Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Can top-down and bottom-up forces explain phytoplankton structure in a subtropical and shallow groundwater-connected lake?

Diego Frau A D , Melina Devercelli A , Susana José de Paggi A B , Pablo Scarabotti A C , Gisela Mayora A , Yamila Battauz A and Mariana Senn A
+ Author Affiliations
- Author Affiliations

A Instituto Nacional de Limnología (INALI), Ciudad Universitaria, Paraje El Pozo s/n, CP 3000, Santa Fe, Argentina.

B E.S. Sanidad, Facultad de Bioquímica y Ciencias Biológicas (UNL), Ciudad Universitaria, Paraje El Pozo s/n, CP 3000, Santa Fe, Argentina.

C Facultad de Humanidades y Ciencias (UNL), Ciudad Universitaria, Paraje El Pozo s/n, CP 3000, Santa Fe, Argentina.

D Corresponding author. Email: diegofrau@gmail.com

Marine and Freshwater Research 66(12) 1106-1115 https://doi.org/10.1071/MF14177
Submitted: 11 March 2014  Accepted: 18 December 2014   Published: 27 April 2015

Abstract

Bottom-up and top-down control of phytoplankton is one of the most important hypothesis that explains and predicts the structure of aquatic community. Our aim was to elucidate whether predation and resource limitation can control phytoplankton composition and abundance in a subtropical shallow lake with groundwater connection to the river system. During 12 months, the lake was sampled at three points. Physico-chemical parameters, phytoplankton and zooplankton were sampled fortnightly, whereas fish were sampled every 3 months. The results showed that Euglenophyta dominated the total biovolume, followed by Dinophyta and Cryptophyta. As for the species composition, Chlorophyta was the dominant group (80 species recorded), followed by phylum Cyanobacteria (26 species recorded). Redundancy analysis (RDA) indicated that temperature and nitrate + nitrite concentration mainly explained biovolume changes, with zooplankton predation not having any measurable effect on phytoplankton during the high-water (HW) period. During low-water (LW) period top-down by fish was more important. At higher taxonomic resolution (species biovolume), phosphorus was another controlling factor. We concluded that phytoplankton in this lake is mainly regulated by hydrological changes as a macrofactor that affects nutrient availability and other environmental conditions. Even though bottom-up top-down forces do not have a central effect, we found evidence of positive nutrient influences at the HW period and fish effect at the LW period.

Additional keywords: control factors, floodplain lakes, hydrological connectivity, plankton.


References

Ahearn, D. S., Viers, J. H., Mount, J. F., and Dahlgren, R. A. (2006). Priming the productivity pump: flood pulse driven trends in suspended algal biomass distribution across a restored floodplain. Freshwater Biology 51, 1417–1433.
Priming the productivity pump: flood pulse driven trends in suspended algal biomass distribution across a restored floodplain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFGntrY%3D&md5=0ad89ac157ac543c2d89de81923553ceCAS |

Amoros, C., and Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47, 761–776.
Connectivity and biocomplexity in waterbodies of riverine floodplains.Crossref | GoogleScholarGoogle Scholar |

Benndorf, J., Böing, W., Koop, J., and Neubauer, I. (2002). Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology 47, 2282–2295.
Top-down control of phytoplankton: the role of time scale, lake depth and trophic state.Crossref | GoogleScholarGoogle Scholar |

Borer, E. T., Seabloom, E. W., Shurin, J. B., Anderson, K. E., Blanchette, C. A., Broitman, B., Cooper, S. D., and Halpern, B. S. (2005). What determines the strength of a trophic cascade? Ecology 86, 528–537.
What determines the strength of a trophic cascade?Crossref | GoogleScholarGoogle Scholar |

Byrnes, J., Stachowicz, J. J., Hultgren, K. M., Hughes, A. R., Olyarnik, S. V., and Thornber, C. S. (2006). Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behavior. Ecology Letters 9, 61–71.
| 16958869PubMed |

Carignan, R., and Neiff, J. J. (1992). Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichornia crassipes. Biogeochemistry 17, 85–121.
Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichornia crassipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtV2itrk%3D&md5=bc52cdac034efbe371a1a9fd9269305dCAS |

Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Cocharan, P. A., Elser, J. J., Elser, M. M., Lodge, D. M., Kretchmer, D., He, X., and von Ende, C. N. (1987). Regulation of lake primary productivity by food web structrure. Ecology 68, 1863–1876.
Regulation of lake primary productivity by food web structrure.Crossref | GoogleScholarGoogle Scholar |

Chase, J. M. (1999). Food web effects of prey size refugia: variable interactions and alternative stable equilibrium. American Naturalist 154, 559–570.
Food web effects of prey size refugia: variable interactions and alternative stable equilibrium.Crossref | GoogleScholarGoogle Scholar | 10561128PubMed |

Chase, J. M. (2003). Strong and weak trophic cascades along a productivity gradient. Oikos 101, 187–195.
Strong and weak trophic cascades along a productivity gradient.Crossref | GoogleScholarGoogle Scholar |

Descy, J. P., Everbecq, E., Gosselain, V., Viroux, L., and Smitz, J. S. (2003). Modeling the impact of benthic filter-feeders on the composition and biomass of river plankton. Freshwater Biology 48, 404–417.
Modeling the impact of benthic filter-feeders on the composition and biomass of river plankton.Crossref | GoogleScholarGoogle Scholar |

Descy, J. P., Leitao, M., Everbecq, E., Smitz, J. S., and Franc, J. (2011). Phytoplankton of the River Loire, France: a biodiversity and modelling study. Journal of Plankton Research 0, 1–16.

Divina de Oliveira, M. D., and Calheiros, D. (2000). Flood pulse influence on phytoplankton communities of the south Pantanal, Brasil. Hydrobiologia 427, 101–112.
Flood pulse influence on phytoplankton communities of the south Pantanal, Brasil.Crossref | GoogleScholarGoogle Scholar |

Fernández, E. M., Ferriz, R. A., Bentos, C. A., and López, G. R. (2012). Dieta y ecomorfología de la ictiofauna del arroyo Manantiales, provincia de Buenos Aires, Argentina. Revista del Museo Argentino de Ciencias Naturales 14, 1–13.

García de Emiliani, M. O. (1997). Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Parana River, Argentina). Hydrobiologia 357, 1–15.
Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Parana River, Argentina).Crossref | GoogleScholarGoogle Scholar |

Granado, D. C., and Henry, R. (2014). Phytoplankton community response to hydrological variations in oxbow lakes with different levels of connection to a tropical river. Hydrobiologia 721, 223–238.
Phytoplankton community response to hydrological variations in oxbow lakes with different levels of connection to a tropical river.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVShtLbE&md5=b0be75ae1f850499386f1e60151ac550CAS |

Gripenberg, S., and Roslin, T. (2007). Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology. Oikos 116, 181–188.
Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology.Crossref | GoogleScholarGoogle Scholar |

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9.

Hansson, L. A., Gyllström, M., Delbanco, A. H., and Svensson, M. (2004). Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biology 49, 1538–1550.
Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution.Crossref | GoogleScholarGoogle Scholar |

Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424.
Biovolume calculation for pelagic and benthic microalgae.Crossref | GoogleScholarGoogle Scholar |

Huszar, V. L. de M., and Reynolds, C. S. (1997). Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brazil): response to gradual environmental change. Hydrobiologia 346, 169–181.
Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brazil): response to gradual environmental change.Crossref | GoogleScholarGoogle Scholar |

Iglesias, C., Mazzeo, N., Goyenola, G., Fosalba, C., Teixeira de Mello, F., García, S., and Jeppesen, E. (2008). Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53, 1797–1807.
Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes.Crossref | GoogleScholarGoogle Scholar |

Izaguirre, I., O’ Farrell, I., and Tell, G. (2001). Variation in phytoplankton composition and limnological features in a water–water ecotone of the lower Paraná basin (Argentina). Freshwater Biology 46, 63–74.

Jones, R. I. (2000). Mixotrophy in planktonic protists: an overview. Freshwater Biology 45, 219–226.
Mixotrophy in planktonic protists: an overview.Crossref | GoogleScholarGoogle Scholar |

Junk, W. J., Bayley, P. B., and Sparks, R. E. (1989). The flood pulse concept in river-floodpla systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110–127.

Koenings, J. P., and Edmundson, J. A. (1991). Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity. Limnology and Oceanography 36, 91–105.
Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity.Crossref | GoogleScholarGoogle Scholar |

Lazzaro, X., Bouvy, M., Ribeiro-Filho, R. A., Oliviera, V. S., Sales, L. T., Vasconcelos, A. R. M., and Mata, M. R. (2003). Do fish regulate phytoplankton in shallow eutrophic northeast Brazilian reservoirs? Freshwater Biology 48, 649–668.
Do fish regulate phytoplankton in shallow eutrophic northeast Brazilian reservoirs?Crossref | GoogleScholarGoogle Scholar |

Lepš, J., and Šmilauer, P. (1999). ‘Multivariate Analysis of Ecological Data.’ (Faculty of Biological Sciences, University of South Bohemia: Ceské Budejovice, Czech Republic.)

López Cazorla, A., Durán, C., and Tejera, L. (2003). Alimentación de la ictiofauna del río Sauce Grand, provincia de Buenos Aires, Argentina. Biologia Acuatica 20, 73–79.

Loverde-Oliveira, S. M., Pietro-Souza, W., Cardoso, S.J., Fantin-Cruz, I., and Mateus, A. L. (2012). Fatores associados à distribuição espacial do fitoplâncton em lagos de inundação (Pantanal Norte, Brasil). Oecologia Australis 16, 770–781.
Fatores associados à distribuição espacial do fitoplâncton em lagos de inundação (Pantanal Norte, Brasil).Crossref | GoogleScholarGoogle Scholar |

Maberly, S. C., King, L., Dent, M. M., Jones, R. I., and Gibson, C. E. (2002). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology 47, 2136–2152.
Nutrient limitation of phytoplankton and periphyton growth in upland lakes.Crossref | GoogleScholarGoogle Scholar |

Mayora, G., Devercelli, M., and Giri, F. (2013). Spatial variability of chlorophyll-a and abiotic variables in a river–floodplain system during different hydrological phases. Hydrobiologia 717, 51–63.
Spatial variability of chlorophyll-a and abiotic variables in a river–floodplain system during different hydrological phases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSht7jE&md5=75738c6aada56b2b7e427a5a7da35711CAS |

McQueen, D. J., Johannes, M. R. S., Post, J. R., Stewart, T. J., and Lean, D. R. S. (1989). Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs 59, 289–309.
Bottom-up and top-down impacts on freshwater pelagic community structure.Crossref | GoogleScholarGoogle Scholar |

Mihaljević, M., Stević, F., Horvatić, J., and Kutuzović, B. H. (2009). Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia 618, 77–88.
Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia).Crossref | GoogleScholarGoogle Scholar |

Petry, P., Bayley, P. B., and Markle, D. F. (2003). Relationships between fish assemblages, macrophytes and environmental gradients in the amazon river floodplain. Journal of Fish Biology 63, 547–579.
Relationships between fish assemblages, macrophytes and environmental gradients in the amazon river floodplain.Crossref | GoogleScholarGoogle Scholar |

Rejas, D., Declerck, S., Auwerken, J., Tak, P., and de Meester, L. (2005). Plankton dynamics in a tropical floodplain lake: fish, nutrients, and the relative importance of bottom-up and top-down control. Freshwater Biology 50, 52–69.
Plankton dynamics in a tropical floodplain lake: fish, nutrients, and the relative importance of bottom-up and top-down control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFejs7o%3D&md5=6cd284755de71ce3f155b4cffca26885CAS |

Reynolds, C. S. (1994). The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and river. Hydrobiologia 289, 9–21.
The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and river.Crossref | GoogleScholarGoogle Scholar |

Reynolds, C. S., Huszar, V. L. de M., Kruk, C., Naselli-Flores, L., and Melo, L. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24, 417–428.
Towards a functional classification of the freshwater phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Rodríguez, M. A., and Lewis, W. M. (1997). Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecological Monographs 67, 109–128.
Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River.Crossref | GoogleScholarGoogle Scholar |

Sarnelle, O., and Knapp, R. A. (2005). Nutrient recycling by fish versus zooplankton grazing as drivers of the trophic cascade in alpine lakes. Limnology and Oceanography 50, 2032–2042.
Nutrient recycling by fish versus zooplankton grazing as drivers of the trophic cascade in alpine lakes.Crossref | GoogleScholarGoogle Scholar |

Saros, J. E., and Fritz, S. C. (2000). Changes in the growth rates of saline-lake diatoms in response to variation in salinity, brine type, and nitrogen form. Journal of Plankton Research 22, 1071–1083.
Changes in the growth rates of saline-lake diatoms in response to variation in salinity, brine type, and nitrogen form.Crossref | GoogleScholarGoogle Scholar |

Scarabotti, P. A., López, J. A., and Pouilly, M. (2011). Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes. Ecology Freshwater Fish 20, 605–618.
Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes.Crossref | GoogleScholarGoogle Scholar |

Schemel, L. E., Sommer, T. R., Müller-Solger, A. B., and Harrell, W. C. (2004). Hydrologic variability, water chemistry, and phytoplankton biomass in a large floodplain ofthe Sacramento River, CA, USA. Hydrobiologia 513, 129–139.
Hydrologic variability, water chemistry, and phytoplankton biomass in a large floodplain ofthe Sacramento River, CA, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVKrsbs%3D&md5=1c91a6264466c897047024e651451376CAS |

Senn, M. V. (2014). Abundancia y composición de cladóceros y copépodos de una laguna del valle de inundación del Río Paraná. Tesina de Licenciatura, Universidad Nacional del Litoral, Santa Fe, Argentina.

Sinistro, R. (2010). Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland. Journal of Plankton Research 32, 209–220.
Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKktg%3D%3D&md5=234bfd94105aa6e7c663c09ecf34bb9eCAS |

Sinistro, R., Sánchez, M. L., Marinone, M. C., and Izaguirre, I. (2007). Experimental study of the zooplankton impact on the trophic structure of the microbial assemblages in a temperate wetland (Argentina). Limnologica 37, 88–99.
Experimental study of the zooplankton impact on the trophic structure of the microbial assemblages in a temperate wetland (Argentina).Crossref | GoogleScholarGoogle Scholar |

Sommer, U., Sommer, F., Santer, B., Jamieson, C., Boersma, M., Becker, C., and Hansen, T. (2001). Complementary impact of copepods and cladocerans on phytoplankton. Ecology Letters 4, 545–550.
Complementary impact of copepods and cladocerans on phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Stević, F., Mihaljević, M., and Špoljarić, D. (2013). Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709, 143–158.
Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations.Crossref | GoogleScholarGoogle Scholar |

ter Braak, C. J. F., and Šmilauer, P. (1998). ‘CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination (version 4).’ (Microcomputer Power: Ithaca, NY.)

Thomaz, S. M., Bini, M., and Bozelli, R. L. (2007). Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579, 1–13.
Floods increase similarity among aquatic habitats in river–floodplain systems.Crossref | GoogleScholarGoogle Scholar |

Tockner, K., Pennetzdorfer, D., Reiner, N., Schiemer, F., and Ward, J. V. (1999). Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river–floodplain system (Danube, Austria). Freshwater Biology 41, 521–535.
Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river–floodplain system (Danube, Austria).Crossref | GoogleScholarGoogle Scholar |

Utermöhl, H. (1958). Zur Vervollkommnung der quantitative Phytoplankton: Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte 9, 1–38.

Walks, D. J., and Cyr, H. (2004). Movement of plankton through lake–stream systems. Freshwater Biology 49, 745–759.
Movement of plankton through lake–stream systems.Crossref | GoogleScholarGoogle Scholar |

Zalocar de Domitrovic, Y. (1990). Efecto de las fluctuaciones del nivel hidrométrico sobre el fitoplancton en tres lagunas isleñas en el área de confluencia de los ríos Paraná y Paraguay. Ecosur 16, 13–29.

Zalocar de Domitrovic, Y. (1992). Fitoplancton de ambientes inundables del Río Paraná (Argentina). Revue d’Hydrobiologie Tropicale 25, 177–188.

Zalocar de Domitrovic, Y. (2003). Effect of fluctuations in the water level on phytoplankton development in three lakes of the Paraná River floodplain (Argentina). Hydrobiologia 510, 175–193.
Effect of fluctuations in the water level on phytoplankton development in three lakes of the Paraná River floodplain (Argentina).Crossref | GoogleScholarGoogle Scholar |