M. A., Willians, I. D., Wormald, C. L., Watkinson, A. R., and Côté, I. M. (2009). Recent region-wide declines in Caribbean reef fish abundance. Current Biology 19, 590–595.
Recent region-wide declines in Caribbean reef fish abundance.CrossRef | 1:CAS:528:DC%2BD1MXksVCmtL4%3D&md5=8bd2c68f60953a140b73c07aa65d0e7bCAS | 19303296PubMed | open url image1

Pinheiro, H. T., Ferreira, C. E. L., Joyeux, J. C., Santos, R. G., and Horta, P. A. (2011). Reef fish structure and distribution in a south-western Atlantic Ocean tropical island. Journal of Fish Biology 79, 1984–2006.
Reef fish structure and distribution in a south-western Atlantic Ocean tropical island.CrossRef | 1:STN:280:DC%2BC38%2FltFamsQ%3D%3D&md5=b87a2f5c202a528c96c7fb76ec8526c1CAS | 22141900PubMed | open url image1

R Development Core Team (2014). R: a language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna, Austria.)

Ridgeway, G. (2014). Generalized boosted regression models. Documentation on the R Package ‘gbm’, version 1.5-7. Available at http://cran.r-project.org/web/packages/gbm/gbm.pdf [Verified 15 November 2014].

Rilov, G., Figueira, W. F., Lyman, S. J., and Crowder, L. B. (2007). Complex habitats may not always benefit prey: linking visual field with reef fish behavior and distribution. Marine Ecology Progress Series 329, 225–238.
Complex habitats may not always benefit prey: linking visual field with reef fish behavior and distribution.CrossRef | open url image1

Roberts, C. M., and Ormond, R. F. G. (1987). Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecology Progress Series 41, 1–8.
Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs.CrossRef | 1:STN:280:DyaL1M%2Fgt1Clug%3D%3D&md5=3cdd6959f1da7ea5dafa67c40bd6bce4CAS | open url image1

Roberts, C. M., McClean, C. J., Veron, J. E., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, D. E., Spalding, M., Wells, F., Vynne, C., and Werner, T. B. (2002). Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284.
Marine biodiversity hotspots and conservation priorities for tropical reefs.CrossRef | 1:CAS:528:DC%2BD38XhsVGhsr8%3D&md5=14f93eda17f02c944f616b9a068c3cedCAS | 11847338PubMed | open url image1

Robertson, D. R. (2001). Population maintenance among tropical reef fishes: inferences from small-island endemics. Proceedings of the National Academy of Sciences of the United States of America 98, 5667–5670.
Population maintenance among tropical reef fishes: inferences from small-island endemics.CrossRef | 1:CAS:528:DC%2BD3MXjs1WnsL4%3D&md5=892485e3127e0461fc5d29fad0c51833CAS | 11331752PubMed | open url image1

Ruppert, J. L., Travers, M. J., Smith, L. L., Fortin, M. J., and Meekan, M. G. (2013). Caught in the middle: combined impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS ONE 8, e74648.
Caught in the middle: combined impacts of shark removal and coral loss on the fish communities of coral reefs.CrossRef | 1:CAS:528:DC%2BC3sXhsFektbrF&md5=c40ab0a3094feaebc3d8666b59442f16CAS | 24058618PubMed | open url image1

Sandin, S. A., Smith, J. E., DeMartini, E. E., Dinsdale, E. A., Donner, S. D., Friedlander, A. M., Konotchick, T., Malay, M., Maragos, J. E., Obura, D., Pantos, O., Paulay, G., Richie, M., Rohwer, F., Schroeder, R. E., Walsh, S., Jackson, J. B. C., Knowlton, N., and Sala, E. (2008). Baselines and degradation of coral reefs in the northern Line Islands. PLoS ONE 3, e1548.
Baselines and degradation of coral reefs in the northern Line Islands.CrossRef | 18301734PubMed | open url image1

Srinivasan, M. (2003). Depth distributions of coral reef fishes: the influence of microhabitat structure, settlement, and post-settlement processes. Oecologia 137, 76–84.
Depth distributions of coral reef fishes: the influence of microhabitat structure, settlement, and post-settlement processes.CrossRef | 12856204PubMed | open url image1

Stevenson, C., Katz, L. S., Micheli, F., Block, B., Heiman, K. W., Perle, C., Weng, K., Dunbar, R., and Witting, J. (2007). High apex predator biomass on remote Pacific islands. Coral Reefs 26, 47–51.
High apex predator biomass on remote Pacific islands.CrossRef | open url image1

Teh, L. S., Teh, L. C., and Sumaila, U. R. (2013). A global estimate of the number of coral reef fishers. PLoS ONE 8, e65397.
A global estimate of the number of coral reef fishers.CrossRef | 1:CAS:528:DC%2BC3sXhtVKltL3E&md5=db6a4c04976ec8a62822571d2d88a508CAS | 23840327PubMed | open url image1

Thresher, R. E. (1983). Environmental correlates of the distribution of planktivorous fishes in the One Tree Reef Lagoon. Marine Ecology Progress Series 10, 137–145.
Environmental correlates of the distribution of planktivorous fishes in the One Tree Reef Lagoon.CrossRef | open url image1

Vaske, T. Jr, Nóbrega, M. F., Lessa, R. P., Hazin, F. H. V., Santana, F. M., Ribeiro, A, C. B., Pereira, A. A., and Andrade, C. D. P. (2010). Pesca. In ‘Arquipélago de São Pedro e São Paulo: Histórico e Recursos Naturais’. (Ed T. Vaske Jr.) pp. 181–188. (NAVE/LABOMAR-UFC: Fortaleza.)

Vitousek, P. M. (2002). Oceanic islands as model systems for ecological studies. Journal of Biogeography 29, 573–582.
Oceanic islands as model systems for ecological studies.CrossRef | open url image1

Walsh, S. M., Hamilton, S. L., Ruttenberg, B. I., Donovan, M. K., and Sandin, S. A. (2012). Fishing top predators indirectly affects condition and reproduction in a reef-fish community. Journal of Fish Biology 80, 519–537.
Fishing top predators indirectly affects condition and reproduction in a reef-fish community.CrossRef | 1:STN:280:DC%2BC38ritF2lsQ%3D%3D&md5=95af62431d01eeb21f3f79c58e0afc4eCAS | 22380551PubMed | open url image1

Ward, P., and Myers, R. A. (2005). Shifts in open-ocean fish communities coinciding with the commencement of commercial fishing. Ecology 86, 835–847.
Shifts in open-ocean fish communities coinciding with the commencement of commercial fishing.CrossRef | open url image1

Wilson, S. K., Graham, N. A. J., and Polunin, N. V. C. (2007). Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Marine Biology 151, 1069–1076.
Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs.CrossRef | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (851 KB) Export Citation Cited By (5)