Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Teleost community composition and the role of herbivory on the intertidal reef of a small isolated island in north-west Australia

Cindy Bessey A F , John K. Keesing A B , James McLaughlin A , Max Rees C , Mark Tonks D , Gary A. Kendrick B E and Ylva S. Olsen https://orcid.org/0000-0003-4498-7057 A B E
+ Author Affiliations
- Author Affiliations

A CSIRO Oceans and Atmosphere Research, Indian Ocean Marine Research Centre, Corner of Fairway and Service Road 4, Crawley, WA 6009, Australia.

B School of Biological Sciences, University of Western Australia, Indian Ocean Marine Research Centre, Corner of Fairway and Service Road 4, Crawley, WA 6009, Australia.

C Adaptations, 38 Allen Street, East Fremantle, WA 6158, Australia.

D CSIRO Oceans and Atmosphere Research, Queensland BioSciences Precinct, 306 Carmody Road, Saint Lucia, Qld 4072, Australia.

E The Oceans Institute, University of Western Australia, Indian Ocean Marine Research Centre, Corner of Fairway and Service Road 4, Crawley, WA 6009, Australia.

F Corresponding author. Email: cindy.bessey@csiro.au

Marine and Freshwater Research 71(6) 684-696 https://doi.org/10.1071/MF19066
Submitted: 22 February 2019  Accepted: 12 July 2019   Published: 9 October 2019

Abstract

Most of the world’s tropical coastal and shelf areas are heavily affected by anthropogenic activities, but the north-west shelf of Australia is considered a ‘very low-impact’ area. The role of herbivory on coral reefs is recognised, but most of that research comes from reefs with considerable land-based impacts. In this study we sampled the teleost community and evaluated herbivory on the reef platform at Browse Island, a small isolated island 200 km off north-western Australia, using several approaches: (1) tethering of macroalgae; (2) herbivore exclosures; and (3) video footage. In total, 99 teleost species from 26 families were identified. Turf algal consumption was evident and 18 teleost turf consumers were identified. In contrast, no evidence was found of herbivory on large macroalgae, and browsers, the only group able to consume macroalgae, were represented by just four species all belonging to the genus Naso. The lack of diversity among these specialist herbivores may be a consequence of the small surface area of the reef and the distance to other emergent reefs. Based on a model of top-down control of macroalgae, the reef is potentially vulnerable to disturbance. Small isolated reefs can have low resilience despite having low impacts from land.

Additional keywords: browsers, grazers, macroalgae, reef flat, species composition, top-down control.


References

Allen, G. R., and Randall, J. E. (1980). A review of the damselfishes (Teleostei: Pomacentridae) of the Red Sea. Israel Journal of Zoology 29, 1–98.

Ashworth, E. C., Depczynski, M., Holmes, T. H., and Wilson, S. K. (2014). Quantitative diet analysis of four mesopredators from a coral reef. Journal of Fish Biology 84, 1031–1045.
Quantitative diet analysis of four mesopredators from a coral reef.Crossref | GoogleScholarGoogle Scholar | 24641257PubMed |

Bellwood, D. R., Hughes, T. P., and Hoey, A. S. (2006). Sleeping functional group drives coral-reef recovery. Current Biology 16, 2434–2439.
Sleeping functional group drives coral-reef recovery.Crossref | GoogleScholarGoogle Scholar | 17174918PubMed |

Bellwood, D. R., Tebbett, S. B., Bellwood, O., Mihalitsis, M., Morais, R. A., Streit, R. P., and Fulton, C. J. (2018). The role of the reef flat in coral reef trophodynamics: past, present, and future. Ecology and Evolution 8, 4108–4119.
The role of the reef flat in coral reef trophodynamics: past, present, and future.Crossref | GoogleScholarGoogle Scholar | 29721284PubMed |

Bennett, S., and Bellwood, D. R. (2011). Latitudinal variation in macroalgal consumption by fishes on the Great Barrier Reef. Marine Ecology Progress Series 426, 241–252.
Latitudinal variation in macroalgal consumption by fishes on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Berumen, M. L., and Pratchett, M. S. (2008). Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon). Behavioral Ecology and Sociobiology 62, 989–994.
Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon).Crossref | GoogleScholarGoogle Scholar |

Brandl, S. J., and Bellwood, D. R. (2014). Pair-formation in coral reef fishes: an ecological perspective. Oceanography and Marine Biology – an Annual Review 52, 1–80.
Pair-formation in coral reef fishes: an ecological perspective.Crossref | GoogleScholarGoogle Scholar |

Bulman, C., Althaus, F., He, X., Bax, N. J., and Williams, A. (2001). Diets and trophic guilds of demersal fishes of the south-eastern Australian shelf. Marine and Freshwater Research 52, 537–548.
Diets and trophic guilds of demersal fishes of the south-eastern Australian shelf.Crossref | GoogleScholarGoogle Scholar |

Burkepile, D. E., and Hay, M. E. (2010). Impact of herbivore identity on algal succession and coral growth on a Caribbean Reef. PLoS One 5, e8963.
Impact of herbivore identity on algal succession and coral growth on a Caribbean Reef.Crossref | GoogleScholarGoogle Scholar | 20126450PubMed |

Burkholder, D. A., Heithaus, M. R., and Fourqurean, J. W. (2012). Feeding preferences of herbivores in a relatively pristine subtropical seagrass ecosystem. Marine and Freshwater Research 63, 1051–1058.
Feeding preferences of herbivores in a relatively pristine subtropical seagrass ecosystem.Crossref | GoogleScholarGoogle Scholar |

Cheal, A. J., MacNeil, M. A., Cripps, E., Emslie, M. J., Jonker, M., Schaffelke, B., and Sweatman, H. (2010). Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015.
Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Chen, T. (2001). Feeding and territorial behaviour in juveniles of three co-existing triggerfishes. Journal of Fish Biology 59, 524–532.
Feeding and territorial behaviour in juveniles of three co-existing triggerfishes.Crossref | GoogleScholarGoogle Scholar |

Chin, A., Sweatman, H., Forbes, S., Perks, H., Walker, R., Jones, G., Williamson, D., Evans, R., Hartley, F., Armstrong, S., Malcolm, H., and Edgar, G. (2008). Status of the coral reefs in Australia and Papua New Guinea. In ‘Status of Coral Reefs of the World: 2008’. (Ed. C. Wilkinson.) pp. 159–176. (Global Coral Reef Monitoring Network and Rainforest Research Centre: Townsville, Qld, Australia.)

Choat, J., Clements, K., and Robbins, W. (2002). The trophic status of herbivorous fishes on coral reefs. Marine Biology 140, 613–623.
The trophic status of herbivorous fishes on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Choat, J. H., Robbins, W. D., and Clements, K. D. (2004). The trophic status of herbivorous fishes on coral reefs. Marine Biology 145, 445–454.
The trophic status of herbivorous fishes on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Clements, K. D., and Choat, J. H. (1997). Comparison of herbivory in the closely related marine fish genera Girella and Kyphosus. Marine Biology 127, 579–586.
Comparison of herbivory in the closely related marine fish genera Girella and Kyphosus.Crossref | GoogleScholarGoogle Scholar |

Cole, A. J., and Pratchett, M. S. (2013). Diversity in diet and feeding behaviour of butterflyfishes: reliance on reef corals versus reef habitat. In ‘Biology of Butterflyfishes’. (Eds M. S. Pratchett, M. L. Berumen, and B. G. Kapoor.) pp. 107–139. (CRC Press, Taylor and Francis Group: Boca Raton, FL, USA.)

Coughlin, D. J., and Strickler, J. R. (1990). Zooplankton capture by a coral reef fish: an adaptive response to evasive prey. Environmental Biology of Fishes 29, 35–42.
Zooplankton capture by a coral reef fish: an adaptive response to evasive prey.Crossref | GoogleScholarGoogle Scholar |

Cowlishaw, M. (2014). Determinants of home range and territory size in coral reef fishes. Ph.D. Thesis, James Cook University, Townsville, Qld, Australia.

Crossman, D. J., Choat, J. H., and Clements, K. D. (2005). Nutritional ecology of nominally herbivorous fishes on coral reefs. Marine Ecology Progress Series 296, 129–142.
Nutritional ecology of nominally herbivorous fishes on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Done, T. J. (1992). Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247, 121–132.
Phase shifts in coral reef communities and their ecological significance.Crossref | GoogleScholarGoogle Scholar |

Durville, P., and Chabanet, P. (2009). Intertidal rock pool fishes in the natural reserve of Glorieuses Islands (Western Indian Ocean). Western Indian Ocean Journal of Marine Science 8, 225–230.

Durville, P., Chabanet, P., and Quod, J. P. (2003). Visual census of the reef fishes in the natural reserve of the Glorieuses Islands (Western Indian Ocean). Western Indian Ocean Journal of Marine Science 2, 95–104.

Edwards, C. B., Friedlander, A. M., Green, A. G., Hardt, M. J., Sala, E., Sweatman, H. P., Williams, I. D., Zgliczynski, B., Sandin, S. A., and Smith, J. E. (2014). Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proceedings of the Royal Society of London – B. Biological Sciences 281, 20131835.
Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects.Crossref | GoogleScholarGoogle Scholar |

Eggold, B. T., and Motta, P. J. (1992). Ontogenetic dietary shifts and morphological correlates in striped mullet, Mugil cephalus. Environmental Biology of Fishes 34, 139–158.
Ontogenetic dietary shifts and morphological correlates in striped mullet, Mugil cephalus.Crossref | GoogleScholarGoogle Scholar |

Elliott, J. P., and Bellwood, D. R. (2003). Alimentary tract morphology and diet in three coral reef fish families. Journal of Fish Biology 63, 1598–1609.
Alimentary tract morphology and diet in three coral reef fish families.Crossref | GoogleScholarGoogle Scholar |

Fautin, D. G., and Allen, G. R. (1997). ‘Field Guide to Anemone Fishes and Their Host Sea Anemones.’ (Western Australia Museum: Perth, WA, Australia.)

Ferrari, R., Gonzalez-Rivero, M., Ortiz, J. C., and Mumby, P. J. (2012). Interaction of herbivory and seasonality on the dynamics of Caribbean macroalgae. Coral Reefs 31, 683–692.
Interaction of herbivory and seasonality on the dynamics of Caribbean macroalgae.Crossref | GoogleScholarGoogle Scholar |

Ferry-Graham, L. A., Wainwright, P. C., Westneat, M. W., and Bellwood, D. R. (2002). Mechanisms of benthic prey capture in wrasses (Labridae). Marine Biology 141, 819–830.
Mechanisms of benthic prey capture in wrasses (Labridae).Crossref | GoogleScholarGoogle Scholar |

Folke, C., Carpenter, S. J., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., and Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics 35, 557–581.
Regime shifts, resilience, and biodiversity in ecosystem management.Crossref | GoogleScholarGoogle Scholar |

Fox, R. J., and Bellwood, D. R. (2008). Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef. Coral Reefs 27, 605–615.
Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Fox, R. J., Sunderland, T. L., Hoey, A. S., and Bellwood, D. R. (2009). Estimating ecosystem function: contrasting roles of closely related herbivorous rabbitfishes (Siganidae) on coral reefs. Marine Ecology Progress Series 385, 261–269.
Estimating ecosystem function: contrasting roles of closely related herbivorous rabbitfishes (Siganidae) on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P., and Parmentier, E. (2009). Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyological Research 56, 10–17.
Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar.Crossref | GoogleScholarGoogle Scholar |

Gluckmann, I., and Vandewalle, P. (1998). Morphofunctional analysis of the feeding apparatus in four Pomacentridae species: Dascyllus aruanus, Chromis retrofasciata, Chrysiptera biocellata and C. unimaculata. The Italian Journal of Zoology 65, 421–424.
Morphofunctional analysis of the feeding apparatus in four Pomacentridae species: Dascyllus aruanus, Chromis retrofasciata, Chrysiptera biocellata and C. unimaculata.Crossref | GoogleScholarGoogle Scholar |

Gregson, M. A., Pratchett, M. S., Berumen, M. L., and Goodman, B. A. (2008). Relationships between butterflyfish (Chaetodontidae) feeding rates and coral consumption on the Great Barrier Reef. Coral Reefs 27, 583–591.
Relationships between butterflyfish (Chaetodontidae) feeding rates and coral consumption on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Grutter, A. S. (1997). Spatiotemporal variation and feeding selectivity in the diet of the cleaner fish Labroides dimidiatus. Copeia 1997, 346–355.
Spatiotemporal variation and feeding selectivity in the diet of the cleaner fish Labroides dimidiatus.Crossref | GoogleScholarGoogle Scholar |

Halford, A. R., and Caley, M. J. (2009). Towards an understanding of resilience in isolated coral reefs. Global Change Biology 15, 3031–3045.
Towards an understanding of resilience in isolated coral reefs.Crossref | GoogleScholarGoogle Scholar |

Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., and Watson, R. (2008). A global map of human impact on marine ecosystems. Science 319, 948–952.
A global map of human impact on marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 18276889PubMed |

Hiatt, R. W., and Strasburg, D. W. (1960). Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecological Monographs 30, 65–127.
Ecological relationships of the fish fauna on coral reefs of the Marshall Islands.Crossref | GoogleScholarGoogle Scholar |

Hixon, M. A., and Brostoff, W. N. (1996). Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecological Monographs 66, 67–90.
Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae.Crossref | GoogleScholarGoogle Scholar |

Hoey, A. S., and Bellwood, D. R. (2009). Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328.
Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Hoey, A. S., Brandl, S. J., and Bellwood, D. R. (2013). Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function. Coral Reefs 32, 973–984.
Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function.Crossref | GoogleScholarGoogle Scholar |

Holmes, T. H., Wilson, S. K., Vanderklift, M., Babcock, R., and Fraser, M. (2012). The role of Thalassoma lunare as a predator of juvenile fish on a sub-tropical coral reef. Coral Reefs 31, 1113–1123.
The role of Thalassoma lunare as a predator of juvenile fish on a sub-tropical coral reef.Crossref | GoogleScholarGoogle Scholar |

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75, 383–386.
A stagewise rejective multiple test procedure based on a modified Bonferroni test.Crossref | GoogleScholarGoogle Scholar |

Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551.
Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef.Crossref | GoogleScholarGoogle Scholar | 17801530PubMed |

Johansson, C. L., van de Leemput, I. A., Depczynski, M., Hoey, A. S., and Bellwood, D. R. (2013). Key herbivores reveal limited functional redundancy on inshore coral reefs. Coral Reefs 32, 963–972.
Key herbivores reveal limited functional redundancy on inshore coral reefs.Crossref | GoogleScholarGoogle Scholar |

Kolasinski, J., Frouin, P., Sallon, A., Rogers, K., Bruggemann, H. J., and Potier, M. (2009). Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian Ocean. Marine Ecology Progress Series 386, 181–195.
Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Kramer, M. J., Bellwood, O., and Bellwood, D. R. (2016). Foraging and microhabitat use by crustacean-feeding wrasses on coral reefs. Marine Ecology Progress Series 548, 277–282.
Foraging and microhabitat use by crustacean-feeding wrasses on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Kuo, S. R., and Shao, K. T. (1991). Feeding habits of damselfishes (Pomacentridae) from the southern part of Taiwan. Taiwan Shuichanxue Hui Kan 18, 165–176.

Kwak, S. N., Klumpp, D. W., and Park, J. M. (2015). Feeding relationships among juveniles of abundant fish species inhabiting tropical seagrass beds in Cockle Bay, North Queensland, Australia. New Zealand Journal of Marine and Freshwater Research 49, 205–223.
Feeding relationships among juveniles of abundant fish species inhabiting tropical seagrass beds in Cockle Bay, North Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Last, P. R., and Stevens, J. D. (1994). ‘Sharks and Rays of Australia.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Lewis, S. M. (1985). Herbivory on coral reefs: algal susceptibility to herbivorous fishes. Oecologia 65, 370–375.
Herbivory on coral reefs: algal susceptibility to herbivorous fishes.Crossref | GoogleScholarGoogle Scholar | 28310441PubMed |

Ling, M. Y. (2012). Pacific-ciguatoxins (P-CTXS) in coral reef fishes: toxin purification, analytical method validation and trophodynamics in marine food web. Ph.D. Thesis, City University of Hong Kong, Hong Kong SAR, PR China.

Lukoschek, V., and McCormick, M. (2001). Ontogeny of diet changes in a tropical benthic carnivorous fish, Parupeneus barberinus (Mullidae): relationship between foraging behaviour, habitat use, jaw size, and prey selection. Marine Biology 138, 1099–1113.
Ontogeny of diet changes in a tropical benthic carnivorous fish, Parupeneus barberinus (Mullidae): relationship between foraging behaviour, habitat use, jaw size, and prey selection.Crossref | GoogleScholarGoogle Scholar |

Major, P. F. (1973). Scale feeding behavior of the leatherjacket, Scomberoides lysan and two species of the genus Oligoplites (Pisces: Carangidae). Copeia 1973, 151–154.
Scale feeding behavior of the leatherjacket, Scomberoides lysan and two species of the genus Oligoplites (Pisces: Carangidae).Crossref | GoogleScholarGoogle Scholar |

Manjakasy, J. M., Day, R. D., Kemp, A., and Tibbetts, I. R. (2009). Functional morphology of digestion in the stomachless, piscivorous needlefishes Tylosurus gavialoides and Strongylura leiura ferox (Teleostei: Beloniformes). Journal of Morphology 270, 1155–1165.
Functional morphology of digestion in the stomachless, piscivorous needlefishes Tylosurus gavialoides and Strongylura leiura ferox (Teleostei: Beloniformes).Crossref | GoogleScholarGoogle Scholar | 19378267PubMed |

Mantyka, C. S., and Bellwood, D. R. (2007). Macroalgal grazing selectivity among herbivorous coral reef fishes. Marine Ecology Progress Series 352, 177–185.
Macroalgal grazing selectivity among herbivorous coral reef fishes.Crossref | GoogleScholarGoogle Scholar |

Meekan, M. G., Cappo, M. C., Carleton, J. H., and Marriott, R. (2006). Surveys of shark and fin-fish abundance on reefs within the MoU74 Box and Rowleys Shoals using baited remote underwater video systems. Australian Government Department of the Environment and Heritage, Canberra, ACT, Australia.

Mehta, R. S. (2009). Ecomorphology of the moray bite: relationship between dietary extremes and morphological diversity. Physiological and Biochemical Zoology 82, 90–103.
Ecomorphology of the moray bite: relationship between dietary extremes and morphological diversity.Crossref | GoogleScholarGoogle Scholar | 19053846PubMed |

Mellin, C., Huchery, C., Caley, M. J., Meekan, M. G., and Bradshaw, C. J. A. (2010). Reef size and isolation determine the temporal stability of coral reef fish populations. Ecology 91, 3138–3145.
Reef size and isolation determine the temporal stability of coral reef fish populations.Crossref | GoogleScholarGoogle Scholar | 21141175PubMed |

Mequila, A. T., and Campos, W. (2007). Feeding relationships of dominant fish species in the Visayan Sea. Science Diliman 19, 35–46.

Michael, P. J., Hyndes, G. A., Vanderklift, M. A., and Vergés, A. (2013). Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Marine Ecology Progress Series 482, 227–240.
Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef.Crossref | GoogleScholarGoogle Scholar |

Mitchell, M. D., Chivers, D. P., McCormick, M. I., and Ferrari, M. C. (2015). Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation. Scientific Reports 5, 13918.
Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation.Crossref | GoogleScholarGoogle Scholar | 26358861PubMed |

Mori, K. (1984). Early life history of Lutjanus vitta (Lutjanidae) in Yuya Bay, the Sea of Japan. Japanese Journal of Ichthyology 30, 374–392.

Mumby, P. J., Dahlgren, C. P., Harborne, A. R., Kappel, C. V., Micheli, F., Brumbaugh, D. R., Holmes, K. E., Mendes, J. M., Broad, K., Sanchirico, J. N., Buch, K., Box, S., Stoffle, R. W., and Gill, A. B. (2006). Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101.
Fishing, trophic cascades, and the process of grazing on coral reefs.Crossref | GoogleScholarGoogle Scholar | 16400152PubMed |

Nakamura, Y., Horinouchi, M., Nakai, T., and Sano, M. (2003). Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyological Research 50, 15–22.
Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan.Crossref | GoogleScholarGoogle Scholar |

Nanami, A., and Yamada, H. (2008). Foraging rates and substratum selection in foraging activity of checkered snapper Lutjanus decussatus (Lutjanidae) in an Okinawan coral reef. Journal of Fish Biology 73, 1484–1488.
Foraging rates and substratum selection in foraging activity of checkered snapper Lutjanus decussatus (Lutjanidae) in an Okinawan coral reef.Crossref | GoogleScholarGoogle Scholar |

Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K., Bellwood, D. R., and Angeler, D. (2016). Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. Journal of Applied Ecology 53, 646–655.
Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience.Crossref | GoogleScholarGoogle Scholar |

Olsen, Y. S., Bessey, C., McLaughlin, J., and Keesing, J. K. (2017). 2017 annual report: patterns in primary producers, herbivory and reef metabolism around Browse Island. Shell/INPEX ARP7-2 Milestone 2017 Report #2, ARP7.2/UWA/AIMS/RT/45 Rev 1, Shell/INPEX Applied Research Program, Shell Contract number U124206, INPEX Contract number 800950. (Australian Institute of Marine Science and Shell Development (Australia) Pty Ltd (Shell) and INPEX Operations Australia Pty Ltd.) Available at https://www.shell.com.au/sustainability/environment/_jcr_content/par/toptasks_b64e.stream/1536897804284/e4d8489abff3f2bc193cc7bda779d6eeda0e59ab/arp7-2milestone-2017-report-2.pdf [Verified 26 August 2019].

Papastamatiou, Y. P., Purkis, S. J., and Holland, K. N. (2007). The response of gastric pH and motility to fasting and feeding in free swimming blacktip reef sharks, Carcharhinus melanopterus. Journal of Experimental Marine Biology and Ecology 345, 129–140.
The response of gastric pH and motility to fasting and feeding in free swimming blacktip reef sharks, Carcharhinus melanopterus.Crossref | GoogleScholarGoogle Scholar |

Pogoreutz, C., and Ahnelt, H. (2014). Gut morphology and relative gut length do not reliably reflect trophic level in gobiids: a comparison of four species from a tropical Indo-Pacific seagrass bed. Journal of Applied Ichthyology 30, 408–410.
Gut morphology and relative gut length do not reliably reflect trophic level in gobiids: a comparison of four species from a tropical Indo-Pacific seagrass bed.Crossref | GoogleScholarGoogle Scholar |

Potts, G. W. (1980). The predatory behaviour of Caranx melampygus (Pisces) in the channel environment of Aldabra Atoll (Indian Ocean). Journal of Zoology 192, 323–350.
The predatory behaviour of Caranx melampygus (Pisces) in the channel environment of Aldabra Atoll (Indian Ocean).Crossref | GoogleScholarGoogle Scholar |

Pratchett, M. S. (2005). Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Marine Biology 148, 373–382.
Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Pratchett, M. S., and Berumen, M. L. (2008). Interspecific variation in distributions and diets of coral reef butterflyfishes (Teleostei: Chaetodontidae). Journal of Fish Biology 73, 1730–1747.
Interspecific variation in distributions and diets of coral reef butterflyfishes (Teleostei: Chaetodontidae).Crossref | GoogleScholarGoogle Scholar |

Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V., and Graham, N. A. J. (2011). Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity (Basel) 3, 424–452.
Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss.Crossref | GoogleScholarGoogle Scholar |

Puk, L. D., Ferse, S. C. A., and Wild, C. (2016). Patterns and trends in coral reef macroalgae browsing: a review of browsing herbivorous fishes of the Indo-Pacific. Reviews in Fish Biology and Fisheries 26, 53–70.
Patterns and trends in coral reef macroalgae browsing: a review of browsing herbivorous fishes of the Indo-Pacific.Crossref | GoogleScholarGoogle Scholar |

Randall, J. E. (1955). Fishes of the Gilbert Islands. Atoll Research Bulletin 47, 1–243.
Fishes of the Gilbert Islands.Crossref | GoogleScholarGoogle Scholar |

Robertson, D. R., Polunin, N. V. C., and Leighton, K. (1979). The behavioral ecology of three Indian Ocean surgeonfishes (Acanthurus lineatus, A. leucosternon and Zebrasoma scopas): their feeding strategies, and social and mating systems. Environmental Biology of Fishes 4, 125–170.
The behavioral ecology of three Indian Ocean surgeonfishes (Acanthurus lineatus, A. leucosternon and Zebrasoma scopas): their feeding strategies, and social and mating systems.Crossref | GoogleScholarGoogle Scholar |

Rohner, C. A., Burgess, K. B., Rambahiniarison, J. M., Stewart, J. D., Ponzo, A., and Richardson, A. J. (2017). Mobulid rays feed on euphausiids in the Bohol Sea. Royal Society Open Science 4, 161060.
Mobulid rays feed on euphausiids in the Bohol Sea.Crossref | GoogleScholarGoogle Scholar | 28572998PubMed |

Rosser, N. L., Wilson, B. R., Forde, M., Fitzpatrick, J. J., Scoones, R. J. S., and Huisman, J. M. (2014). Marine ecology. In ‘Ecological Studies of the Bonaparte Archipelago and Browse Basin.’ (Eds. J Comrie-Greig and L. J. Abdo.) pp. 271–400. (INPEX Operations Australia Pty Ltd: Perth, WA, Australia.)

Salini, J. P., Blaber, S. J. M., and Brewer, D. T. (1990). Diets of piscivorous fishes in a tropical Australian estuary, with special reference to predation on penaeid prawns. Marine Biology 105, 363–374.
Diets of piscivorous fishes in a tropical Australian estuary, with special reference to predation on penaeid prawns.Crossref | GoogleScholarGoogle Scholar |

Salini, J., Blaber, S., and Brewer, D. (1994). Diets of trawled predatory fish of the Gulf of Carpentaria, Australia, with particular reference to predation on prawns. Marine and Freshwater Research 45, 397–411.
Diets of trawled predatory fish of the Gulf of Carpentaria, Australia, with particular reference to predation on prawns.Crossref | GoogleScholarGoogle Scholar |

Sanderson, S. L. (1991). Functional stereotypy and feeding performance correlated in a trophic specialist. Functional Ecology 5, 795–803.
Functional stereotypy and feeding performance correlated in a trophic specialist.Crossref | GoogleScholarGoogle Scholar |

Sandin, S. A., and Williams, I. (2010). Trophic classifications of reef fishes from the tropical US Pacific (Version 1.0). Scripps Institution of Oceanography technical report. Available at https://escholarship.org/uc/item/5394f7m3 [Verified 3 July 2019].

Skewes, T. D., Dennis, D. M., Jacobs, D. R., Gordon, S. R., Taranto, T. J., Haywood, M., Pitcher, C. R., Smith, G. P., Milton, D., and Poiner, I. R. (1999). Marine resources and habitat mapping within the Timor Sea MoU 74 box. Volume 1. Stock estimates and stock status. Department of the Environment and Heritage, Canberra, ACT, Australia.

Soliman, V. S., Mendoza, A. B., and Yamaoka, K. (2008). Seaweed-associated fishes of Lagonoy Gulf in Bicol, the Philippines – with emphasis on Siganids (Teleoptei: Siganidae). Kuroshio Science 2, 67–72.

Sommer, C., Schneider, W., and Poutiers, J. M. (1996). ‘FAO Species Identification Field Guide for Fisheries Purposes. The Living Marine Resources of Somalia.’ (FAO: Rome: Italy.)

Song, Y. S., and Kim, J.-K. (2015). Evidence of prey partition for the three sympatric Chromis species (Perciformes: Pomacentridae) based on ecomorphological analyses. Environmental Biology of Fishes 98, 1265–1275.
Evidence of prey partition for the three sympatric Chromis species (Perciformes: Pomacentridae) based on ecomorphological analyses.Crossref | GoogleScholarGoogle Scholar |

Thacker, R., Ginsburg, D., and Paul, V. (2001). Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria. Coral Reefs 19, 318–329.
Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Vergés, A., Bennett, S., and Bellwood, D. R. (2012). Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison. PLoS One 7, e45543.
Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.Crossref | GoogleScholarGoogle Scholar | 23029083PubMed |

Walker, B., Kinzig, A., and Langridge, J. (1999). Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113.
Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species.Crossref | GoogleScholarGoogle Scholar |

Wilson, S. K., Bellwood, D. R., Choat, J. H., and Furnas, M. J. (2003). Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanography and Marine Biology – an Annual Review 41, 279–309.

Wilson, S. K., Graham, N. A. J., Fisher, R., Robinson, J., Nash, K., Chong-Seng, K., Polunin, N. V. C., Aumeeruddy, R., and Quatre, R. (2012). Effect of macroalgal expansion and marine protected areas on coral recovery following a climatic disturbance. Conservation Biology 26, 995–1004.
Effect of macroalgal expansion and marine protected areas on coral recovery following a climatic disturbance.Crossref | GoogleScholarGoogle Scholar | 22971046PubMed |

Wismer, S., Hoey, A. S., and Bellwood, D. R. (2009). Cross-shelf benthic community structure on the Great Barrier Reef relationships between macroalgal cover and herbivore biomass. Marine Ecology Progress Series 376, 45–54.
Cross-shelf benthic community structure on the Great Barrier Reef relationships between macroalgal cover and herbivore biomass.Crossref | GoogleScholarGoogle Scholar |

Wyatt, A. S., Waite, A. M., and Humphries, S. (2010). Variability in isotope discrimination factors in coral reef fishes: implications for diet and food web reconstruction. PLoS One 5, e13682.
Variability in isotope discrimination factors in coral reef fishes: implications for diet and food web reconstruction.Crossref | GoogleScholarGoogle Scholar | 21060681PubMed |

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M. (2009). ‘Mixed Effects Models and Extensions in Ecology with R.’ (Springer-Verlag: New York, NY, USA.)