Supplementary material

Optimising the design of large-scale acoustic telemetry curtains

Andre SteckenreuterA,\textasteriskcentered, Xavier HoennerB, Charlie HuveneersC, Colin SimpfendorferD, Marie J. BuscotE, Katherine TattersallB, Russell BabcockE, Michelle HeupelG, Mark MeekanG, James van den BroekA, Phillip McDowallA, Vic PeddemorsH and Robert HarcourtA,\textasteriskcentered

AIntegrated Marine Observing System, Animal Tracking Facility, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia.

BIntegrated Marine Observing System, eMarine Information Infrastructure, University of Tasmania, Hobart, Tas. 7001, Australia.

CSchool of Biological Sciences, Flinders University, Bedford Park, Adelaide, SA 5042, Australia.

DCentre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia.

EMenzies Institute for Medical Research, University of Tasmania, Hobart, Tas. 7001, Australia.

FCSIRO, Marine and Atmospheric Research, Brisbane, Qld 4001, Australia.

GAustralian Institute of Marine Science, Townsville, Qld 4810, Australia.

HNew South Wales Department of Primary Industries, Mosman, NSW 2088, Australia.

IDepartment of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.

JCorresponding author. Email: andre.steckenreuter@sims.org.au
Fig. S1. Pairwise scatterplot and Spearman rho correlation of (A) the average number of detections and (B) the average number of detected transmitters per day and the potential predictors distance from shore (km), water depth (m), and number of tags released within 10, 50 and 100 km of each station.
Fig. S2. Scatterplots of (A) the mean number of detection per day and (B) the mean number of tags detected per day vs. water depth (m) and distance from shore (km) stratified by curtain identity. Solid lines indicate the trend fit by less smooth curves.
Fig. S3. Average prototypical relationship between each outcome and water depth across curtains as estimated by the univariate mixed models with cubic depth polynomial terms (red line). The x-axis shows water depth (m) centred on average water depth (~63 m) and standardised (s.d. = 1). When transforming depth back to its original scales, these graphs show that on average across stations both outcomes tend to increase with water depth between 0 and ~50 m and then decrease when depth goes above ~50 m.