
Where do elements bind within the otoliths of fish?
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Abstract. Otolith element analyses are used extensively to reconstruct environmental histories of fish based on the

assumption that elements substitute for calcium within the CaCO3 otolith structure. However, elements may also be
incorporated within the protein component of the otolith in addition to the direct substitution for calcium in the mineral
component, and this could introduce errors in environmental reconstructions. The aim of the present study was to

determine whether elements were incorporated into the protein or mineral components of otoliths and the relative
proportion of each element in each component. Element concentrations from whole ground otoliths and the isolated
protein component were quantified using solution inductively coupled plasma mass spectrometry (ICP-MS). Of the

12 elements investigated, most were found in both the proteinaceous and mineral components, but always in greater
concentrations in the latter. Elements considered ‘non-essential’ to fish physiology with Ca-like properties (i.e. alkaline
metals) were present in the mineral component in relatively high concentrations. Elements essential to fish physiology

with smaller atomic radii than Ca (i.e. transition metals) were distributed throughout the protein and mineral components
of the otolith. These findings enhance our understanding of element incorporation in the otolith and, ultimately, improve
interpretations of otolith-based environmental reconstructions.
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Introduction

Otoliths (ear bones) of teleost fishes are a series of paired cal-

cium carbonate (CaCO3) structures, which crystallise around
an organic matrix with daily periodicity (Campana 1999;
Sturrock et al. 2012). The organic otolith component con-

stitutes between 2 and 10% of the total otolith mass and is
primarily comprised of proteins, including lipoproteins and
glycoproteins, glycosaminoglycans and polysaccharides;

,50% of these are water soluble (Kalish 1991; Campana 1999;
Dauphin and Dufour 2003). Otoliths are acellular and meta-
bolically inert, meaning any chemicals elements incorporated
onto the precipitating surface are permanently retained

(Campana 1999; Campana and Thorrold 2001). Elemental
concentrations in otoliths may reflect the ambient properties of
the surrounding water, such as temperature, salinity, ambient

elements and potentially pH, which are mediated by physio-
logical factors (Campana and Thorrold 2001; Elsdon et al.

2008; Sturrock et al. 2012). The continued and predictable

growth of otoliths throughout the lifetime of the fish allows
time-resolved environmental histories to be reconstructed
(Campana and Thorrold 2001).

Determining where chemicals are incorporated within
otoliths is imperative because concentrations of elements
may reflect relative concentrations in the external medium

(i.e. endolymph via the blood) or physiological effects on blood
chemistry. Multiple element binding sites within otoliths have

been identified (Campana 1999): (1) substitution for Ca within
the CaCO3 crystalline lattice; (2) as inclusions within the
interstitial spaces of the crystal lattice; or (3) in association with

the protein component of the otolith. Some generalities about
the binding fates of some groups of metals can be inferred based
on specific environmental, physiological and chemical proper-

ties. Transition metals, with relatively small atomic radii, are
more likely protein associated (e.g. Mugiya et al. 1991;
Campana 1999; Sturrock et al. 2012) and alkaline earth metals
and larger non-essential transition metals (e.g. Pb) likely substi-

tute for Ca because they possess Ca-like properties (e.g. Mugiya
et al. 1991; Radtke and Shafer 1992; Campana 1999). To date,
only two studies have directly tested these generalities. Using

synchrotron X-ray absorption spectrometry, Doubleday et al.

(2014) validated the substitution of Sr for Ca within otolith
aragonite for a range of fish species, from different environ-

ments and ambient Sr concentrations. Miller et al. (2006)
extracted proteins from the otoliths of Atlantic cod (Gadus
morhua L.) and determined that .70% of copper (Cu) and

.40% of zinc (Zn) are incorporated within the protein matrix,
regardless of surrounding ambient environmental concentra-
tions (Brophy et al. 2004).
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The aim of the present study was to further test these
generalities by directly relating element concentration of the

protein otolith component to corresponding elemental compo-
sition of whole otoliths (both the proteinþmineral components)
of Lutjanus malabaricus (Bloch & Schneider, 1801).

Material and methods

Otolith collection

Paired sagittal otoliths were extracted from specimens of sad-

dletail snapper (L. malabaricus, Family Lutjanidae), a pelagic
marine species. Otoliths were rinsed twice in ultrapure water to
remove excess tissue and sonicated in ultrapure water for 5 min
to remove fine particulate matter. Otoliths were then immersed

in 5%H2O2 solution for 10 min, followed by rapid immersion in
2% HNO3 solution to remove superficial contamination before
being finally rinsed three times in ultrapure water (Rooker et al.

2001). Ten left sagittal otoliths were hand-ground with an agate
mortar and pestle. It has been shown that grinding the otoliths of
Lutjanus species does not contaminate their chemical signatures

(Barnett and Patterson 2010). For each fish, ,100 mg (range
99.17–101.73 mg) ground otolith mass was used for each of the
nitric acid dissolutions of protein þ mineral components, and a

similar amount was used for the protein extraction assay. All
otolith preparations were performed in a laminar flow hood and
all contact surfaces were cleaned with dilute (,2%) HNO3.
Similarly, all labware was acid washed and rinsed three times in

ultrapure water before use.

Nitric acid dissolution of whole otoliths: protein 1 mineral
components

Ground otoliths were dissolved in ultrapure HNO3 overnight.

Upon complete dissolution of the ground otolith mass, ultrapure
water was added to bring the solution to a final dilution of 2%
HNO3 for analysis (Dove et al. 1996). The resultant solution

reflects the combined protein þ mineral components of the
otoliths.

Extraction of the protein component of the otolith

Ground otoliths were decalcified with 0.125 M EDTA and the

solution adjusted to pH 6 with ammonium hydroxide (Miller
et al. 2006). The vials were mixed, vented and placed in a
sonicating bath for 5 min (Miller et al. 2006). Aliquots of the

decalcified solution were passed through two serially connected
0.45-mm polyvinylidene difluoride (PVDF) syringe filters to
remove any undissolved material and then passed through

DP-10 desalting columns (GE Healthcare Bio-Sciences AB,
Uppsala, Sweden) and eluted with a 250mMammonium acetate
buffer (pH 7). Elution fractions were collected in micro-

centrifuge tubes and stored at 28C. Successful protein extraction
was verified using a Qubit 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA).

Solution inductively coupled plasma mass spectrometry

(ICP-MS) analysis requires total dissolved solids to be ,0.1%
of the aqueous solution, requiring the removal of free organic
particulates. The protein extracts were acid boiled at 958C

for 30 min in 2% HNO3 to denature the proteins, initiating the
decoupling of the bound trace elements. Samples were mixed

periodically during the incubation stage. The supernatant was
collected by centrifugation at 14 000g for 30 min (McDevitt

et al. 2011).

Elemental analysis

Aliquots of the proteinþmineral samples, as well as the protein

samples, were diluted to a final 2% HNO3 solution before being
filtered through 0.45-mm PVDF syringe filters before analysis.
Aliquots were randomised and analysed for a suite of elements

(7Li, 27Al, 39K, 55Mn, 56Fe, 63Cu, 66Zn, 85Rb, 88Sr, 111Cd, 138Ba,
208Pb) using an Agilent Technologies (Palo Alto, CA, USA)
7500cs solution-based ICP-MS. The protein þ mineral and

protein samples were analysed separately using matrix-matched
blanks and standards. A multi-element stock standard was run
across a concentration gradient of 0, 1, 50, 100 and 500 mg L�1

and an indium spike was also used to measure element recov-
eries. Standards and blanks were analysed periodically
throughout the session. In addition, three randomly selected
samples were run in duplicate per session to test for precision.

The mean CVs of repeated measures of the standards for all
elements were 5.67 and 5.83% for the whole and protein
duplicate samples respectively. Agilent Mass Hunter software

was used to collect raw counts per second, whichwere calibrated
against the elemental standards to correct for machine drift.
Overall, standard recovery (99–101%) and precision (,5%)

were within acceptable levels.
Element concentrations of the ,100-mg ground otolith

material (parts per million, ppm) were calculated from raw
counts per second. These values were corrected for intersample

differences in the masses of the ground otolith material used in
the whole otolith dissolution and protein extraction assays.
Finally, the relative proportions of protein-bound elements for

each otolith were calculated by dividing the concentration of
individual elements in the whole otolith (both the protein þ
mineral component) by the corresponding concentration values

of the protein component.

Results and discussion

Element concentrations

Elements in the dissolved whole otolith samples were present at

either minor (.1 ppm) or trace (,1 ppm) levels (Fig. 1). Con-
centrations of protein-bound elements were considerably less
than the corresponding whole otolith values (Fig. 1). Of the

elements surveyed, Al, Pb and Cd were not detected in the
protein extracts (Fig. 1).

Proportion of elements

The relative proportion of elements bound to the protein matrix

varied among the metals surveyed (Table 1). Overall, the rela-
tive proportion of elements in the proteinaceous otolith com-
ponent relative to the whole otoliths largely conformed to the
proposed patterns of otolith elemental incorporation in the lit-

erature. Transition metals (Cu, Zn, Mn and Fe), which are
regarded as physiologically essential in teleosts (Mugiya et al.
1991; Watanabe et al. 1997) and have relatively smaller atomic

radii than Ca (Å¼ 1.97; Table 1), showed an affinity for pro-
tein–metal complexes (with the exception of Cd). Among the
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protein-boundmetals, Cu, Zn andMnwere incorporated into the

otolith protein component at relatively high levels (.27%;
Table 1), although in considerably lower quantities than seen in
the otoliths ofGadus morhua (Miller et al. 2006). This disparity

may be due to interspecific differences in otolith protein content
(values ranging from 1 to 8% protein composition; Campana
1999), which can alter the availability of metal–protein binding

sites within the otolith.
The alkaline metals surveyed (Sr and Ba) were predomi-

nantly bound within the mineral crystalline matrix of the otolith,
with minor quantities of concentrations associated (,1%) with

the protein component of the otolith (Fig. 1; Table 1). These
elements are considered non-essential to physiological

processes and are readily transported through the blood plasma
(Campana 1999; Elsdon et al. 2008). Strontium directly sub-

stitutes for Ca in aragonitic CaCO3 (Doubleday et al. 2014) and
other elements, with similar atomic radii to Ca, may also
substitute or coprecipitate with Ca in otoliths (e.g. Ba

(Å¼ 2.24); Campana 1999). The detection of these metal–
protein bonds likely reflects the non-specific binding to the
acidic soluble proteins that control the biomineralisation of
aragonitic CaCO3 (Sturrock et al. 2012). Elements with Ca-like

properties may become bound to Ca-binding proteins, albeit at
considerably lower affinities. This is indirectly supported by the
heterogeneous incorporation of some elements in otoliths to

protein-rich growth increments (refer to otolith element maps in
Arai et al. 2003; Limburg et al. 2007; McGowan et al. 2014).

The three alkali metals examined (Li, Rb and K) were

incorporated at minor levels in the otolith protein component
(Fig. 1; Table 1). However, these findings do not indicate the
proportion of elements taken up in the interstitial spaces of the

otolith. Otolith dissolution, as part of the protein extraction
methodology, releases elements from both the crystalline and
interstitial spaces of the otolith matrix (Miller et al. 2006).
Elements such as Li and K, which are prone to post-mortem

leaching from otoliths (Proctor and Thresher 1998), or Rb,
which can be lost through DNA extraction protocols
(Therkildsen et al. 2010), may also be bound within the

interstitial regions of otoliths (Radtke and Shafer 1992). These
findings suggest that alkali metals may be distributed across all
three potential binding sites within the otolith: (1) substituting

for Ca; (2) as an inclusion into the interstitial regions; or
(3) bound to the protein matrix (Campana 1999).

Although metal–protein complexes were detected in the
otoliths of L. malabaricus, the methodology only extracted the

soluble protein component, which comprises ,50% of
the protein component of otoliths (Asano and Mugiya 1993;

Table 1. Mean (±s.e.m.) percentage of elements bound to the protein

phase of Lutjanus malabaricus otoliths

Atomic radii values are from Wedepohl et al. (1969)

Element Percentage of

protein bound

Atomic radius (Å) Metal type

7Li 0.34� 0.10 1.56 Alkali earth
27Al 0� 0 1.43 Other
39K 3.10� 1.12 2.34 Alkali earth
55MnA 27.98� 2.44 1.32 Transition
56FeA 11.57� 1.71 1.27 Transition
63CuA 37.05� 5.34 1.28 Transition
66ZnA 32.96� 5.16 1.39 Transition
85Rb 4.54� 0.45 2.50 Alkali earth
88Sr 0.02� 0.0032 2.15 Alkaline earth
111CdA 0� 0 1.57 Transition
138Ba 1.12� 0.21 2.24 Alkaline earth
208Pb 0� 0 1.75 Other

AElements defined as physiologically essential to fish (Mugiya et al. 1991;

Watanabe et al. 1997).
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Fig. 1. Mean minor and trace elemental concentrations in whole (black bars) and protein (grey bars)

components of Lutjanus malabaricus otoliths. Data are the mean� s.e.m. of 10 individuals. The dashed

line separates the elements between the two y-axes. Note, otolith Sr concentrations are divided by 100.
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Miller et al. 2006). As such, additional metal binding sites
associated with the insoluble protein component are likely to be

under-represented. Furthermore, the inadvertent loss of some
protein-boundmetals during the extraction method is also likely
to have occurred (see Miller et al. 2006). The mechanical

grinding of the otolith generated a homogeneous otolith sample,
averaging over the lifetime of each fish. The relative proportion
of otolith proteins is higher in the inner part of the otolith

(e.g. Kalish 1989;Dove et al. 1996; Zhang et al. 2008), and some
elements are detected at high concentrations in the otolith
primordium, suggesting an affinity for incorporation to the
protein component (e.g. Mn; Brophy et al. 2004; Macdonald

et al. 2008). Similarly, heterogeneity in the protein content of
opaque and translucent regions of the otoliths (Hüssy et al. 2004;
Fablet et al. 2011) will likely result in seasonally variable

elemental concentrations (e.g. Kalish 1989; Sturrock et al.

2015). Subsampling discrete regions of the otolith (e.g. the
otolith primordium v. the marginal edge, opaque v. translucent

regions) would facilitate finer-scale assessments of metal–
protein complex distribution, thus allowing ontogenetic and
temporal effects on element incorporation to be assessed.

Ecological implications

This study provides greater insight into where elements bind
within otoliths and has implications for the application of otolith

chemistry to trace the environmental and movement histories of
fish. For example, the preferential binding of metals to either the
protein or mineral otolith component will result in the hetero-

geneous distribution of elements throughout the otolith struc-
ture, even if a fish is exposed to a homogeneous environment.
This has implications for high-resolution spatial analyses of

otoliths using laser- or ion probe-based approaches, and requires
consideration when comparing relative concentrations of ele-
ments among regions of an otolith (e.g. opaque v. translucent

regions). Elements with Ca-like properties, such as Sr and Ba,
which preferentially bind within the crystalline otolith matrix,
appear suitable candidates for retrospective analyses because
they are less prone to post-depositional alteration. However, to

improve the accuracy of retrospective otolith-based analyses,
further research is required to better elucidate the relative effects
of the external environment and physiological processes that

regulate element incorporation into otoliths.
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