Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Diversity patterns of subterranean invertebrate fauna in calcretes of the Yilgarn Region, Western Australia

Josephine Hyde A G , Steven J. B. Cooper A B , William F. Humphreys C D , Andrew D. Austin A and Pablo Munguia E F
+ Author Affiliations
- Author Affiliations

A Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5005, Australia.

C Western Australian Museum, Welshpool DC, WA 6986, Australia.

D School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia.

E School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia.

F RMIT Studios, RMIT University, Melbourne, Vic. 3000, Australia.

G Corresponding author. Email: josephine.hyde@adelaide.edu.au

Marine and Freshwater Research 69(1) 114-121 https://doi.org/10.1071/MF17005
Submitted: 10 January 2017  Accepted: 16 June 2017   Published: 4 September 2017

Abstract

Calcrete aquifers are unique groundwater habitats containing stygobiontic species endemic to each calcrete. The evolutionary history of stygofauna suggests the calcretes in Western Australia contain multiple ancient lineages, yet populations experience episodic variation in rainfall patterns, with little-known ecological consequences. The aim of the present study was to document stygofaunal diversity patterns and determine whether they are influenced by rainfall events. The average taxon richness in boreholes peaked shortly after periods of high rainfall, and when dominant taxa were excluded, evenness decreased after periods of both high and low rainfall, indicating that dominant taxa are an important factor in driving the system. Strong abundance–distribution relationships reflected the commonality of taxon groups; common taxon groups had broad distributions and high abundance levels, whereas rare taxon groups had small distributions and low abundance. After periods of intermediate and low rainfall, taxon groups had narrower distributions and the maximum number of individuals per borehole was lower. Finally, the majority of boreholes did not show changes in evenness over the 11-year study period, suggesting a reasonably stable ecosystem with episodic fluctuations that can be attributed to rainfall events. The results of the present study indicate that diversity patterns within boreholes are driven episodically by both external and internal factors, such as rainfall and rapid borehole dominance respectively.


References

Adlassnig, W., Koller‐Peroutka, M., Bauer, S., Koshkin, E., Lendl, T., and Lichtscheidl, I. K. (2012). Endocytotic uptake of nutrients in carnivorous plants. The Plant Journal 71, 303–313.
Endocytotic uptake of nutrients in carnivorous plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCrs7zL&md5=26483e97ec65372bad4cfa7da530c489CAS |

Allford, A., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2008). Diversity and distribution of groundwater fauna in a calcrete aquifer: does sampling method influence the story? Invertebrate Systematics 22, 127–138.
Diversity and distribution of groundwater fauna in a calcrete aquifer: does sampling method influence the story?Crossref | GoogleScholarGoogle Scholar |

Anand, R. R., and Paine, M. (2002). Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Australian Journal of Earth Sciences 49, 3–162.
Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Ogur8%3D&md5=e119f12d2cf12586f7d4095077209a35CAS |

Barranco, P., and Harvey, M. S. (2008). The first indigenous palpigrade from Australia: a new species of Eukoenenia (Palpigradi: Eukoeneniidae). Invertebrate Systematics 22, 227–233.
The first indigenous palpigrade from Australia: a new species of Eukoenenia (Palpigradi: Eukoeneniidae).Crossref | GoogleScholarGoogle Scholar |

Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources 10, 41–50.
DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ans7k%3D&md5=47ff67e5d99b21ff8c90822d465b19ddCAS |

Bradford, T., Adams, M., Guzik, M. T., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2013). Patterns of population genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterranean environment. Heredity 111, 77–85.
Patterns of population genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterranean environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVyrsb0%3D&md5=7b120bd415fd7441055b1ad75ac7422dCAS |

Bradford, T., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2014). Identification of trophic niches of subterranean diving beetles in a calcrete aquifer by DNA and stable isotope analyses. Marine and Freshwater Research 65, 95–104.
Identification of trophic niches of subterranean diving beetles in a calcrete aquifer by DNA and stable isotope analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitlartbg%3D&md5=19ee4b023053d5872d3236448aa08c9dCAS |

Chase, J. M., and Leibold, M. A. (2003). ‘Ecological Niches: Linking Classical and Contemporary Approaches.’ (University of Chicago Press: Chicago, IL, USA.)

Cooper, S. J. B., Hinze, S., Leys, R., Watts, C. H. S., and Humphreys, W. F. (2002). Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics 16, 589–590.
Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=cd76ee2125b1252a7a27bcd5648e6bfbCAS |

Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Culver, D. C., and White, W. B. (2005). ‘Encyclopedia of Caves.’ (Elsevier: Amsterdam, Netherlands.)

Darnell, M. Z., Nicholson, H. S., and Munguia, P. (2015). Thermal ecology of the fiddler crab Uca panacea: thermal constraints and organismal responses. Journal of Thermal Biology 52, 157–165.
Thermal ecology of the fiddler crab Uca panacea: thermal constraints and organismal responses.Crossref | GoogleScholarGoogle Scholar |

Davies, K. F., and Margules, C. R. (1998). Effects of habitat fragmentation on carabid beetles: experimental evidence. Journal of Animal Ecology 67, 460–471.
Effects of habitat fragmentation on carabid beetles: experimental evidence.Crossref | GoogleScholarGoogle Scholar |

Davis, J., Pavlova, A., Thompson, R., and Sunnucks, P. (2013). Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biology 19, 1970–1984.
Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar |

Deharveng, L., and Bedos, A. (2000). The cave fauna of Southeast Asia. Origin, evolution andecology. In ‘Subterranean Ecosystems, Ecosystems of the World, Vol. 30’. (Eds H. Wilkins, D. C. Culver, and W. F. Humphreys.) pp. 603–632. (Elsevier: Amsterdam, Netherlands.)

Gibert, J., and Deharveng, L. (2002). Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52, 473–481.
Subterranean ecosystems: a truncated functional biodiversity.Crossref | GoogleScholarGoogle Scholar |

Guzik, M., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2009). Fine‐scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Molecular Ecology 18, 3683–3698.
Fine‐scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhtrbM&md5=d6b82567f525696989bafef3c227e1c8CAS |

Guzik, M. T., Austin, A. D., Cooper, S. J. B., Harvey, M. S., Humphreys, W. F., Bradford, T., Eberhard, S. M., King, R. A., Leys, R., and Muirhead, K. A. (2010). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
Is the Australian subterranean fauna uniquely diverse?Crossref | GoogleScholarGoogle Scholar |

Heino, J. (2000). Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418, 229–242.
Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2001). Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum 64, 63–83.
Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2012). Diversity patterns in Australia. In ‘Encyclopedia of Caves’, 2nd edn. (Eds W. B. White and D. C. Culver.) pp. 203–219. (Elsevier: Amsterdam, Netherlands.)

Humphreys, W. F., Watts, C. H. S., Cooper, S. J. B., and Leijs, R. (2009). Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the western plateau, Australia. Hydrobiologia 626, 79–95.
Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the western plateau, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1alur8%3D&md5=a6de38edd13f3be8d6bf114e715c955aCAS |

Huppop, K. (2000). How do cave animals cope with the food scarcity in caves? In ‘Subterranean Ecosystems, Ecosystems of the World, Vol. 30’. (Eds H. Wilkins, D. C. Culver, and W. F. Humphreys.) pp. 159–188. (Elsevier: Amsterdam, Netherlands.)

Javidkar, M., Cooper, S. J. B., King, R. A., Humphreys, W. F., and Austin, A. D. (2015). Molecular phylogenetic analyses reveal a new southern hemisphere oniscidean family (Crustacea: Isopoda) with a unique water transport system. Invertebrate Systematics 29, 554–577.
Molecular phylogenetic analyses reveal a new southern hemisphere oniscidean family (Crustacea: Isopoda) with a unique water transport system.Crossref | GoogleScholarGoogle Scholar |

Javidkar, M., King, R. A., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2017). Taxonomy of Paraplatyarthrus Javidkar and King (Isopoda: Oniscidea: Paraplatyarthridae) with description of five new species from Western Australia, and comments on Australian Trichorhina Budde-Lunde, 1908 (Platyarthridae). Zootaxa 4243, 401–431.
Taxonomy of Paraplatyarthrus Javidkar and King (Isopoda: Oniscidea: Paraplatyarthridae) with description of five new species from Western Australia, and comments on Australian Trichorhina Budde-Lunde, 1908 (Platyarthridae).Crossref | GoogleScholarGoogle Scholar |

King, R. A., Bradford, T., Austin, A. D., Humphreys, W. F., and Cooper, S. J. B. (2012). Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. Journal of Crustacean Biology 32, 465–488.
Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia.Crossref | GoogleScholarGoogle Scholar |

Leijs, R., van Nes, E. H., Watts, C. H., Cooper, S. J. B., Humphreys, W. F., and Hogendoorn, K. (2012). Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation. PLoS One 7, e34260.
Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlslehtbg%3D&md5=981b79a0e94a3c1352c4bff931ac8de4CAS |

Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.

MacArthur, R. H., and MacArthur, J. W. (1961). On bird species diversity. Ecology 42, 594–598.
On bird species diversity.Crossref | GoogleScholarGoogle Scholar |

Magurran, A. E. (1988). Why diversity? In ‘Ecological Diversity and its Measurement’. (Ed. A. E. Magurran.) pp. 1–5. (Springer: Amsterdam, Netherlands.)

Mann, A., and Horwitz, R. (1979). Groundwater calcrete deposits in Australia some observations from Western Australia. Journal of the Geological Society of Australia 26, 293–303.
Groundwater calcrete deposits in Australia some observations from Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhsFSnsL8%3D&md5=4f03b7453912d2f67157b50e5191bbfcCAS |

Mouquet, N., and Loreau, M. (2003). Community patterns in source–sink metacommunities. American Naturalist 162, 544–557.
Community patterns in source–sink metacommunities.Crossref | GoogleScholarGoogle Scholar |

Munguia, P. (2014). Life history affects how species experience succession in pen shell metacommunities. Oecologia 174, 1335–1344.
Life history affects how species experience succession in pen shell metacommunities.Crossref | GoogleScholarGoogle Scholar |

Munguia, P. (2015). Role of sources and temporal sinks in a marine amphipod. Biology Letters 11, 20140864.
Role of sources and temporal sinks in a marine amphipod.Crossref | GoogleScholarGoogle Scholar |

Munguia, P., Osman, R. W., Hamilton, J., Whitlatch, R., and Zajac, R. (2011). Changes in habitat heterogeneity alter marine sessile benthic communities. Ecological Applications 21, 925–935.
Changes in habitat heterogeneity alter marine sessile benthic communities.Crossref | GoogleScholarGoogle Scholar |

Reeves, J. M., De Deckker, P., and Halse, S. A. (2007). Groundwater ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585, 99–118.
Groundwater ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltl2hurw%3D&md5=debfbfa64c0300114cbed9a01c779c9fCAS |

Watts, C. H. S., and Humphreys, W. F. (2006). Twenty-six new dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts & Humphreys, from underground waters in Australia. Transactions of the Royal Society of South Australia 130, 123–185.
Twenty-six new dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts & Humphreys, from underground waters in Australia.Crossref | GoogleScholarGoogle Scholar |