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Abstract. Climate change presents significant challenges to modelling and managing aquatic resources. Equilibrium
assumptions common in many modelling approaches need to be replaced by formulations that allow for changing
baselines and integration of ongoing changes and adaptations by species, ecosystems and humans. As ecosystems change,
so will the ways humans use, monitor and manage them. Consequently, adaptive management loops and supporting tools

deservemore prominence in themanagement toolbox.Models are critical tools for providing an early understanding of the
challenges to be faced by integrating observations and examining possible solutions.We reviewmodelling tools currently
available to incorporate the effect of climate change on marine and freshwater ecosystems, and the implications for

management of natural resources. System non-linearity can confound interpretations and hence adaptive management
responses are needed that are robust to unexpected outcomes. An improvement in the ability tomodel the effects of climate
change from a social and economic perspective is necessary. The outputs from ‘end-to-end’ and socio-ecological models

can potentially inform planning, in both Australia and the Pacific region, about how best to build resilience to climate
change. In this context, the importance of well directed data-collection programs is also emphasised. Lessons from this
region, which is advanced with regard to modelling approaches, can guide increased use of models to test options for
managing aquatic resources worldwide.

Additional keywords: adaptive management, Australian fisheries, ecosystemmodels, end-to-endmodels, Pacific Island
countries and territories, qualitative models, socioeconomics.

Introduction

Climate change is already occurring worldwide (e.g. IPCC
2007) and, together with a range of existing threats and pres-
sures, presents significant challenges in how we model and

manage aquatic resources. Modelling tools provide an early
understanding of the challenges posed by climate change for
marine and freshwater resources and the communities that
depend on them. Models also offer a way to examine and

test possible solutions, as shown by the application of the
Atlantis modelling framework in support of the strategic
restructuring of south-eastern Australian federal fisheries

(Fulton et al. 2011).

The diversity of Australian marine and coastal ecosystems

also challenges management, with many resource users span-
ning multiple systems. These systems range from tropical to
temperate to sub-Antarctic, including deep-sea areas to coastal

estuaries, and the largest coral-reef system in the world (Great
Barrier Reef). These ecosystems all support unique fauna and
flora (Butler et al. 2010). Australia is well prepared in terms of
its current modelling capability and approaches for both inland

aquatic ecosystems (Tomlinson and Davis 2010) and coastal-
marine ecosystems (McDonald et al. 2006; Smith et al. 2007a).
The current toolbox of modelling approaches includes applica-

tions for modelling the impacts of climate change from a social
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and economic perspective (e.g. Olsson et al. 2008). Continued
development of both qualitative and quantitative models is

necessary because equilibrium assumptions are limiting when
applied to climate-change problems. Moreover, feedbacks be-
tween social, economic and ecological systems are critical when

evaluating adaptation to climate change (Fulton 2011).
Poleward boundary currents on both coasts of Australia lead

to temperature-change hotspots in the south-eastern and south-

western regions, where the observed rate of temperature change
over the past 100 years is up to four times the global average rate
of warming (Pearce and Feng 2007; Ridgway 2007). These
changes have resulted in southward expansion of a range of taxa,

including fish (Last et al. 2011), and reef and intertidal inverte-
brates (Pitt et al. 2010). In northern Australia, distributions of
tropical fish are likely to be affected (Figueira and Booth 2010)

by significant warming and southward shift of climate zones
(Lough 2008). The tropical Pacific also faces significant
changes on both the land and ocean if emissions follow the

Intergovernmental Panel on Climate Change (IPCC) A2 scenar-
io, with air- and sea-surface temperatures expected to increase
by 0.5–1.08C by 2035 and rainfall by 5–15% (Lough et al. 2011;
Ganachaud et al. 2011).

Several other climate-related changes in the ocean are
also projected, including alterations to winds, upwelling,
mixing, pH, acidification, currents and terrestrial inputs (e.g.

Poloczanska et al. 2007). Lough et al. (2011) reported that rates
of change have accelerated in the last part of the 20th century,
and the fingerprint of climate change is clearly detectable in the

physical changes occurring inmarine and freshwater systems. In
addition, cyclones may become more intense in the subtropics
(Pittock et al. 2006). Such climate-related changes will continue

to challenge marine managers – especially because changes in
future climate further displace many ‘ecosystem’ zones and
their fauna (Hobday et al. 2011).

Extending the scope of modelling approaches (Fig. 1) will

allow for more potential interactions to be captured and reveal a
greater range of possible ways to build the resilience of
both natural resources and the societies that depend on them.

Improved and integrated understanding is essential for Australia
and neighbouring Pacific Island countries and territories, where
future economic development, food security and livelihood

opportunities depend heavily on sustainable and innovative
use of fisheries resources (Bell et al. 2009; Gillett and
Cartwright 2010).Modelling has a key role to play in identifying
the relationships among (1) fishing effort, stocks, catch and

markets, (2) the effects of key drivers such as human population
growth, habitat degradation and climate change on these rela-
tionships, and (3) the potential for practical adaptations to

change caused by these drivers.
In the present paper, we evaluate the ability of a range of

modelling approaches to increase understanding of the effects of

climate change in the context of maintaining food resources and
economic development, with a focus on selected Australian and
tropical Pacific ecosystems. There are unique challenges affect-

ing these regions as well as lessons of global relevance. We
present a broad overview of the wide range of tools available
(Table 1), drawing on selected examples of the different
approaches rather than attempting to comprehensively docu-

ment their full range and the diversity of applications. To clarify

how the approaches are interconnected and to look for gaps in

our toolbox, we characterise modelling approaches along axes
of physical, biological and human complexity (Fig. 1). Here, we
use the term ‘complexity’ to represent the relative amount of

detail incorporated in the model structure (e.g. number of
interactions, relationships, entities, parameters). For example,
climate models tend to have a large amount of physical com-
plexity, with little biological or human complexity involved

(e.g. limited biological feedbacks, emission scenarios).
When discussing each model type, we also explore how

extensions of current approaches across different axes might
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Fig. 1. (a) Schematic representation of modelling approaches discussed in

the present paper, distributed along axes of physical, biological and human

complexity. The term ‘complexity’ refers broadly to the amount of detail

incorporated in the model structure; thus, for example, biological complexi-

ty could be in terms of the number of species groups or the detail included for

a single group. (b) Schematic illustration of ways to increase the value of

these types of models for addressing aspects of climate change by extending

across different axes. Modelling approaches that are likely to have a role in

affecting adaptive management responses under climate change will need to

incorporate a greater amount of detail in representing the complexity of the

human system. Key to model classes and examples (see Table 1 for

references and explanation of abbreviations): 1social-network models (e.g.

BBN, AB); 2biological risk-assessment models (e.g. PSA); 3input–output

economic analyses (e.g. Australian wild fisheries); 4integrated fishery

bioeconomic models (e.g. NPF Economic); 5single-species fishery assess-

ment models (e.g. TS Lobster); 6species distribution models (e.g. southern

bluefin tuna and yellowfin tuna habitat); 7Ecopath with Ecosim (e.g. pelagic

longline fisheries off eastern Australia); 8qualitative models using signed

digraphs (e.g. PICT fisheries resources); 9minimally realistic models (e.g.

catchment dynamics and NPF); 10coupled models (e.g. GoC spatial MSE);
11end-to-end models (e.g. SE Atlantis); and 12integrated catchment–coastal

models (e.g. SE Qld).
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enhance their relevance in modelling climate-change impacts
and so provide a robust platform for strategic policy guidance

for climate-affected fisheries and aquaculture. We finish with a
discussion on the current state-of-the-art in modelling, what
kinds of models are useful in what context, and some challenges

facing the use of models as decision-support tools in a climate-
change context.

Characterising models along axes of physical, biological
and human complexity

Extensions to single-species biocentric models

Historically, fisheries management has generally considered
only the target species. Habitat or other influential environ-

mental factors have not been included explicitly in fishery
assessments. Under changing climate, fisheries stock assess-
ments will need to be modified and management recommen-

dations tested to ensure they are robust to future climatic
variations. Such variations may particularly strongly affect
survival rates and carrying capacities for larval and juvenile

fishes (e.g. Walters and Parma 1996). Simulation analyses can
test the efficacy of different exploitation-rate policies. For
example, Walters and Parma (1996) demonstrated that constant

fraction harvest policies perform well under strongly auto-
correlated interannual variations in recruitment (as might be
expected under climate change). Keyl and Wolff (2008) sum-
marised modelling approaches for incorporating climate and

environmental variability. Single-species biocentric fisheries
models are often used as part of a management strategy evalu-
ation (MSE) framework (see e.g. Smith 1994; de la Mare 1996;

Butterworth et al. 1997), which is a valuable tool for assessing
the robustness of alternative management strategies to the
effects of climate change (e.g. A’mar et al. 2009).

Coupling environmental dynamics to biological systems and
species is a strong area of research and model development (e.g.
Cury et al. 2008; Fulton 2010). One such approach is used in
eastern Australia for the management of tuna species, where a

single-species habitat-prediction model (Hobday and Hartmann
2006) is used in support of management of southern bluefin tuna
(Thunnus maccoyii). The habitat-prediction model is formed by

combining data from an ocean model and pop-up satellite
archival tags. The model is used to define habitat zones on the
basis of the probability of occurrence of southern bluefin tuna,

and because the zones display a distinct seasonal cycle (driven
by the seasonal expansion and contraction of the East Australia
Current), access by fishers to regions likely to contain southern

bluefin tuna changes seasonally (Hobday and Hartmann 2006).
This provides an example of a model with a moderate level of
physical and biological complexity, but with little human
complexity (Fig. 1a).

By parameterising this model with future ocean predictions
(from the CSIRO Bluelink ocean model coupled with a Global
ClimateModel for the year 2064), it can also be used to consider

future potential changes in distribution of yellowfin tuna and
southern bluefin tuna, and to explore the potential future impact
on fishers and management (Hartog et al. 2011). It is predicted

that as the ocean warms on the eastern coast of Australia, the
East Australia Current will extend southward, shifting the
distribution of southern bluefin tuna and yellowfin tuna with

it. The resulting increase in the overlap of southern bluefin tuna
and yellowfin tuna habitat is likely to occur throughout the

management season, leading to a trade-off between restricting
fisher access to the vulnerable southern bluefin tuna and allow-
ing access to yellowfin tuna. Management options to address

this trade-off include varying the spatial restrictions on fish
capture on the basis of the seasonal variability of the overlap,
and redeployment of the fleet to the north to avoid interaction

with the more southerly southern bluefin tuna (e.g. Hobday and
Hartmann 2006). Results from these simple models can aid
management when only biophysical considerations are impor-
tant, but when economic factors are relevant, alternative

approaches are needed.
The Torres Strait tropical rock lobster, Panulirus ornatus,

model exemplifies how extension of single-species approaches

can be used to address potential aquatic-resource management
challenges that more explicitly involve socioeconomic consid-
erations (Plagányi et al. 2011). As with most single-species

assessment models, the biological modelling component is
fairly complex in terms of, for example, detailed representation
of different age classes of lobsters, fitting to data and estimation
of recruitment residuals (Table 1). Although there is little

physical complexity, recent work has focussed on incorporating
aspects of human complexity (Fig. 1). The fishery ismanaged by
Australia and Papua New Guinea and is one of the most

important fisheries, both commercially and culturally, to Torres
Strait Islanders and Papua New Guinean stakeholders. For
example, the fishery contributes more than 15% to the employ-

ment of Torres Strait Islander communities (Arthur 2005). The
involvement of several different sectors in the fishery as well as
multi-jurisdictional and cross-border considerations epitomise

the need for incorporating the human dimension in the fisheries
management sphere, particularly because Papua New Guinea
may be at a greater risk from some climate-change impacts than
is Australia (e.g. sea-level rise, Pernetta 1992).

Expanding from biocentric models along the human com-
plexity dimension (the vertical extension of the blue region
marked in Fig. 1b) will be necessary to explore adaptation

options pertinent to both countries. Moreover, the different
Australian sectors of the fishery are predicted to respond
differently to climate-change impacts. Plagányi et al. (2011)

addressed this extension requirement by forward projections of
a modified model, with the life-history parameters of P. ornatus
reparameterised according to a range of plausible climate
impacts, and assessing the population-level consequences of

these effects. These outputs are then used in an input-output
economic analysis to quantify the resultant socioeconomic
effects on fishers, their communities and national economies.

This modelling shows that by integrating qualitative and quan-
titative approaches, and linking disparate methodologies, a
useful start can be made to model climate-change impacts

affecting the stock and stakeholders.

Bioeconomic models

The inclusion of economics and spatial dynamics into the con-

servation management of marine natural resources has been
developing in recent decades (e.g. Sanchirico and Wilen 1999;
Smith et al. 2009) and has now been adopted as policy in
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Australia (DAFF 2007). Target reference points are based on
achieving economic objectives, whereas limit reference points

are set so as to achieve conservation objectives. The Northern
Prawn Fishery (NPF) is the first major fishery with harvest-
control rules that explicitly account for both biological and

economic factors and this is reflected in the NPF’s use of
sophisticated bioeconomicmodels (Dichmont et al. 2008, 2010).
This provides an example of a multiple single-species model (i.e.

four species but only with technical – fleet – interaction) that
incorporates moderately high biological complexity, little phys-
ical complexity, and more human complexity (i.e. economic
factors, MSE; Fig. 1a). Although technically challenging, it does

show that the incorporation of the economic dimension is feasible
and that it is possible to explicitly represent the economic con-
sequences of changes in resource status.

As a tool for understanding climate-change impacts, the NPF
model is capable of representing economic considerations, but
cannot forecast how climate change is likely to influence

resource status, without incorporating more physical and
biological complexity (extending the blue region along the
biological and physical dimensions in Fig. 1b). The effects of
climate on prawns are well documented (Vance et al. 1985).

These impacts not only directly affect the migration patterns of
some of the species, but also their seagrass- or mangrove-
nursery grounds (Vance et al. 1985; Rothlisberg et al. 1988).

This example highlights the need to integrate and link freshwa-
ter and marine ecosystems because of the important role of
catchment hydrodynamics (specifically rainfall–runoff) affect-

ing the prawn fishery in the cyclone-prone southern Gulf of
Carpentaria (Rothlisberg et al. 1996; Toscas et al. 2009). Thus,
the next logical step in model complexity is to include more of

the ecosystem processes.

Ecosystem models

Ecosystem and multispecies models are seeing increased use in

fisheries and are a valuable strategic tool for integrating infor-
mation and understanding of climate-change effects in a way
that is difficult to achieve otherwise. Ecopath with Ecosim

(Christensen and Walters 2004) has been most widely used to
tease apart the effects of fishing and environmental change
(Mackinson et al. 2009). Indeed, .20 types of well developed

fisheries ecosystem models are currently used (Plagányi 2007).
Ecosystem models face many challenges, given their com-
plexity and associated uncertainty, and are further challenged
when incorporating the additional uncertainties associated with

representing climate-change scenarios. Travers et al. (2007)
reviewed the major process-based approaches used for marine
ecosystem modelling, together with providing suggestions for

extending and coupling these approaches to better assess the
effects of climate change and fishing on ecosystem dynamics.

Within Australia, there is a wide variety of ecosystem and

multispecies models being developed and applied. At the
simpler end of the spectrum, one of the most promising
approaches are models of intermediate complexity for eco-

system assessments (MICE), which are also referred to as
minimally realistic models (MRMs) (Punt and Butterworth
1995; Plagányi 2007). MICE are intended to represent the
critical parts of the system, restricting focuswithin an ecosystem

to represent a limited number of species and processes most

likely to have important interactions with key system compo-
nents of interest. In general, these approaches consider fewer

components than do complex whole-ecosystem approaches,
more fully account for uncertainty and are formally fit to data.
In this sense, they can be positioned in the centre of the range of

biological, physical and human complexity (Fig. 1a). They have
utility in a climate-change context as a fairly rigorous approach
tailored to represent the key physical and chemical processes of

concern, but few approaches have thus far included the human
dimension. One key area of their application is climate-change
impacts on catchments and their coastal receiving waters (e.g.
the link between catchment dynamics and the NPF). Thus, to

achieve greater utility in assessing climate-change influences,
an increase in complexity along human and physical dimensions
would be beneficial (Fig. 1b).

Incorporating human behaviour

The models discussed so far have largely ignored, or included

only limited representations of, the involvement of humans in
natural aquatic systems.Where the human dimension is included
in such models, it is typically restricted to representation of a
small component of marine-resource users (mainly commercial

fishers), with the behaviour explained predominantly in terms
of economics. Deeper understanding of interactions between
human and ecological systems becomes increasingly important

to anticipate and respond to the impact of climate change on
aquatic ecosystems and dependent communities. Consequently,
it is insightful to explicitly include other users, as well as other

aspects of human behaviour such as social, psychological and
anthropological considerations.

Modelling human behaviour in fisheries has largely concen-

trated on changes to fleets over time and space (Venables et al.
2009). Some of these models have been purely statistical, using
fine-scale (e.g. with vessel monitoring systems) or broad-scale
(e.g. logbooks) data to produce models of past human behaviour

(Venables et al. 2009). Although thesemodels can include terms
that can allow for costs and learning, they would need to be
adapted to climates where fisher behaviour may not reflect the

past.
During the past 30 years, models that have included process-

based behavioural aspects have typically been based on eco-

nomic considerations (van Putten et al. 2011b). These models
focus largely on location-choice decisions and also increasingly
aim to explain compliance, discarding, fishery entry and exit,
and investment behaviour. Recently, a focus on behaviour other

than location choice has increased, as have efforts to incorporate
considerations explaining other aspects of human behaviour
and their drivers. A comprehensive overview of all human-

behaviour modelling approaches is beyond the scope of the
present paper. Instead, we review approaches that have been
used in existing aquatic economic–ecological systems models.

We also focus on some tools that are less commonly used, but
have significant potential to increase understanding of fisheries-
related climate-change impacts, such as network analysis,

Bayesian networks (BNs) and agent-based models (ABMs).

Macro-, meso- and micro-scale economic models

Economicmodels of climate change and fisheries resources tend

to focus on the human dimension almost to the exclusion of the
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biophysical dimensions. However, they have been applied at the
macro (country), meso (region or sector) and micro (fleet or

fisher) scales. Economic models have a particularly pertinent
role in assessing potential human behaviour and, thus, adapta-
tion options.

At the highest (macro) level, input–output analysis is a
modelling tool that deterministically depicts relationships
among industries of an economy and predicts the effect of

changes within this economy. In terms of complexity, input–
output models represent a class with relatively simple human
aspects, and little or no physical or biological complexity
(Fig. 1). Although input–output models operate mostly at the

macro level, they are also useful for assessing regional or sectoral
economies and can be effectively used for planning purposes.
As such, they are useful tools in the context of climate change.

Not only can the consequences of climate change on fisheries be
assessed in terms of the resultant socioeconomic effects on
fishers, their communities and national economies, but they

can be used for adaptation planning. For example, Norman-
López et al. (2010) assessed changes in the level of fishing
effort, the location of vessels, and the location of fish farms
following a range of possible changes in the abundance and

distribution of Australian wild and farmed fisheries as a result of
climate change. Although these macro level models are useful
for assessing the potential impact of climate change on the

fisheries resource, they do not explain behaviour at the meso
level.

At the micro level, economic theories underpin models of

fisher behaviour. These fisher-behaviour models have been
incorporated in bioeconomic models in climate-change assess-
ments, as for the NPF (e.g. Dichmont et al. 2010). In the past, the

most common approach to studying fisher decision-making was
based on micro-economic theory, and the assumption that fish-
ers maximise profit. However, increasingly, models seek to
explain how fishers develop expectations, and how these influ-

ence their choices – e.g. by using expected utility theory or
random-utility models (RUMs). RUMs allow incorporation of
both monetary and non-monetary attributes of choices, as well

as individual characteristics of decision-makers, including atti-
tudes towards risk, variability in information levels, or the role
of normative and social influences on decision-making. There

are several useful reviews of behavioural drivers of fleet
dynamics (van Putten et al. 2011b), decision-making under
uncertainty (Holland 2008), and bioeconomic modelling
approaches (Prellezo et al. 2009). Moreover, quantitative mod-

els of fisher behaviour and fishing fleets are available for a range
of fisheries around the world (e.g. Vermard et al. 2008). Using
statistical or Markov chain fleet-level approaches have

made models more realistic because they rely less on historical
information that could be less applicable in non-linear climate-
change scenarios.

Understanding how effective and adaptive the management
systems are requires a broader representation of human behav-
iour and integration of social and economic fisher-behaviour

models. Tools such as social-network analysis, BNs and ABMs
(all of which operate at the individual-fisher or fleet level) have
much to offer. They can combine theories of human behaviour
originating in different domains of social science, explicitly

consider uncertainty and be combined with biophysical data.

Social-network models, analogous to food-web models,
provide insight into the characteristics of a connected system

and the behaviour of actors within that system. Quantitative
measures of interactions among actors in a social network allow
analysis of the structure and dynamics of the network, the

connections and the actors within the network. These models
tend to incorporate a greater degree of complexity than input–
output analysis (i.e. greater human complexity), with little or no

physical or biological complexity (Fig. 1a). Social-network
analyses in fisheries and climate-change contexts (e.g.
Tompkins and Adger 2004) have mostly been qualitative.
Fisheries-related social-network analyses have mostly been

undertaken outside Australia, with only one example of quanti-
tative Australian fisheries-related network analysis (van Putten
et al. 2011a). Nevertheless, social networks strongly influence

behaviour and influence compliance (Palmer 1991; Ramirez-
Sanchez and Pinkerton 2009), fishing success (Mueller et al.
2008) and decision-making in co-management arrangements

(Crona and Bodin 2006), and can affect trade (Weisbuch et al.
2000). Empirically based, quantitative models of social and
trade networks are effective tools in determining impact of
management changes. For example, van Putten et al. (2011a)

used network analysis to analyse economic, social and cultural
changes resulting from the introduction of individual transfer-
able quota management to the Tasmanian rock lobster fishery.

These kinds of models are particularly powerful in a climate-
change context, because they can help explain behaviour and
project management outcomes, and can be incorporated into

social–economic–ecological models.
In social-network modelling, as in the biological equivalent,

nodes are linked to each other by directed or undirected

connections that can be mapped and measured. Where the links
between nodes in a network are causal, conditional probability
tables can be developed that form the basis of BNs. In a fisheries
context, a Bayesian approach has been used with the network

structure and connections represented spatially, on the basis of
the geographic proximity among fishers, to model the effect of
information access on fishing success (Little et al. 2004). If a

fisher is spatially close to many other fishers, they are assumed
to have access to more fishing information, which affects their
fishing success. Similarly, if a fisher is connected to a ‘good’

fisher from whom they obtain information, this may increase
their fishing success, independent of their geographic proximity.
Thomas et al. (2009) used a Bayesian approach to link catch-
ments to the Great Barrier Reef and to understand the socioeco-

nomic trade-offs associated with managing for resilient Great
Barrier Reef communities, given the threat posed by climate
change. The strength in BNs lies in the fact that quantitative and

qualitative data from biophysical and social science can be
combined, and uncertainty is explicitly considered in themodels
(e.g. Ticehurst et al. 2007; Thomas et al. 2009).

In the purely economic models discussed earlier, it is
generally assumed that fishers operate in a consistent manner
based on the incentives they face. In ABMs, the range of drivers

may be increased and non-deterministic outcomes reflected.
ABMs can be used to simulate and assess the overall effect of
interactions among individuals in the model and evaluate non-
linearity in the system. This is particularly relevant because

fishers do not all respond in a similar manner and are faced with
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different levels of information, different information-processing
abilities and different constraints (social and/or economic).

Although there has been a growing number of theoretical studies
usingABMs (e.g.Maury andGascuel 2001; Soulié and Thébaud
2006), empirical applications are still rare (e.g. Little et al. 2004,

2009) because they are data-intensive (especially where the
population is large) and computationally demanding. However,
the ability to evaluate system non-linearity and potential thresh-

olds is particularly relevant in a fisheries and climate-change
context. In future, incorporating further complexity of biologi-
cal and/or physical systems may improve model applications to
assessing climate-change impacts (e.g. yellow envelope in

Fig. 1b).

Combining human and biophysical models

End-to-end models, such as Atlantis and InVitro, attempt to
represent entire systems by coupling physical, biological and
human components (Fulton 2010; Rose et al. 2010) and are

characterised by high physical, biological and human com-
plexity (Fig. 1a). Increasingly, these are moving from inclusion
of standard abiotic drivers, such as riverine and atmospheric
inputs, winds, irradiance, precipitation and major water-body

features (e.g. eddies or upwelling, or temperature and salinity
profiles) to properties relevant to global change, such as alka-
linity, sea-level rise and the effects of storms. The treatment of

these new factors has been fairly simple (e.g. Fulton (2011) used
simple functional forms to represent the effects of changes in
these physical properties on biological components of marine

ecosystems); however, it is likely to be refined as understanding
grows. The models are also being refined ecologically. Many
already include processes from across marine and coastal

foodwebs (from the microbial scale to top predators) and the
main refinements entail more sophisticated representation of
features such as relationships between water-column properties
and rates of growth, consumption, reproduction, mortality and

behaviour (e.g. Fasham 1993; Wild-Allen et al. 2010). There-
fore, the future capability of these models to address aspects of
climate change will benefit from incorporating increasing levels

of physical, biological and human complexity (i.e. the purple
envelope in Fig. 1).

Anticipating and responding to the impact of climate change

on aquatic ecosystems and dependent communities is a problem
that requires consideration of the interaction between human
and ecological systems. This problem is often represented in
modelling frameworks that attempt to provide precise projec-

tions to guide research programs and management interven-
tions. Driven by a goal of precision, the focus quickly turns to
addressing uncertainty in model parameters, and the importance

of uncertainty in the structure of the model itself is often
overlooked.

Coupling models to provide alternative potential model

structures, which can include building bridges between the axes
shown in Fig. 1, is one way structural uncertainty can be
addressed. Model coupling also allows a rapid move to end-

to-endmodels because it takes existing, well known,models and
brings them together to gain a broader perspective on the system.
This is most effectively done if the models being coupled
either nest one within the other (in terms of scales considered)

or have similar spatial and temporal scales and represent

complementary parts of the system (e.g. biophysical and socio-
economic). Many different models can be coupled; however,

attention must be given to the scales involved in the processes
represented in the different models to ensure the coupling is
appropriate.

Recent initiatives are good examples of how models can be
coupled in a complex interactive adaptive form, using a MSE
framework. This enables resolution of climate impacts (e.g.

production-forcing function on a food web) and other spatial
management strategies (Marine Protected Areas, fishery clo-
sures) at reasonably small spatial scales. This has been done for
northern Australia (Bustamante et al. 2010) where an operating

model (or virtual resource) has been created by using an eco-
space model of the Gulf of Carpentaria, which draws together
30 years of surveyed biophysical data. This model provides a

context for a multiple single species-taxa model designed to
investigate the effects of trawling (Dichmont et al. 2008). These
models are then coupled to a full bioeconomic model of the

prawn fishery, which provides insights into management
options for the fishery. To accommodate the different time
and temporal scales of the different models, as well as changes
to the fleet behaviour, a two-tiered fleet-dynamics model is

required (Venables et al. 2009). These approaches tend to
incorporate a relatively high degree of biological and human
complexity, with relatively less information on physical envi-

ronmental processes (GoC MSE; Fig. 1a).

Other approaches to modelling climate-change impacts

Although end-to-end models provide an integrated synthesis of
social–economic–ecological systems across a range of dimen-
sions, it is not always possible to invest the time and resources

required to develop such complex models. As for any other tool,
they are not appropriate in all circumstances. The time and
financial, technical and data resources required for the suc-
cessful implementation of these complex models limit their use

to well chosen case studies. Lessons from these can be used to
augment simpler tools which can be more rapidly deployed. For
example, considerable effort has been put into assessing the

vulnerability of marine ecosystems (e.g. Johnson and Marshall
2007). There has been good progress in translating this under-
standing into models capable of simulating changes in resource

abundance and the consequences for dependent societies.
However, integration of vulnerability assessments and models
capable of simulating climate-change impacts in the coastal
domain remains a key area for development.

The negative effects of climate change in Australia and the
Pacific threaten fisheries and aquaculture developments in the
coastal zone. Changes in climate are projected tomodify rainfall

patterns and lead to sea-level rise (IPCC 2007; Ganachaud et al.
2011). These changes are likely to increase erosion within
catchments (Gehrke et al. 2011) and affect shore stability (e.g.

Dutra and Haworth 2008). Because biological resources in
coastal waters depend on processes occurring in the catchments,
the consequences of climate change will vary. Impacts on

biological resources will depend on the number of species
and/or resources affected and their relative economic, consump-
tive and ecological values (Fig. 2).

An appreciation of coastal dynamics is critical in any effort to

understand the effects of climate change in the coastal zone. In
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addition to climate change, other factors influence the coastal
zone, such as increasing sediments and nutrients (Vörösmarty
et al. 2010). This is the region where most Australians live and
its population is expected to continue to grow (Australian

Bureau of Statistics 2010). Population growth promotes catch-
ment disturbances, such as conversion of forests to agricultural
fields and urban areas, changing water flows and riverside

habitats. More people also increase demands for housing, food,
water and recreation, thus requiring construction of infrastruc-
ture (e.g. farms, dams, aquaculture, housing, road network).

Simulation models (e.g. biophysical, physical, biogeochem-
ical) have been used in the ‘catchment-to-coast’ (CtoC) domain
to inform governmental and operational decisions (e.g. Xu et al.

2009; Wild-Allen et al. 2010), including a large degree of
physical complexity with moderate biological complexity
(Fig. 1a). However, just as in fisheries, there is a need to move
frommodelling each part separately tomore integrated tools and

to explicitly consider how humans might react to climate
impacts and associated economic costs (thus, the expanding
extent of the green region in Fig. 1b).

The link between catchment and receiving water models (or
integrated CtoC biophysical models) is important because in
addition to the link between freshwater and coastal systems

through water flow, there are feedbacks between the coast and
catchments during extreme events, such as storms and higher
than normal tides, where saltwater can flow to freshwater
streams, affecting freshwater ecosystems (Gehrke et al. 2011).

The feedback can also occur through management actions. For
instance, if environmental degradation in coastal waters is
associated with poor catchment practices, management mea-

sures may be implemented to improve catchment conditions.
These links are more evident if one wants to understand the
consequences of predicted sea-level rises associated with global

warming, with consequent increases in salinity and erosion at
estuaries and further upstream, which have the potential to
negatively affect mangroves and coral reefs. Just as with models

focussed on fisheries or marine waters, limited resources mean
that a mix of modelling types – from semi-quantitative to

minimum realistic quantitative models up to full ecosystem
models – would need to be used (see Table A1 available as an
Accessory Publication to this paper, for a description of poten-

tial modelling approaches). The requirements of a CtoC model
to understand the effects of climate change on fisheries and
aquaculture are given in Table 2. Additionally, progress in

broadening the focus of models is complicated by communica-
tion gaps between social and natural sciences because of the
varying quality of data and philosophy of science across
disciplines (Smith et al. 1982), technological barriers to data

assimilation, visualisation of complexmodel results and compu-
tational speed limitations.

Risk-assessment approaches to climate

Australia’s fisheries are relatively small and of lowvolume,with

high diversity of target or by-catch species. Because of the cost
of assessment, risk-based approaches have been developed to
assess ecological risk from fishing and prioritise management
responses (Fletcher 2005; Smith et al. 2007b; Zhou andGriffiths

2008; Hobday et al. 2011). These approaches underpin the
ecosystem-based fisheries management (EBFM) approach in
Australia and derive from the implicit embedding of risk

assessments in fisheries management. The classical single-
species stock assessment is a rigorous risk assessment that
defines the probability of a specific management objective not

being achieved. In the past decade, risk assessments have been
explicitly formalised and extended to a wider range of aquatic
components, including the following: target species; by-product

and by-catch species; threatened, endangered and protected
species (Hobday et al. 2011); habitats (Williams et al. 2011) and
communities (e.g. Fletcher 2005; Astles et al. 2006; Zhou et al.
2009, 2010). Attempts to generalise these risk-based approaches

to include climate risks have so far met with limited success, in
part because data to estimate sensitivity to climate impacts are
lacking. Tools such as the integrated ecological-risk assessment

for effects of fishing (ERAEF) framework have the capability to
assess the ecological effects of fishing under changing climate
(Smith et al. 2007b; Hobday et al. 2011).

The ERAEF framework is a hierarchical approach that starts
from a qualitative analysis, through a semi-quantitative analysis,
to a quantitative analysis (Hobday et al. 2011). For example,
productivity-susceptibility analysis is based on scoring each

species on several productivity (ability of the unit to recover
from impact E resilience) and susceptibility (exposure of the
unit to impact E vulnerability) attributes, following Stobutzki

et al. (2001). This provides an example of a model that
incorporates a low to moderate degree of biological and human
complexity, with little or no complexity of the physical environ-

ment (Fig. 1a). There have been some efforts to extend the
ERAEF approach for vulnerability assessments of marine
climate change (Chin et al. 2010; Richardson et al. 2010).

More quantitativemethods, such as sustainability assessment
for fishing effects (SAFE), are useful for assessing risk for data-
poor by-catch species (Zhou et al. 2009, 2010). The SAFE
framework consists of an indicator and reference points. Envi-

ronmental variables, including climate-driven changes, are
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of the number of resources and/or their relative importance (see e.g. Brown

et al. 2010).
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easily included in both components, either through effects on
species distributions or species-specific physiological thresh-
olds (Walther et al. 2002) or life-history traits (e.g.Munday et al.

2008).

Qualitative models – their role and applications

In most cases, we lack adequate baseline information for mon-

itoring environmental change and for parameterising particu-
larly data-intensive quantitativemodels. However, there is often
a wealth of information that is qualitative. This information can

be productively employed using qualitative modelling, which
focuses on understanding the influence of model structure on
system feedback, and how this feedback affects the behaviour of

the system. Thesemodels are able to incorporate an intermediate
amount of complexity of physical, biological and human ele-
ments (Fig. 1a). Below, we illustrate the use of such an approach
to analyse the effect of climate drivers. We develop an example

centred on Pacific Island countries and territories to highlight
the utility of a simpler, quicker tool compared with the more
complex data-intensive approaches described earlier.

Qualitative models are descriptions using signed digraphs of
the variables and relationships within a system, where the links
between variables describe either positive or negative direct

effects (Fig. 3a). These links can be used to describe one- or
two-way interactions in ecological or socioeconomic (Fig. 3b)
systems, and also modified or non-linear interactions where

interaction strengths are altered by the magnitude of a variable
(Fig. 3c). This type of modelling permits inclusion of variables
that are important where data for them are unavailable or they
cannot be measured and allows variables of disparate form to be

considered. Such approaches support conceptual syntheses
across disciplines and provide an ideal entry point for any
modelling of socioecological systems (as indicated by the broad

orange region in Fig. 1).

The qualitative model identifies the feedback properties of
themodelled system, which can provide insight into its ability to

achieve or maintain equilibrium, or the likely response and
future state of the system if it is perturbed (Dambacher et al.

Table 2. Requirements for integrated ‘catchment-to-coast’ (CtoC) models to assess effects of climate change on fisheries and aquaculture

Simulation requirement Process detail

Land-use and runoff Soil characteristics, land cover and catchment runoff

Hydrodynamics A catchment or freshwatermodel should be able to represent at least catchment flows that generate information on the runoff

of sediments, nutrients and other chemicals. Receiving water models should be able to simulate 3D processes, such as

mixing, turbulence and resuspension of sediments, stratification, sea-level rise and biochemical-process representation.

Transport The origin and fate of sediments and nutrients in theCtoCdomain are essential to understand the effects of climate variability

and changes in land-use.

Physio-chemical water-quality

constituents

Variables such as pH, redox potential, temperature and salinity should be included in integrated CtoC models to assist in

the prediction of impacts of physio-chemical variables in high-value ecosystems, which provide food products, and

aquaculture farms.

Biogeochemistry Simulation of reactive transport and transformation of common parameters such as nitrogen, phosphorus, oxygen, carbon

and inorganic suspended solids, and assimilation of nutrients by primary producers. Simulating biological parameters such

as bacteria, pathogens, algae and zooplankton is also highly desirable.

Ecological relations Simulation of higher-order functions, such as predator–prey interactions, between fish and invertebrates is desirable.

This requires measures of interaction strength to characterise competition, facilitation, and predator–prey interactions.

Information on key rate processes (e.g. respiration, growth) and dependence on physical environmental factors are needed

for predictions of how climate change may influence organisms at a physiological level and how this scales to population

and ecosystem effects.

Social-economic relationships Information on social and economic networks, behavioural roles of humans, and decision rules around resource use and

management will be necessary as part of an overall predictive framework (e.g. MSE, adaptive management cycles).

Incorporation of cultural contexts and sociological values will also underpin models that support policy and institutional

and management frameworks.
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(c)

(b)
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Fig. 3. Signed digraphs showing relationships among variables (open

circles), with a link ending in an arrow representing a positive direct effect,

and a link ending in a filled circle representing a negative direct effect;

negative self-loops denote self-regulation in a variable. (a) A pair-wise

interaction with a positive and negative link can represent a biological

relationship, such as predation, or an economic one, such as product supply

and demand. Other possible biological relationships include competition

(�, �), mutualism (þ, þ), commensalism (þ, 0) and amensalism (�, 0).

(b) Example of positive or self-enhancing feedback within a socioeconomic

system. (c) Amodified interaction, inwhich variableZ enhances the strength

of the pair-wise interaction of X and Y, as denoted by a dash-lined link. The

product of this modifying link with either of the two pair-wise links creates

direct effects of Z on variables X and Y (Dambacher and Ramos-Jiliberto

2007).
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2002, 2003). Negative feedback cycles (Fig. 3a) contribute to

stability by countering, or buffering, shocks to the system, so
that eventually it returns to its initial state. In contrast, positive
feedback (e.g. in Fig. 3b) can lead to unhindered growth or decay
and the system can be restrained only by the degree to which

there is negative feedback in the whole system. This approach
has immense utility for guiding the development of adaptations.

A good example is a qualitative model of the principal

variables controlling food security for coastal communities in
Pacific Island nations and their vulnerability to climate change
(Fig. 4). The effects of subsistence and artisanal fisheries on

demersal fish and near-shore pelagic fish stocks were portrayed
through the variables of fishing effort, catch and the market
value of catch (Dambacher et al. 2009; Pratchett et al. 2011).

The benefits of catch support fishing effort and food security (FS
in Fig. 4), but high levels of catch suppress its market value (MV
in Fig. 4). An increased human population (HP in Fig. 4) creates
increased demand for food, leading to an increase in fishing

effort, but it also contributes to degradation of habitats support-
ing demersal fish stocks, such as coral reefs. The feedback
properties of this model system (Fig. 4) indicate a moderate

potential for stability (Dambacher et al. 2003).
To analyse the effect of climate drivers, and possible

adaptations, perturbation scenarios (comprising all possible

combinations of the driver and adaptation variables) were
applied to models that represented the eastern or western Pacific

in 2035 and 2100. The two regions were treated separately as
there are substantially different projections for human popula-
tion growth in the two regions (SPC 2008) and because there is

the potential for differential responses in tuna stocks to climate
drivers (Lehodey et al. 2011). The total effects (positive and
negative) on food security were summed in each scenario and

the sensitivity of the results to specific drivers and adaptations,
or combinations of them, examined. The results indicate that
(1) the contribution of catch to food security in the western
Pacific is generally likely to be lower than that in the eastern

Pacific, (2) there are no adverse or unintended consequences for
food security in any combination of the proposed adaptations
and (3) integrated coastal-zone management consistently gen-

erated the greatest positive effect across all perturbation scenar-
ios, and, in general,more adaptations resulted in better outcomes
for food security.

Discussion

Value of models

Research into climate-related adaptation options for marine and

freshwater environments is scant, and has focussed on assessing
impacts and vulnerability (e.g. Hobday et al. 2007). Identifying
adaptation options is the next step (e.g. Hobday and Poloczanska
2010). Modelling is a valuable tool for understanding and

seeking solutions to the significant challenges posed by climate
change at several levels. To use these tools to greatest effect,
there is a need for focussed and integrated research capable of

translating changes in physical variables into evaluations of
changes in ecosystem functioning and impacts on dependent and
affected societies. To this end, Australia and the neighbouring

tropical Pacific region are using modelling tools ranging from
qualitative to fully quantitative approaches (Table 1) and from
simple to complex models (Fig. 2).

The kinds of models required and their utility under

any scenario are a function of the questions to be addressed
(Plagányi 2007; Fulton 2010). Useful guidance in constructing a
model is the best-practice guidelines given in FAO (2008) that

include directions for (1) setting up a model, (2) defining model
components, (3) setting a spatial resolution, (4) modelling
predator–prey interactions, (5) the inclusion of external forcing,

(6) technical and non-trophic considerations, (7) dealing with
uncertainty and (8) model use and outputs. Here, we first
acknowledge that there is no single optimal model structure

and that a range of models of physical, biological and human
complexity (spanning the full 3-dimensional space shown in
Fig. 1) will be needed to address climate-change impacts on
aquatic ecosystems. This structure can range from simple to

highly complex models, as well as qualitative through to
quantitative approaches. Such a range of models is necessary
as there are significant resource constraints associated with

building new (especially complex quantitative) models. More-
over, although many people involved in modelling (scientists,
managers and resource users) consider that systems are

affected by multiple stressors, it is only recently that computing
power has reached the point where fully coupled multi-scale
representations of the feedbacks in socio-ecological systems can

FE

MV

HP Ca

FS

PH Aq FA IC

CC HD

NP DF

Fig. 4. Signed digraph model of factors affecting the use of fish for food

security by coastal communities in Pacific Island countries and territories

under the Intergovernmental Panel on Climate Change (IPCC)A2 emissions

scenario. As in Fig. 3, circles represent major variables that regulate delivery

of protein from fish and invertebrates to human populations; darkly shaded

circles (HP, CC and HD) represent pressures and drivers for the system, and

lightly shaded circles represent possible interventions (adaptations) to

improve food security (PH, Aq, FA and IC). Thin-lined links entering

near-shore pelagic fish (mainly tuna) indicate negligible levels of fishing

mortality. Note that in 2035, the effects of climate change on stocks of near-

shore pelagic fish are projected to be positive across the entire tropical and

subtropical Pacific; however, the effects change by 2100; they remain

positive in the eastern Pacific, but, as denoted by the dashed-line link, are

expected to be negative in the western Pacific (Lehodey et al. 2011). Aq,

aquaculture; Ca, catch; CC, climate change; DF, demersal fish and inverte-

brates associated with coral reefs; FE, fishing effort; FA, fish aggregation

devices; FS, food security; HD, habitat degradation; HP, human population;

IC, integrated coastal-zone management; MV, market value of catch; NP,

near-shore pelagic fish; and PH, post-harvest processing.
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be tractably represented. Critically, such coupled models have
highlighted that thresholds that appear to be avoided if factors

(such as climate variables) are considered separately, are passed
when multiple factors are considered (Casini et al. 2008;
Lindegren et al. 2009).

As ecosystems change, so will the ways humans use, monitor
and manage them. Adaptive management loops will need to be
included as an indispensible part of the management toolbox.

An effective means of exploring the potential outcomes of
adaptive management is management strategy evaluation,
which involves modelling each step of the formal adaptive-
management approach and evaluating the consequences of a

range ofmanagement strategies or options (Walters 1986; Smith
et al. 1999; Rademeyer et al. 2007). Briefly, this method makes
explicit trade-offs across a range ofmanagement options and has

utility in checking the robustness of management measures to
inherent uncertainties in all inputs and assumptions used (Smith
et al. 1999; Rademeyer et al. 2007). There is increasing uptake

of this approach in both the coastal and marine domains. Its
potential to readily incorporate the human dimension enables
visualisation of trade-offs in biological, economic and social
dimensions arising from different climate adaptation options.

Importantly, the approach is not limited to quantitative models
and could be used with the majority of the modelling methods
described above.

Value of data

A lack of data will continue to be an issue for more complex
models. Empirical data are required to test the accuracy of

models assessing climate impacts on fisheries, both in the con-
cept phase and the future monitoring phase. Long-term time
series data are vital when trying to assess climate impacts or

adaptation alternatives. For example, long-term observations of
variation in the micronekton of the tropical Pacific Ocean will
help modellers bridge the gap between ocean models and the

population dynamics of tuna under climate change (Lehodey
et al. 2008). Long-term monitoring is also required to separate
the effects of climate change on coastal fisheries from other

drivers, such as habitat degradation and overfishing (Hobday
and Poloczanska 2010). We appreciate that it is often not
logistically possible to monitor all associated environmental
factors as part of a fishery assessment; however, even the

collection of some ancillary data is immensely helpful. For
instance, habitat data are concurrently recorded during Torres
Strait lobster surveys, primarily to inform future sampling

strategies, but also to provide information on changes that could
influence lobster abundance (Plagányi et al. 2009). These
surveys are thus able to provide benchmark information for

long-term assessments of climate impacts.

Modelling options

Ultimately, the suitability of different models and approaches
depends on the context and underlying objectives. The examples

provided above demonstrate that there is a wide range of models
that can, for example, inform understanding of ecosystem
impacts, risks to individual species, changes in the economic
gains of stakeholders, adaptation options and the risks to food

security.

The broad range of modelling options reflects past foci.
For instance, different modelling groups have focussed on

physical, biological and socioeconomic processes or compo-
nents (Fig. 1). Site to site and case to case, there will be a broad
range of ‘dependence’ of biological resources and societies on

catchment, coastal, oceanic, ecological, social and economic
processes. These processes and links among marine, coastal and
freshwater domains are likely to respond differently to climate

change. The priority accorded to understanding these processes
and linkswill be dictated by the biodiversity and economic value
of the resources (Fig. 2). In some situations, economic values
might have relatively greater importance from the perspective of

direct fishery profits and revenue, or because of the central role
of marine resources in providing food security. Progress in
understanding these interdependencies is currently impeded by

difficulties in linking and integrating marine and coastal models.
Understandably, there is a desire to make evaluation of a new

problem as simple and straightforward as possible. This has seen

the initial consideration of climate threats treated directly and in
isolation from other pressures (e.g. Hobday 2010). However,
Crain et al. (2008) found that cumulative effects in individual
studies were generally synergistic, although could also be

additive or antagonistic. Consequently, it is important to con-
sider all pressures on a system (e.g. Halpern et al. 2008). This is
important because it can identify when one pressure (e.g.

acidification) modifies what are considered ‘safe’ levels of
pressure from another source (e.g. fisheries). For instance,
Fulton (2011) found the level of fishing pressure that was

sustainable under projected global climate change was as much
as 35% lower than that under current conditions. However,
cumulative effects can also see the moderation of one factor by

another. For example, E. A. Fulton (unpubl. data) found that
increases in productivity in some systems under climate change
can potentially moderate or offset declines caused by the effects
of acidification, at least at the level of functional groups. Perhaps

most importantly, the inclusion of cumulative effects highlights
the non-linear (typically skewed) responses of different parts of
coupled social-economic–ecological systems (e.g. Brown et al.

2010).
Given the mixed and cumulative nature of natural-resource

use and management under climate change, where possible, we

would recommend inclusive approaches, which attempt to give
some degree of consideration to all three axes of complexity
(Fig. 1). End-to-end models are at the forefront of approaches
capable of integrating effects from the lowest biophysical levels

through to the efficacy of adaptation options and governance
structures to respond to climate-change impacts. However, these
models require substantial resources to develop and implement.

Moreover, recognising that it is not always possible, or even
desirable, to keep increasing the complexity of modelling
approaches, it is encouraging that the toolbox of available

approaches also includes simpler qualitative models and risk-
assessment approaches (Fig. 1) that can usefully informmanagers
and stakeholders about a range of relevant issues. A tiered

approach, calling on both fully integrated end-to-end models as
well as simpler methods, will be particularly important, given the
limited scientific capacity of different organisations and nations in
the region. For example, Pacific Island countries and territo-

ries will continue to need collaboration from better-resourced
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nations, such as Australia, to identify the vulnerability of their
fisheries and aquaculture sectors, and the adaptations needed to

maintain the benefits from fisheries resources in the face of
climate change. Qualitative modelling is an ideal platform for
supporting many small Pacific Island countries and territories,

representing key biological and physical drivers, engaging other
disciplines (e.g. agriculture) and including broader socioeco-
nomic contexts (e.g. diversification of livelihoods into other

sectors, community-based planning for sustainable resource
use) in the modelling exercise.

Conclusions

Decades of modelling-based research in economics, ecology,
and fisheries and conservation science have left Australia
and the Pacific region well placed to begin tackling the issues

of considering alternative futures under climate change. The
individual models capture the mix of physical, biological and
human dimensions to differing degrees; however, collectively

they cover the key drivers of concern. In general, although
advances have been made in accurately modelling physical and
biological processes, much work remains in terms of repre-
senting complex components of human behaviour, such as

psychological and anthropological factors. There is potential for
further development and increased uptake of approaches such as
social-network analyses. Simultaneously, there is a need for

gradual expansion of the number and types of resource users (not
just fishers) represented in models.

Amongst the existing tools, different approaches have utility

in different contexts. In some cases, the utility can be improved
by expanding one or more of the biological, physical and
human-complexity dimensions (Fig. 1b). Universally, there is

a shortage of suitable data to adequately inform and validate
understanding. The modelling examples and approaches
(Table 1) differ in their data requirements and there is a need
to identify critical data gaps, as well as to revisit old data from

new perspectives.
The appropriate model to use will still depend on the

situation, the question, data and resources available. This will

mean that the wide range of models discussed here will continue
to have utility; however, we recommend extending them
through the different axes of complexity so that they adequately

represent the synergistic or moderating influence of multiple
drivers and feedbacks. This is not a request for the universal use
of coupled or end-to-end models. Simulations using those kinds

of models are extremely useful for looking at combined effects
and new forms of management, but they are costly and not
always the most appropriate approach. A more effective way
forward may be to use such large models selectively (i.e. in a

limited number of particularly well known or supported loca-
tions) and use them to usefully inform simpler models.
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van Putten, E.I., Kulmala, S., Thébaud, O., Dowling, N., Hamon, K. G.,

Hutton, T., and Pascoe, S. (2011b). Theories and behavioural drivers

underlying fleet dynamics models Fish and Fisheries. doi:10.1111/

J.1467-2979.2011.00430.X

Vance, D. J., Staples, D. J., and Kerr, J. D. (1985). Factors affecting year-to-

year variation on the catch of banana prawns (Penaeus merguiensis) in

theGulf of Carpentaria, Australia. Journal duConseil International pour

l’Exploration de la Mer 42, 83–97.

1146 Marine and Freshwater Research É. E. Plagányi et al.
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