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The operating model 

The model developed for the present study is a stage/size-structured metapopulation model of the school 

prawn stocks inhabiting the Clarence River. It includes individual-based population dynamics and movement 

between compartments that are both subject to the effects of temperature and river discharge. Three fisheries 

exploit the modelled population with the fisher dynamics based on a combination of historical effort levels 

and changes in catch per unit of effort. The model is calibrated to 20 years of past catch data from the 

Clarence River fisheries using a Bayesian SIR approach which produces a ‘posterior’ distribution from likely 

parameter values and the model runs that best fit the data. 

Individual growth 

A suitable individual growth function for penaeid shrimp is the von Bertalanffy growth function (Garcia and 

Le Reste 1981): 

)))(exp(1( 0ttkLl −−−= ∞  (1) 

where l is the carapace length of the prawn at time t, L∞ is the average asymptotic carapace length to which an 

individual grows (mm), k is a species-specific growth-rate constant (per months), and t0 is the theoretical age 

(in months) of the individual at zero carapace length. 

Rather than implementing a fully length-structured or agent-based model, we chose to aggregate prawns 

into groups based on growth functions (Walters and Martell 2004, Box 5.3). Variability in growth within a 

cohort was accomplished by dividing each cohort into 10 aggregates (five for each sex), with each aggregate 

associated with a separate growth function (Punt et al. 2001). Newly spawned individuals of each sex were 

added to one of the five growth aggregates according to the proportions of 5% : 25% : 40% : 25% : 5%. Thus, 

the majority of prawns were placed in the central growth aggregate, which represents the best-estimate for 

prawn growth. The remaining prawns were placed in aggregates with growth rates above and below this best-



Page 2 of 17 

estimate rate, giving the overall distribution of growth a normal-like variability around this central growth 

rate. 

The median (best-estimate rate) von Bertalanffy growth parameters were based on the estimations for 

growth made in the Clarence River by Glaister (1977, p. 41) and weight for both sexes was calculated using 

the length-weight provided by Broadhurst et al. (2004) from studies conducted in the Clarence River (see 

Table 1 for details). Both male and female prawns were explicitly included in the model; however, to simplify 

the notation, only a single sex is represented in the following equations. Each of the following equations 

should be assumed to apply to both sexes unless otherwise specified. 

Prawns of different sizes were divided into seven 5-mm categories, each of which belonged to one of three 

different life stages, namely larvae (<5 mm CL), juveniles (≥5 mm and <20 mm CL) and adults (≥20 mm CL) 

(see Fig. 2 in main publication). In this model, a larvae was classified as a prawn that is less than 5 mm CL, 

although juveniles as small as 3 mm can recruit to the estuary fisheries (Glaister 1977). The size stages were 

used to reduce the number of parameters in the model, while still allowing for size-dependency in key 

processes (such as mortality) (Werner and Gilliam 1984). 

Mortality 

Total mortality (Z) was modelled separately for the three life stages. Although no studies were found that 

provided estimates of larval natural mortality, the rate is believed to be high on the basis of the fecundity of 

this species (Dall et al. 1990). Values for the juvenile mortality rate were also unknown, and thus these two 

parameters became the primary means by which the model was calibrated to the combination of historical 

catch records and average prawn weight data. A sensitivity analysis was also completed (section 2.10.2) to 

examine the effect of changes in these parameters. 

Thus, numbers of prawns of carapace length class l in zone A in month t+1 (
A
tlN 1, + ) were calculated as 

shown in Equations 2 and 3, where t represents time, 
A
tlN ,  represents numbers of prawns of carapace length 

class l in zone A in month t. Element 
A

tlk ,→τ
 is the fraction of prawns in length class k in zone A that move to 

length class l during the time step t for all five growth aggregates. This element was calculated by determining 

the fraction of prawns in length class k that move to class l, and then weighting this co-efficient in proportion 

to the distribution of growth aggregates. Ml is the natural mortality of prawns of carapace length class l, 
A
tlZ 1, −  

is the total mortality for prawns of carapace length class l in zone A during the previous month (t-1), 
XA

tlF ,
,  is 

fishing mortality induced on prawns of carapace length class l by fleet X in zone A during month t, and 
X
lS  is 

the retention selectivity of the gear used by fleet X on the stock of carapace length l. 
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Individuals were harvested from the model’s two fishing zones, based on the Baranov catch equation. The 

catch of prawns of carapace length l in zone A in month t was calculated as: 
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The total catch for a zone was calculated by summing the mean weights of all the length classes. 

Selectivity (
X
lS ) was calculated using a logistic selection curve (Wileman et al. 1996, p. 40) as: 
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where a and b are calculated on the basis of the length of species at 50% retention (
XL50 ) and the selection 

range of the gear (
XSR

) for fleet X: 

b

a
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 (6) 
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The fishing mortality (
XA

lF ,

) resulting from fleet X in zone A, during time t, was calculated using the 

observed effort applied by the fleet in that zone, the catchability of the prawns or the efficiency of fleet X 

(
Xq ): 

XA
t

XtXA
t EqF ,, )1( ⋅+= δ

 (8) 

where 
XA

tE ,

 is the effort (boat-days) of fleet X in zone A during time t, and δ is the monthly growth in fleet 

efficiency (technology creep), which for simplicity is regarded as the same for each of the fleets . 

Effort data from the three fisheries from 1986 to 2005 were available from NSW DPI, but a model of effort 

dynamics was required to represent catches from 2006 and beyond. For each of the three fisheries, future 

effort (2006 onwards) was a combination of the historical fraction of the annual prawn catch harvested that 
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month ( mρ ), multiplied by a factor that reflected the catch rate (CPUE) at the beginning of each month (see 

section 2.8 for more details on the chronology of processes). This representation modelled the behaviour of 

fishers who intensified their effort if fishing early in the month was successful, and reduced their effort if 

fishing was poor. 
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In Equation 9, 
XA
mytE ,

),(  is the effort (boat-days) of fleet X in zone A during month m of year y, Ut is the 

sampled CPUE at time t, Ub is a constant base CPUE value around which changes to effort are generated, and 

γ is the parameter used to connect changes in CPUE to changes in effort. Note that future fishing effort was 

subsequently modified by closures for each fleet if prescribed in the management strategy (i.e. effort was set 

to zero). 

Fecundity and recruitment 

In penaeid populations, individuals are generally short-lived (i.e. <3 years) but females may spawn a number 

of times in a year (Bagenal 1973; Penn 1980). The most important factors in determining prawn fecundity 

include water temperature, size of individual females and moult frequency during spawning season. All of 

these factors affect the number of eggs produced and the number of times a female will spawn each year 

(Penn 1980). In this model, we simplified these processes and assumed that fecundity is a function of the 

carapace length of females. Females above an average carapace length of 25 mm were treated in the model as 

sexually mature (range 18–30 mm CL) (Glaister 1978b, p. 552) and after sexual maturity is reached, any 

further increases in carapace length translated into increased fecundity ((Penn 1980) with western school 

prawn Penaeus latisulcatus). 

Recent studies have provided good evidence for the existence of a stock–recruitment relationship in 

penaeid prawns (Ye 2000). In this model, egg production was linked to larval population numbers using a 

Beverton–Holt stock–recruitment function (reparameterised as in Haddon (2001) to the steepness of the 

stock–recruitment relationship and the initial biomass/recruitment). The stock–recruitment relationship 

employed is as follows: 
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where Rt is the number of recruits (prawn larva) produced in month t, Γt represents the number of eggs 

produced by the spawning stock at time t, Asr and Bsr are the parameters of the Beverton–Holt stock–

recruitment relationship, e is the normally distributed recruitment error, 
female
tlN ,  is the number of female 

prawns of carapace length l in month t, lf  represents the fecundity of female prawns of carapace length l, wL 

is the average weight of a prawn larva recruit (calculated using the length to weight relationship given in 

Table 1), z represents the steepness of the stock–recruitment relationship and Rv is the initial recruitment used 

for the simulation. In this context, a recruit was defined as a prawn larva (<5 mm CL). Because spawning 

females may produce eggs in any zone, the number of recruits produced in each zone was made proportional 

to the number of eggs produced in each zone. 

Movement (immigration and emigration) 

The typical life-cycle of the eastern school prawn begins when adults spawn in ocean waters. The larvae 

immigrate on lunar tides (Rothlisberg and Church 1993) into estuaries and up-stream towards suitable 

habitats, such as seagrass beds, where they settle. The post-larvae that survive the high larval mortality grow 

into juvenile prawns in the non-fishing zones. The juveniles then move downstream into the estuary fishing 

zone, possibly before any appreciable growth occurs (Coles and Greenwood 1983). Once in the estuary zone 

the prawns grow until they approach sexually maturity, at which time they begin to move to the ocean zone to 

spawn. 

Movement between compartments was calculated each month according to coefficients as shown in 

Equation 14. 
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where 
A
tlN ,  is the number of prawns of carapace length-stage l in zone A and 

12
,

AA
tls
→θ

 is the proportion of 

individuals of length-stage ls (larva, juvenile or adult) moving from zone A2 to A1 at time t. Each length-stage 

can move between any connected compartments, however the movement of juveniles and adults is primarily 

in the seaward direction, while larvae move into the estuaries from the ocean. The values of the 
12

,
AA

tls
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parameters had a base value in the model but they do not stay constant as they are manipulated by 

environmental factors (described in the following section). 

Climate variability and its influence on population dynamics 

The calibration of the EPT and OPT catches to the model presented a challenge that provided some interesting 

insights into the dynamics of this system. Although there appeared to be sufficient evidence to assume that 
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river discharge events affected the seaward migration of prawns, there were two alternative hypotheses we 

could have considered that would have allowed us to match both the relatively stable EPT catches and the 

more variable OPT catches that spiked during high river discharge events. We could have assumed that a 

population of adults inhabited the unfished zone and migrated rapidly out to the ocean during rain events; or 

alternatively, we could have taken the approach that high river discharge events resulted in increased growth 

of prawns and/or increased catchability. The later approach was chosen primarily on the basis of the evidence 

presented in the movement and distribution studies on this species, which showed a consistent trend of 

increasing prawn size with closer proximity to the ocean during normal climate conditions (graphically 

presented at the bottom of Fig. 2 in main publication ) (Glaister 1978b; Coles and Greenwood 1983). The 

specifics of how we modelled such river discharge effects are as follows. 

The impact of river discharge on the growth and movement of school prawns 

The exact mechanism by which high river discharge affects the school prawn’s seaward emigration has been 

debated since the 1950s. An examination of school prawn populations in several NSW estuaries concludes 

that the emigration of prawns after flood events is due to the resultant decreased salinity (Racek 1959). 

However, a separate study of school prawns in the Hunter River, NSW, shows that a heavy flood event can 

have a more pronounced affect on emigration than a more moderate flood, even though the latter flooding is 

sufficient to reduce the estuary salinity levels to that of freshwater (Ruello 1973b). Ruello’s research suggests 

that the enhanced emigration is instead due to increased river flow and subsequent disturbances of bottom 

sediments. Studies on the effect of rainfall on the emigration of banana prawns in the Gulf of Carpentaria 

relate migration to the tolerance of juvenile banana prawns to low salinities but also suggest that rainfall may 

affect banana prawn productivity also through increases in nutrient levels in the water, which then increase 

growth and survival (Vance et al. 2003). Several further mechanisms have been proposed for the link between 

freshwater flow and different fishery species, including: (i) trophic linkages via changes to primary or 

secondary production due to increased nutrient levels in water; (ii) changes in distribution due to altered 

habitats; and (iii) changes in population dynamics including recruitment, growth, survival and abundance 

(Robins et al. 2005). 

For the purposes of this model, we used salinity as a proxy for all possible causes for prawn emigration 

after flood events. Salinity was set at base levels and then allowed to decrease as river discharge events 

occurred. Each compartment had a recovery rate which allowed the salinity levels to return to their base levels 

over time. By employing this process we hoped to incorporate a lag effect of a large river discharge event 

which would enable the prawns to emigrate seaward even after the discharge event diminished. 

The effect of river discharge and temperature on prawn movements is through alteration of the movement 

parameter values 
12

,
AA

tls
→θ

 (Equation 14). Each movement parameter was adjusted by river discharge and 

temperature, as shown below in Equation 15. 
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where ξA is the salinity movement effect factor for area A,
A
tsa  is the salinity level in area A at time t and 

A
bsa  

is the base salinity level below which an effect occurs. 

High river discharge events are believed to also affect the growth of juveniles (Ruello 1973b) by increasing 

the availability of water borne food for the prawns who are detritus feeding opportunistic omnivores (Kailola 

et al. 1993). Fishers refer to this food-enriched water as ‘sweet water’. This phenomenon is believed to result 

from the disturbance of benthic communities during flood events (Jones 1987) and from the increased primary 

and secondary production generated by increased nutrient levels (Moore et al. 2006). To incorporate this 

hypothesised impact on growth, a food availability level was added to each compartment in the model. High 

river discharge temporarily increased the food availability level in each compartment at the same time that it 

reduced salinity. Just as there was a recovery rate for salinity there was also a loss rate associated with food 

availability. 

Food availability affects growth through the manipulation of the k values in Equation 1, as shown below in 

Equation 16, 

)exp(.' 1
A
b

A
t
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 (16) 

where ςA is the food availability growth effect factor for area A that is used to calibrate the effect on growth, 

A
tfa 1−  is the food availability level in area A at time t–1 and 

A
tfa 1−  is the base salinity level above which an 

effect occurs. 

The impact of temperature on the growth and movement of school prawns 

The advent of spring, and associated increases in water temperature, coincides with a rapid growth of M. 

macleayi and an immigration of maturing prawns to ocean waters (Glaister 1978a). The link between growth 

rates and water temperatures has been well confirmed by research of penaeid prawns (Racek 1959; Ruello 

1973a; Glaister 1977, p. 40; Potter et al. 1986, 1989; Somers 1990) as well as of other crustacean species 

(Koeller 1999; Drinkwater et al. 2006) and of marine life in general (Neuheimer and Taggart 2007). To 

incorporate this effect, the k values in the von Bertalanffy growth function (Equation 1) were manipulated 

such that the minimum growth rate occurred when water temperatures were at their lowest levels and the 

maximum growth occurred when water temperatures were at their highest levels (Lhomme, 1977 as cited in 

Garcia and Le Reste 1981). Although there is evidence to suggest that water temperature also has an effect on 

prawn survival (Vance et al. 2003), to simplify this model we restricted the effect of water temperature to its 

effect on growth. 
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Temperature was also used in the model as an indicator of the seasons that drive seaward emigration. 

Research has found a continuous recruitment of pre-juvenile M. macleayi to the Clarence River estuary 

(Glaister 1977, p. 39), with the main peak of this recruitment occurring in the summer and early autumn 

months (Racek 1959; Ruello 1973a; Coles and Greenwood 1983, p. 740). Larval upstream movement occurs 

throughout the year but peaks at times when spawning peaks in ocean waters (Glaister 1977; Rothlisberg and 

Church 1993). To incorporate such seasonality into the model, a seasonal element based on temperature was 

added so that there was a peak in seaward movement of juveniles during summer months. 

The effect of river discharge (Dt) and temperature (Tt) on growth is through manipulation of the k values in 

Equation 1 as shown below in Equation 17: 

)1(' 21 tt TDkk ⋅+⋅+= ψψ
 (17) 

where ψ1 and ψ2 are the coefficients of the effect on growth of discharge and temperature respectively. 

The effect of river discharge and temperature on prawn movements is through alteration of the movement 

parameter values 
12

,
AA

tls
→θ

 (Equation 14). Each movement parameter was adjusted by river discharge and 

temperature as shown below in Equation 18. 
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where φ1 and φ2 are the coefficients of the effect on prawn movements of river discharge and temperature 

respectively. 

Other impacts of river discharge on school prawn dynamics 

Large river discharge events have been speculated to also affect the fecundity of school prawns and hence the 

number of recruits in subsequent years. The high densities of prawn numbers following rain events are 

believed to help improve a prawn’s chances of mating and spawning (Ruello 1973b). Another possible result 

of river discharge events is an increase in schooling behaviour which can increase catchability (as has been 

found to be the case with other penaeids (Penn 1984; Vance et al. 2003, p. 48; Zhou et al. 2007; Prince et al. 

2008)). 

The reasonably good calibration achieved for this model was attained without river discharge directly 

affecting fecundity; however, the effect of river discharge on growth indirectly increases the fecundity of the 

population as fecundity is linked to size (section 2.5). We have also permitted catchability to be affected by 

river discharge according to Equation 19: 

t
XX

Et DqqDDIf ⋅⋅=> η*

 (19) 

where η is the coefficient of the effect of river discharge on catchability that occurs when discharge level Dt 

exceeded the amount chosen as the ‘river discharge event’ level DE (see Table 1 for more information). This 
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effect was limited to the month of high river discharge events, and at most, the catchability doubled during 

these. 

Chronology of processes 

The smaller the time-step in a simulation model, the less the chronology of processes affects outcomes. In the 

present study, we were restricted to monthly steps which were the temporal resolution of the catch and effort 

data. The ordering of processes was based on the chronology used in ISIS–Fish model (Mahevas and Pelletier 

2004) and modified to suit the model presented here (Fig. 1). 

 

 

Fig. 1. Diagram showing the order of processes used in the simulation model. 

 

Model calibration 

Step 1: Manual calibration 

The first step in the calibration of the model involved matching the output from the model with 21 years of 

existing catch history for the ocean and estuary fisheries that operated in an around the Clarence River. Where 

reliable values were not available for parameters they were manually adjusted so that the observed and 

expected catches became aligned (see Table 1 for a list of the parameter values used and their sources). A cost 

function was applied to determine the quality of the fit of the modelled to the observed catch records from 

1985 to 2005 for each of the three fisheries. Evaluating the calibration of the model to the catch records of the 

three separate fisheries in the two separate fishing zones provided a structural validation of the model 

(Aumann 2007) by showing that the model mimics the source system on a step-by-step and component-by-

component basis. The cost function used was (Moll 2000): 
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where 
X∆  is the cost function for fleet X, time t is measured in months from Jan 1985 to Dec 2005, 

X
tC is the 

modelled prawn catch for fleet X in time t (kg), 
X
tO  is the observed prawn catch for fleet X at time t (kg), σX 

is the standard deviation of the observed data for fleet X, and nX is the number of catch record data points for 
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fleet X. The fit for each fleet was classified according to the (subjective) interpretation supplied by OSPAR 

Commission (cited in Moll 2000) which is: very good: <1 standard deviation, good: 1 or 2 standard 

deviations, reasonable: 2–5 standard deviations, poor: >5 standard deviations. 

Step 2: Sensitivity analysis 

A sensitivity analysis was conducted against each of the model parameters in order to determine the key 

drivers of the model (Arhonditsis and Brett 2004). Each parameter value (input) was increased and decreased 

20% and the effect on a number of model outputs (management indicators) was recorded. This process was 

repeated 20 times with different random numbers used each time (i.e. a total of 60 records for each 

parameter). The results were then used as the dataset for a step-wise regression analysis with the purpose of 

developing best-fit equations (Kleijnen 1995). The resulting regression equations provided approximations of 

the input/output behaviour of the simulation model. A single multiple-linear regression equation was used 

which implicitly assumed that interactions between input parameters were insignificant (Equation 21). 

i

H

h
ihhi xY εββ ++= ∑

=1
0

 (21) 

),...,1( ni =  

where Yi is the simulation response (management indicator) to a model run i (involving a certain combination 

of initial parameter values), β0 is the regression intercept, βh is the first order effect of parameter h, xih is the 

value of the standardised parameter h in combination i, εi is the error term of the regression model for 

parameter combination i, and n is the number of simulated parameter combinations. 

In this equation, each parameter h must be standardised for the first-order effects βh to reflect the relative 

importance of each parameter. So zh as the original (non-standardised) value of parameter h, which ranges 

between minimum value and maximum value, the spread of parameter h can be measured by 

( ) 2)min()max( hhah −=  and the mean of parameter h can be measured by ( ) 2)min()max( hhbh += . 

The standardised value xh can then be calculated as (Kleijnen 1995): 

hhihih abzx /)( −=
 (22) 

Three management indicators where chosen as model outputs (Yi), namely the Future Average Annual 

Ocean Prawn Trawl catch from Jan 2006 to Dec 2015; the Future Average Annual Estuary Prawn Trawl catch 

from Jan 2006 to Dec 2015; and the Future Depletion Ratio of prawn stock, which is the ratio of estimated 

Biomass in 2015 to Estimated Biomass in 1985. A regression analysis was performed against each of these 

management indicators to determine the key parameters (drivers) for each of them as dictated by the 

mechanics of the simulation model. 
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Step 3: Bayesian SIR calibration 

The Bayesian approach used in the present study estimated the posterior probability distributions of key 

parameters by the sampling/importance resampling method. Five parameters were chosen as ‘key parameters’ 

and given a prior probability distribution function (pdf). The choice of these five parameters was based on 

their importance in the model as shown by the sensitivity analysis and by the level of uncertainty associated 

with their values. 

Monte Carlo methods such as Markov Chain Monte Carlo and importance sampling are the most frequently 

used methods for Bayesian analysis. For the purposes of the present study, we chose to use the 

sampling/importance resampling (SIR) method that was numerically robust and straightforward to implement 

(McAllister et al. 1994). The SIR algorithm involves two distinct phases. Phase one draws a value from the 

prior pdf of each of the parameters (a parameter set) and calculates the likelihood of this set based on how 

well the model outputs calibrated to the observations. This process is iterated many times (40 000 times in our 

case), with the parameter set being stored along with the likelihood of this set. Phase two resamples these 

intermediate results to approximate the posterior pdf of each management indicator. The intermediate results 

were resampled, with the replacement using a probability based on the importance function. In our case, the 

joint prior pdf was used as the importance function (McAllister et al. 1994; Raftery et al. 1995), which meant 

that the resampling was proportional to the likelihood of each parameter set. Thus, with the prior pdf as the 

importance function, the greater the likelihood of a parameter set the more frequently this set would be 

resampled and included within the posterior. For a more detailed explanation of Bayesian SIR methods, see 

McAllister et al. (1994) and Punt and Hilborn (1997). 

The likelihood function assumed that the observed catch was normally distributed about the predicted 

values, with a standard deviation σ. Thus, the log-likelihood (LL) for a given fishery’s observations was 

proportional to (Haddon 2001): 
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where X is the fishery (EPT or OPT), n is the number of data points, 
X
tC is the observed catch for fishery X at 

month t, and 
X
tĈ is the estimated catch from the model for fishery X at month t, with 1984–2007 and 2005–

2006 representing the year–month limits of the observations. 

The total log-likelihood for a single model run was then calculated as the sum of the log likelihoods for the 

ocean and estuary trawl fisheries: 
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OPTEPT LLLLLL += . (25) 

Only the OPT and EPT fisheries were included in the total log-likelihood because they represented the 

majority of the catch. 

A joint posterior probability distribution for the key parameters was produced on the basis of the calculated 

log-likelihood for each model run (as described above). The quality of the posterior was determined on the 

basis of the efficiency of the importance function in the SIR method, as estimated using the maximum 

importance ratio (MIR) (McAllister and Pikitch 1997). The MIR is equal to the ratio of the maximum of 

likelihoods to the sum over all likelihoods. McAllister and Pikitch (1997) found that a maximum importance 

ratio of 0.04 “… appeared to provide estimates of posterior pdfs sufficiently precise for stock assessment and 

decision analysis”. Another means of improving the posterior pdf is to ensure that a single parameter set (the 

maximum single density MSD) is not assigned more than 1% of the total probability (Punt and Hilborn 1997). 

The key parameters chosen for the Bayesian SIR calibration process were catchability (q), larval and 

juvenile mortality (LM and JM), and the two stock recruitment parameters (z and Rv). These were chosen as 

they were the parameters for which there was significant uncertainty regarding their true value (see Table 1) 

and they had the most effect on the management indicators in the sensitivity analysis. Parameters such as base 

unfished-zone salinity levels (C1SalBas) and unfished-zone and estuary food levels (C1FooBas and 

C2FooBas) were not chosen because they were surrogates for the impact of river discharge on the growth and 

movement of prawns and the uncertainty in this impact is captured to an extent in the stochasticity built into 

future river discharge and the various climate-change scenarios. 

Calibration data and parameter values 

 

Table 1. The initial values and references for the main parameters used in the calibration of this model 
 

Data and parameter values Sources 
Catch and Effort data for 3 fisheries. Standard deviation of 
observed catch data used in Equation 3–20: 27,597 for EPT, 
22,656 for OPT, and 6,240 for SPN. 

NSW DPI ComCatch database based on monthly logsheets 
supplied by fishers.A 

Clarence River discharge data NSW Department of Natural Resources (2007) 
Instantaneous adult mortality = 0.37 month–1 Montgomery, S. (unpubl. data) 
Instantaneous larval mortality – Bayesian prior with uniform 
distribution between 2 and 4 month–1. 
Instantaneous juvenile mortality = – Bayesian prior with 
uniform distribution between 50% and 100% of larval mortality. 

Limits based on calibrating average prawn weights in EPT catch 
with estimates provided in Broadhurst et al. (2004). 

Migration parameters (e.g. LMov2_1 , JMov1_2, AMov2_3) Initial values based on known movement patterns with larva 
migrating from the ocean to the estuary and unfished zone; 
juveniles migrating from the unfished zone to estuary; and adults 
migrating out of the unfished zone and estuary to the ocean 
(Glaister 1978b; Coles and Greenwood 1983) 

Fecundity F1-F4 (0–20 mm CL) = 0, F5 (20–25 mm CL) = 
3400, F6 (25–30 mm CL) = 4200, F7 (30–35 mm CL) = 5300, 
F8 (>35mm CL) = 6500 eggs month–1 

Equates to approx 230 000 eggs per female, which is in the range 

for other Metepenaeus species (Penn 1980; Dall et al. 1990, 
7.1) with size class spread based on weight (Garcia and Le 
Reste 1981) 

Average female growth L∞ = 37.41, K = 0.24 month–1, t0=0.7, 
Average male growth L∞ = 23.61, K = 0.70 month–1, t0=0.8, 

(Glaister 1977, p. 74) 
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each growth group was spaced so that each had an L∞ that was 
0.5 mm different from its neighbouring groups. 
Catchability (q) – Bayesian prior with uniform distribution 
between 0.0001 and 0.001. 

(Coles and Greenwood 1983; Penn 1984; Broadhurst et al. 
2004).  

Virgin recruitment (Rv) – Bayesian prior with uniform 
distribution between 10e9 and 10e11. 

Limits based on manual experimentation comparing changes in 
maximum likelihood with changes in Rv. 

Slope of stock recruitment relationship (z) – Bayesian prior with 
uniform distribution between 0.2 and 0.7. 

Relationship suggested by the work of (Ye 2000). Lower values 
reflecting the strength of the stock-recruitment relationship given 
that the model area covers the full migratory range of the Clarence 
River school prawn stock (Ruello 1977). 

Change in catchability (dq) = 0.0004 O’Neill et al. (2003: table 6.4.4) 
Weight for both sexes was calculated as: 

919.6)ln(917.2)ln( −⋅= lw , where w is weight (g) and l is 
carapace length (mm). 

Broadhurst et al. (2004) 

Gear selectivity: estuary and ocean prawn trawl: 40-mm 
diamond codend, L50 = 10.59, SR = 3.42  

Macbeth et al. (2004) 
 

Gear selectivity: Stow Netting, 30-mm diamond mesh codend, 
L50 = 8.46, SR=3.55 

Macbeth et al. (2005) 

Recruitment error (re) was taken from a log normal distribution 
with mean 0, coefficient of variation 0.2 

Found to incorporate sufficient recruitment uncertainty for a 
similar peneaid species (Melicertus plebejus) (Ives and Scandol 
2007) 

Water temperature levels, approximated by a sine curve 
Cos(month / phase - freq)^ 2) * amp + base, with values of: 
C1: base 13°, amplitude 13°, frequency 3.8 and phase 3.5. 
C2: base 15°, amplitude 13°, frequency 3.8 and phase 3.5. 
C3: base 17°, amplitude 7°, frequency 3.8 and phase 3.5.  

Taken from temperature loggers in Clarence River and data 
provided by Australian Bureau of Meteorology. 

Salinity movement effect factor (ξA) = 1.01, Salinity Base 

Levels (
A
bsa

): C1SalBas = 50, C2SalBas = 2300, C3SalBas = 

35 000 

Clarence Valley Council Floodplain Services (2006) 

Food availability growth effect factor (ςA) = 1.01, base salinity 

levels (
A
bsa

): C1FooBas = 100, C2FooBas = 100, C3FooBas = 
90. 

Chosen to calibrate the model. 

Future river discharge estimates (L20D discharge mean and 
L20D discharge CV) 

Based on the range of estimated % change in precipitation for the 
Clarence River Basin (152–154°E longitude and 29–30°S latitude) 
provided by the OzClim package (CSIRO and IGCI 2007) 

River discharge event level (DE) = 300 000 ML Chosen to calibrate high catch levels associated with extreme 
maximum river discharge events. This level was exceeded only 6 
times during the calibration period (1985–2005). 

ACatch rate data were not standardised using generalised linear models (Hilborn and Walters 1992). However, a number of key issues 

traditionally addressed by standardisation were accounted for in this model. First, changes in fishing power over time, which can 

affect the validity of CPUE as an index of abundance, were dealt with by including a parameter for growth in catchability over time 

that was based on the standardisation work undertaken in Queensland (O’Neill et al. 2003). Second, seasonality in catchability, which 

can affect within year CPUE, was dealt with through the use of two additional parameters that fitted a seasonal pattern to catchability. 

These additional parameters therefore effectively altered the effect of the catch data on the model in the same way that data 

standardisation would have. By including these phenomena in the model, we are able to incorporate them in the sensitivity analysis 

and thereby analyse their importance as a driver of the management indicators. 
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