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Table S1. Examples of catchment impacts on ecological patterns and processes in rivers and coastal waters 

All agents may interact with each other, with additive or multiplicative effects. These interactions are largely unknown; especially concerning is the potential 

interaction of these agents with changes in climate (adapted from Pearson and Stork 2008) 

Pressure (source of stressor) Stressor 

(cause of 

impact) 

Ecological response (proximal impact) Outcomes 

(ultimate impact) 

Water quality 

Land clearing Suspended 

sediments 

Smothering of habitats, plants and animals Loss of 

Grazing – soil and creek damage Reduction of light penetration, productivity, and dissolved oxygen  habitat

Agriculture and horticulture  biodiversity

Mining, infrastructure, recreation  productivity

Agricultural fertilisers Nutrients Increased plant production and weed infestation, increased hypoxia and fish 

kills 

 ecosystem

services

Breakdown of organic material Plankton blooms  amenity values

Aerial input from industrial sources 

Point sources such as sewage treatment 

works, animal production units, dairies 

Agricultural trash, sugarcane juice-sucrose, decaying 

weed masses 

Organic 

material 

Increased oxygen demand by bacteria; fish kills 

 Stock on land or in intensive units, industry, sewage 

treatment works 

Change in ecological assemblages due to change in food supply 

Agriculture Pesticides Possibly toxicity to native plants and fauna 

Mining and industrial effluents Toxic minerals Toxicity and death to biota where not sufficiently diluted 

 Irrigated agriculture, cleared landscapes, 

deep drainage channels 

Salinity Loss of intolerant plants and animals 

Deep drains penetrating acid sulfate soils Acidity Toxicity to plants and animals 

Altered flows including dam releases Changed 

temperature 

regimes 

Effect on fish breeding triggers 

Loss of riparian shade Exclusion of intolerant species 

Climate change Exacerbate hypoxia processes 

Dam releases Low dissolved 

oxygen 

(hypoxia) 

Fish kills 

Nutrients, weeds, algal blooms, organic inputs Exclusion of intolerant species 

Suspended sediments 
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Pressure (source of stressor) Stressor 

(cause of 

impact) 

Ecological response (proximal impact) Outcomes 

(ultimate impact) 

Other 

Climate change Changed 

flow regimes 

Changed geomorphology and bank stability 

Water infrastructure – e.g. dams, weirs Sediment build up or scouring 

Irrigation channels and drains Changed water quality 

Water harvesting Weed invasion 

Urbanisation Altered triggers for animal breeding 

Unseasonable drying or inundation 

Changed habitat availability, loss of connectivity 

Water-logging or drying of riparian soils and dieback of vegetation 

 Infrastructure – dams, weirs, culverts, flow 

control structures 

Barriers to 

movement of 

animals 

Exclusion of species from important habitats and 

Weeds 

Poor water quality 

Loss of riparian shade and increase in nutrient 

availability 

Weed 

infestation 

Changes in e.g. geomorphology, habitats, water 

quality, connectivity 

Intentional introduction of pasture grasses 

Pigs and other large mammals Feral animals Large mammals damage vegetation and benthic habitats, cause local pollution 

Exotic fish escapes or wilful introductions Displacement of native species 

Loss of riparian shade through clearing for agriculture  Changes in 

light regime 

Increase in stream temperature, weed growth and hypoxia leading to loss of 

habitat and barriers to 

connectivity 
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Fig. S1. Broad pressure–stressor–ecological response rationale for conceptual model development. 
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Fig. S2. The Great Barrier Reef catchment area, its primary land uses, and Regional Natural Resource 

Management regions. 
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Fig. S3. A waterhole in the upper Burdekin catchment pre- and post-cattle access (photo: Barry Butler). 
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Fig. S4. Summary of typical processes affecting water quality and ecosystem health in a Great Barrier Reef 

catchment area (GBRCA) stream reach or waterhole. Not all factors or interactions can be shown; for example, 

riparian integrity has several influences on ecological responses that are not indicated here, and we omit 

influences of urban development. The large box represents a stream reach or discrete waterhole. Large arrows 

represent flow-related connectivity (which may be intermittent). Ovals represent pressures, biophysical 

processes (including stressors) and ecological responses to the interacting variables. Linkages between the 

aquatic environment and terrestrial landscape is implicit in some of the smaller boxes. Modified from R. G. 

Pearson, in Brodie et al. (2008) 
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Fig. S5. Conceptual models summarising the dynamics of nutrient-delivery dynamics and ecological impacts 

across disconnected dry-tropical riverine lagoons in the Great Barrier Reef catchment area (GBRCA). Summary 

thumbnail water-quality relationships are derived from locally relevant studies (Butler 2008). WQG signifies 

parameter-relevant water-quality guideline. 
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Fig. S6. Conceptual models summarising the dynamics of nutrient-delivery dynamics and ecological impacts 

across perennial wet-tropical streams in the GBRCA Great Barrier Reef catchment area (GBRCA). Summary 

thumbnail water-quality relationships are derived from locally relevant studies (Pearson and Penridge 1987; 

Pearson et al. 2003). WQG signifies parameter-relevant water-quality guideline. 
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Fig. S7. Relationship among suspended-solid concentration, light penetration and aquatic plant growth in 

Great Barrier Reef catchment area (GBRCA) systems. The top (solid) curve marks the point at which 

photosynthesis will be measurably inhibited in the middle of the day. The bottom (dashed) curve is the point 

where net photosynthetic production will cease (on the basis of the compensation point of the most dark-adapted 

local species tested). The photograph illustrates turbidity under different concentrations of suspended solids. 

Adapted from Pearson et al. (2003). 
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Fig. S8. Conceptual models summarising the dynamics of sediment delivery and ecological impacts across 

wet-tropical streams in the Great Barrier Reef catchment area (GBRCA). Summary thumbnail water-quality 

relationships are derived from locally relevant studies (Pearson et al. 2003; Connolly and Pearson 2007; Butler 

2008; Kefford et al. 2010). WQG signifies parameter-relevant water-quality guideline. 
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Table S2.  Adverse effects of eutrophication on freshwater plants and animals 

Parameter Physical habitat responses Biological (ecosystem) responses Sources 

Acute 

effects 

Increased nitrogen (N) and phosphorus 

(P) loading

Direct toxicity of unionized ammonia, nitrite and nitrate on aquatic animals (i.e. the conversion 

of oxygen-carrying pigments (haemoglobin, haemocyanin) to forms that are incapable of 

carrying oxygen) 

Russo (1985); Camargo 

and Alonso (2006); 

Økelsrud and Pearson 

(2007) 

Pulses of organic matter entering 

waterbodies 

Dissolved oxygen depletion (i.e. hypoxia), induced by biological oxygen demand Bohl et al. (2002); 

Pearson et al. (2003); 

Rayment (2003) 

Chronic 

effects 

Increased N and P loading High nitrate concentrations leading to the dominance of more competitive free-floating plant 

species and low species richness. 

Barker et al. (2008); 

Feuchtmayr et al. (2009) 

Successional shifts in dominance from submerged macrophytes and periphyton towards 

complete dominance by phytoplankton 

Sand-Jensen and Borum 

(1991) 

Increased turbidity and light 

attenuation (phytoplankton blooms) 

Denser stands of emergent and floating-leaved plants causing decline of submerged plants 

through light and space competition 

Moss et al. (2013) 

Light attenuation by epiphytes following nutrient enrichment Smolders et al. (2002) 

Indirect negative impacts of eutrophication on macrophytes due to phytoplankton-induced 

turbidity 

Scheffer and van Nes 

(2007). 

Increased autrotroph productivity 

through N and P enrichment 

High ecosystem respiration rates, resulting in cyclical hypoxia, or poorly mixed water Pearson et al. (2003); 

Perna and Burrows 

(2005); Perna et al. 

(2012) 

Consumer trait variation in response to ecosystem productivity gradients Tuckett et al. (2013) 

Shifts in community assemblage structure (decline in the percentage of piscivores, more 

omnivores and planktivores) 

Moss et al. (2013) 

Decline in average size of consumers (enhanced competition for food, reduced predation) 

The anoxic conditions under water hyacinth mats also favour the release of N and P from 

sediments which may further aid the rapid growth of water hyacinth. The decline in dissolved 

oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen 

sulfide (H2S), resulting in further adverse effects on aquatic animals (Camargo and Alonso 

2006). 

Increased biomass, and changes in productivity and species composition, of zooplankton, being 

usually favoured invertebrate grazers (e.g. Daphnia) at the expense of other trophic groups 

Camargo and Alonso 

(2006) 

Enrichment of sediment with semi-

labile, particulate organic matter (dead 

phytoplankton, terrestrially derived 

organic matter) 

Biological oxygen demand induced dissolved-oxygen depletion (i.e. hypoxia),reduced root 

growth and anchorage of submerged plants and increases in root anoxia 

Sand-Jensen and Møller 

(2014) 
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Parameter Physical habitat responses Biological (ecosystem) responses Sources 

Increased acidification (decrease in 

pH) 

Increased mobilisation of metals Smith et al. (1999); 

Camargo and Alonso 

(2006) 
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Table S3. Adverse effects of increased sedimentation on freshwater plants and animals 

Parameter Physical habitat 

responses 

Biological (ecosystem) responses Sources 

Acute effects Increased erosivity 

potential during spates 

Increased riverbank erosion and slumping, channel-widening and sedimentation 

Damage to aquatic plants due to increased abrasion Lewis (1973) 

Suspended 

sediments 

Increased turbidity Reductions in light penetration and temperature, with associated declines in photosynthesis 

and productivity 

Van Nieuwenhuyse and LaPerriere 

(1986 

Negative impacts on respiration through clogging of delicate structures such as gills and 

respiration effects 

Lemly (1982); Bruton (1985); Bond and 

Downes (2003) 

Impacts on fish recruitment with eggs, larvae and juvenile stages more susceptible to 

suspended solids than adult fish 

Chapman (1988), Moring (1982) 

Decreased water temperatures due to decreased light affecting temperature-sensitive species 

(altered breeding cues or direct physiological effects) 

Temperature-induced water-column stratification 

Net decrease in photochemical processes including the breakdown of contaminants by 

photolysis 

Limited disease resistance in poikilotherms Pusey and Arthington (2003) 

Decreased temperature affecting growth rates and phsyiology of poikilotherms Pusey and Arthington (2003) 

Increased invertebrate drift, loss of species Connolly and Pearson (2007) 

Deposited 

sediments 

Increased sediment 

deposition 

Changes to substratum conditions and reductions in habitat space and food availability, 

resulting in altered community composition, reduced species richness 

Matthaei et al. (2006) 

Altered community composition, including taxonomic shifts from insect orders 

Ephemeroptera, Plecoptera, and Trichoptera to Oligochaetes and burrowing non-tanypod 

chironomids 

Wood and Armitage (1997); Larsen et 

al. (2009); Matthaei et al. (2006) 

Increased invertebrate drift from unfavourable habitat 

Reductions in food availability and feeding efficiency Broekhuizen et al. (2001) 

Preventing substrate attachment of algal cells Brookes (1986). 

Loss of scrapers feed on attached algae (inhibited by surface sediment) Brookes (1986). 
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Parameter Physical habitat 

responses 

Biological (ecosystem) responses Sources 

Smothering and eliminating periphyton and aquatic macrophytes in extreme instances 

Reducing substrate porosity and hydrostatic permeability, leading to a decline in the volume 

of substratum water and reduced concentrations of dissolved oxygen 

Wood and Armitage (1997) 

Burial under fine sediment increased leaf decay rates by stabilising the microenvironment 

for microbial processing 

Shure et al. (1986) 

Reduction in suitability of fish spawning habitat 

Loss of invertebrate species Connolly and Pearson (2007) 
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Table S4. Adverse effects of pesticide impact on freshwater plants and animals 

Exposure period Biological (ecosystem) responses Sources 

Acute effects Death of non-resistant species and succession with resistant species of phytoplankton occurs Graymore et al. (2001) 

Sublethal 

effects 

Marked decrease in the photosynthetic efficiency of autotrophs, reductions in individual cell size Ricart et al. (2009); Graymore et al. 

(2001) 

Increased chlorophyll-a pigments and carbon incorporation in diatoms, the ‘dynamic balance theory’, also known as 

the ‘greening effect’ 

Ricart et al. (2009) 

Autotrophic community structural shifts due to toxicant-induced selection pressure on phototrophic communities 

(i.e. reductions in green algal biomass, increases in tolerant cyanobacteria) 

Ricart et al. (2009); Pannard et al. 

(2009); Graymore et al. (2001). 

Toxicant-induced succession (TIS) selecting for progressive replacement of sensitive species with resistant ones. Blanck (2002); Pesce et al. (2012) 

Indirect effects of pesticides on leaf breakdown mediated through a negative effect on sensitive detritivorous 

invertebrates 

Schäfer et al. (2007). 

Indirect cascade effects on community and trophic structure in zooplankton communities attributed to changes in 

the food source rather than direct physiological effects 

Graymore et al. (2001) 

Reduced genetic variability within the adapted populations, possibily reducing adaptive capacity to other stressors 

Decreased in dissolved oxygen due to depressed photosynthetic activity Graymore et al. (2001) 

Anticholinergic effects and oxidative stress in fish Kroon et al. (2015) 

Increased energy allocations and metabolic costs associated with detoxification mechanisms 

Loss of macrophyte spawning areas and refuges as well as loss of periphyton food resources. 

Behavioural alterations (elevated locomotory activity, reduced antipredator behaviours, reduced olfactory abilities) Rohr and McCoy (2009) 

Alteration of gonadal morphology and function Rohr and McCoy (2009) 

Increases in larval abnormalities, reductions in larval survival Graymore et al. (2001); Rohr and 

McCoy (2009) 

Reductions in immune function, increases in infection end points Rohr and McCoy (2009) 
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