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Abstract. In situ effects of ocean acidification are increasingly studied at submarine CO2 vents. Here we present a

preliminary investigation into the water chemistry and biology of cool temperate CO2 vents nearWhakaari–White Island,
New Zealand.Water samples were collected inside three vent shafts, within vents at a distance of 2m from the shaft and at
control sites. Vent samples contained both seawater pH on the total scale (pHT) and carbonate saturation states that were

severely reduced, creating conditions as predicted for beyond the year 2100. Vent samples showed lower salinities, higher
temperatures and greater nutrient concentrations. Sulfide levels were elevated and mercury levels were at concentrations
considered toxic at all vent and control sites, but stable organic and inorganic ligands were present, as deduced from Cu

speciation data, potentially mediating harmful effects on local organisms. The biological investigations focused on
phytoplankton, zooplankton and macroalgae. Interestingly, we found lower abundances but higher diversity of
phytoplankton and zooplankton at sites in the direct vicinity of Whakaari. Follow-up studies will need a combination
of methods and approaches to attribute observations to specific drivers. TheWhakaari vents represent a unique ecosystem

with considerable biogeochemical complexity, which, like many other vent systems globally, require care in their use as a
model of ‘future oceans’.

Additional keywords: carbon dioxide, trace metal speciation, volcanic submarine vent.

Received 13 May 2019, accepted 2 September 2019, published online 18 November 2019

CSIRO PUBLISHING

Marine and Freshwater Research, 2020, 71, 321–344

https://doi.org/10.1071/MF19167

Journal compilation � CSIRO 2020 Open Access CC BY-NC-ND www.publish.csiro.au/journals/mfr

RESEARCH FRONT

https://orcid.org/0000-0002-6154-4082
https://orcid.org/0000-0002-6154-4082
https://orcid.org/0000-0002-6154-4082
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Three methods have generally been used to estimate the effects

of changing seawater chemistry: mathematical modelling
anchored to observational data, controlled experimentation in
the laboratory or field-based mesocosm studies, and the study of

natural systems representing analogues of past, present or future
climate change scenarios (e.g. Boyd et al. 2018). Each of these
approaches has its strengths and weaknesses, but together they

have proved useful in developing preliminary projections, elu-
cidating connections and understanding synergies (Le Treut
et al. 2007) regarding ocean warming and ocean acidification
(OA; Wisshak et al. 2013; Riebesell and Gattuso 2015; Gattuso

et al. 2015).
Most of our current understanding of how marine biota will

respond to climate change originates from controlled,

laboratory-based, short-term experiments conducted in tanks
and mesocosms as well as modelling approaches based on these
experimental data (Wernberg et al. 2012). Controlled,

laboratory-based manipulations (e.g. mesocosms) are useful in
establishing a mechanistic understanding of how physical cli-
mate change is likely to drive ecological changes, but they tend
to exaggerate their measured effects and obscure key processes

(Goldenberg et al. 2018) because they are based on simplified
artificial model systems ruled by first-order abiotic and biotic
effects and thus suffer from a lack of realism (Wernberg et al.

2012; González-Delgado and Hernández 2018). To increase
realism and collective inference, as well as to strengthen the
generality and accuracy of our understanding of climate change

as a driver of chemical and biological change in marine
ecosystems, researchers have started using existing natural
gradients in climate variables to examine how increased pCO2

(i.e. a change in ocean chemistry) will translate into ecological
changes (e.g. Hall-Spencer et al. 2008; Wernberg et al. 2012;
Teixidó et al. 2018). One example of an environment with
natural abiotic gradients is the shallow submarine CO2 vent,

and these vents are found around the globe (Tarasov et al.

2005; González-Delgado and Hernández 2018). Over the past
10 years, shallow CO2 vents have emerged as analogues to

investigate the effects of OA on natural ecosystems (e.g. Hall-
Spencer et al. 2008; Fabricius et al. 2011; Lombardi et al. 2011;
Calosi et al. 2013; Lamare et al. 2016; Dahms et al. 2018). They

have enabled research into the effects of long-term in situ

exposure of multiple biota to elevated pCO2 under natural
environmental variability, food, light and hydrodynamic condi-
tions, aswell as natural levels of interactions between species and

their environment (e.g. Hall-Spencer et al. 2008; Fabricius et al.
2011, 2014; Brinkman and Smith 2015; Nagelkerken et al.

2016). Thus, submarine CO2 vents have gained increasing

popularity in the past decade as natural laboratories to obtain a
better understanding of CO2 effects on community, population,
ecosystem structure and functionality changes, as well as

species-specific adaptationmechanisms in a natural environment
(e.g. Lombardi et al. 2011; Calosi et al. 2013; Lamare et al. 2016;
Dahms et al. 2018; González-Delgado and Hernández 2018).

The main limitations in using shallow marine hydrothermal
systems as natural analogues of future conditions are:

� the large temporal variabilities in pH with periods of time
where pH values reach ambient levels or undersaturated

conditions (e.g. Boatta et al. 2013; Fabricius et al. 2014;
Dahms et al. 2018; González-Delgado and Hernández 2018;

Pichler et al. 2019)
� the limited area affected by vent emissions and resulting area

with low pH and potentially higher temperatures (Boatta et al.

2013; Pichler et al. 2019)
� the continuous supply of larvae and propagules from outside

the vent system (e.g. Levin et al. 2016; Boyd et al. 2018;

Hawkins et al. 2018), which hampers the ability to use these
sites to determine whether dispersive populations could adapt
to environmental stressors over multiple generations

� the eventuality that some organisms that live at CO2 vents

could have higher tolerance thresholds for environmental
stressors owing to the possibility of evolving and genetically
adapting over long timescales to extreme physicochemical

conditions (e.g. Hall-Spencer et al. 2008)
� the chemical composition of hydrothermal fluids at many

vent sites (i.e. the potential presence at toxic concentrations of

elements and gases), which may have confounding effects
on vent biota (e.g. Cunha et al. 2008; Chen et al. 2018;
Dahms et al. 2018; González-Delgado and Hernández 2018;
Hawkins et al. 2018; Pichler et al. 2019).

Most CO2 vent studies to date have focused on the ecological

consequences of lower pH, lower carbonate saturation state or
higher CO2 (e.g. Hall-Spencer et al. 2008; Fabricius et al. 2011,
2014; Brinkman and Smith 2015; Nagelkerken et al. 2016),
whereas elevated levels of heavymetals in vent fluids compared

with non-hydrothermal environments and their potential effects
on the local environment (Chen et al. 2018; Hawkins et al. 2018)
have either largely been overlooked, dismissed as insignificant

or were studied using methods unable to detect bioactive trace
metals with necessary sensitivity. Emanating fluids of many
volcanic submarine CO2 vents are typically characterised by

high concentrations of toxic metals such as Pb, Cd, Zn, Hg, Cu,
Co, Mo and Sr (Cunha et al. 2008; Chen et al. 2018; Hawkins
et al. 2018; Burger and Lichtscheidl 2019). These metal-rich
fluids contaminate the surrounding water column, and poten-

tially adversely affect the physiology of vent biota (Cunha et al.
2008; Chen et al. 2018; Hawkins et al. 2018). Thus, it is
surprising that so far most shallow vent studies of biological

nature limited their element measurements to gases (e.g. CO2,
H2S, CH4, N2, O2; Pichler et al. 2019) and sediments (e.g.
Vizzini et al. 2013), despite elements in solution being poten-

tially key factors for the assessment of the suitability of vent
systems for the study of climate change effects on marine biota
(Vizzini et al. 2013). Consequently, an integrated picture of the

carbonate chemistry, biology and, in particular, the geochemis-
try (i.e. element composition, metal speciation and
bioavailability) of shallow submarine vents is required to simu-
late and investigate OA at CO2 vents.

The most well-studied shallow submarine CO2 vents in the
context of climate change are in the warm temperate Mediterra-
nean Sea (e.g. Hall-Spencer et al. 2008; Kroeker et al. 2011;

Lidbury et al. 2012; Vizzini et al. 2013; Baggini et al. 2014;
Ziveri et al. 2014; Cornwall et al. 2017a; Hawkins et al. 2018),
in deep water (e.g. Rossi and Tunnicliffe 2017) or in tropical to

subtropical coral reef environments in Papua New Guinea (e.g.
Fabricius et al. 2011;Morrow et al. 2015; Takahashi et al. 2016;
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Pichler et al. 2019), Japan (Inoue et al. 2013; Agostini et al.

2015), Canary Islands (Hernández et al. 2016) and Mariana
Islands (Enochs et al. 2015). OA studies of shallow vents in
cooler waters of the Southern Hemisphere are still scarce.

Therefore, the present study focused on volcanic submarine
CO2 vents off Whakaari–White Island in New Zealand’s Bay of
Plenty, in a temperate location for OA research (Brinkman and
Smith 2015; Nagelkerken et al. 2016). Seawater immediately

adjacent to the vents is lower in pH and higher in temperature
than the ambient seawater, even given the natural diurnal
variation typical of rocky kelp-dominated ecosystems

(Cornwall et al. 2013). Nevertheless, the working area is
home to a variety of calcified and non-calcified marine biota
and is accessible by SCUBA, highlighting its potential for

OA research. The results of previous surveys (Grace 1975;
Brinkman and Smith 2015; Nagelkerken et al. 2016; Connell
et al. 2018) suggested that these cool temperate CO2 vents can
offer a natural laboratory for studying the response of temperate

communities to future pH and temperature projections for the
year 2100 (Gattuso et al. 2015). However, in some studies
the effect of clearly enriched heavy metals and elements, such

as Hg and sulfide, in the water column around the vents was
either omitted in their overall conclusions orwas thought to have
negligible effects on prevalent marine biota (Brinkman and

Smith 2015). Consequently, this study aimed to combine car-
bonate chemistry, biology and, in particular, geochemical data
to evaluate the suitability of the Whakaari vents as potential

natural study sites of OA in the Southern Hemisphere. To
conclusively confirm the potential of these shallow vent areas
for OA research, any possible effects of elevated trace element
concentrations must be precluded (Vizzini et al. 2013).

Grange et al. (1992) and Tarasov (2006) described
Whakaari–White Island as ‘possibly unique’. Certainly its

accessibility, its continuous production of ash and steam

(but not lava) and the proximity of a temperate kelp forest
community to CO2 vents are special and unusual features, which
could make Whakaari’s vents a valuable addition to current OA

research so long as any geochemical parameters are within
acceptable limits. In order to establish basic biogeochemical
information and examineWhakaari’s potential for further study
as a natural analogue for future climate change effects, a group

of scientists converged on the island in December 2015. In a
single week, physical, geochemical and biological characteris-
tics were measured at three vent sites, three control sites near the

volcano and one coastal control to provide a cross-disciplinary
snapshot of the seawater chemistry and ecology around Wha-
kaari in early summer. Here we report on the preliminary results

of the ‘White Island Blitz’ expedition and evaluate the future
utility and potential of Whakaari as a ‘living laboratory’ for
climate change science.

Materials and methods

Ethics

This study does not report on animal work and thus did not
require any animal ethics approval. Biological (i.e. algae) and

water samples were collected under a Special Collection Permit
from the Ministry of Primary Industries (number 644-2).

Study location

Whakaari–White Island is an active andesite stratovolcano
located ,50 km offshore in the Bay of Plenty, North Island,
New Zealand (37831.190S, 117810.850E; Fig. 1). The island is
part of the Taupo Volcanic Zone in the back-arc basin of the

Kermadec–Tonga subduction zone. The island is approxi-
mately circular, covering 238 ha, ,2 km in diameter (Fig. 1).
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Fig. 1. (a) Bathymetric map of the Taupo Volcanic Zone in the Bay of Plenty, North Island, New Zealand (after Samson et al. 2005). (b) Geomorphic

map of White Island (after Clarkson and Clarkson 1994).
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The highest point of the crater wall, Mount Gisborne, is 321 m
above sea level (Clarkson and Clarkson 1994) and ,1600 m

above the sea floor (Fig. 1). White Island is New Zealand’s
most active cone volcano, and has probably been active for at
least 16 000 years (Grange et al. 1992). There have been per-

iods of fairly quiet steaming, during which scrubby forests
were able to develop, but then periods of heightened activity
(e.g. 1976–90; Clarkson and Clarkson 1994), with nearly

continuous outpouring of ash, steam and gas, killing trees and
shrubs and resulting in a fairly barren landscape (Clarkson and
Clarkson 1994). Nevertheless, the island presently supports a
breeding colony of gannets and areas of vegetation. Eruptions,

which are infrequent, can be quite violent, with andesite blocks
and ash being hurled into the sea.

The island has a well-developed terrestrial hydrothermal

system, consisting of saline fluids around the active vents
(Giggenbach 1987). These magmatic fluids interact with mete-
oric fluids, magmatic gases (70 : 29 : 1 C : S :Cl; Giggenbach

1975), host rocks and metalliferous deposits (rich in V, Cr, Fe,
Co, Ni, Rb, Mg, Al, Mn, Zn and Cu; Cole et al. 2000) to produce
hot springs and fumaroles (fumarole gases are normally 100–
3008C but rise to 10008C during strong activity; Sarano et al.

1989). The composition of gas fumaroles aroundWhakaari varies
with temperature (Giggenbach 1975), but in all cases the domi-
nant component, besides water vapour, is CO2, followed by SO2,

H2S and HCl. Dissolved volcanic gases in hydrothermal fluids
give rise to strongly acidic (,1.7 pH) and thus metal-rich surface
waters (Donachie et al. 2002) that drain into the surrounding sea,

particularly at Crater Bay (Fig. 1), to the south-east of the island
(Grace 1975).

Diffuse fluid sources and gas vents occur also in the shallow

waters (10–30 m) north and east of the island (e.g. ‘Champagne
Bay’; Sarano et al. 1989) with warm water (18–558C; Tarasov
2006) and gas bubbles (containing CO2, N2, CH4, C2H6, H2,
H2S; Propp et al. 1992; Tarasov et al. 1999; Hocking et al. 2010;

Brinkman and Smith 2015) emerging from among boulders or
out of the sand. Measurements of the emanating fluids showed
pH values as low as 7.5 (Brinkman and Smith 2015) and high

concentrations of elements andmetals, such as S, K, Hg, Rb,Mg
and Ca (Brinkman and Smith 2015).

Intertidal fauna are low in abundance and diversity (Grange

et al. 1992) and exhibit shell pitting and staining, perhaps due
to acidified rain or ashfall (Grace 1975). Subtidally, fish are
plentiful and macroalgae (i.e. kelp Ecklonia radiata forests)
are abundant, but species composition is different from and

diversity is lower than nearby Mayor Island or other coastal
islands around north-eastern New Zealand (Grange et al.

1992). Submarine invertebrates are neither diverse nor abun-

dant around the vent sites, whereas bacterial biomass is
noticeably greater around the CO2 vents (Grange et al.

1992). Subtropical marine species are sometimes found here

because of the warm East Auckland Current (Grace 1975),
which brings clear subtropical waters from the north-east of
the North Island into the Bay of Plenty. Geostrophic currents

flow across the Bay of Plenty from west to east, at an average
speed of 0.14 m s�1 (Ridgway and Greig 1986). Mean sea
surface temperature in the area is 218C in summer and 158C in
winter, and surface salinity is typically 35.0–35.7 (Ridgway

and Greig 1986).

Sampling sites

Collection of seawater and biological samples occurred
during New Zealand’s summer in 2015 over three consecutive

days in early December. Sampling was conducted during severe
weather with heavy surge and strong winds resulting in chal-
lenging sampling conditions for divers and the boat crew.

Sampling resolution was consequently lower than planned.
Three natural CO2 vents (V1, V2 and V3) and four control

sites (C1, C2, C3 andC4)were sampled nearWhite Island and in

the Bay of Plenty (Fig. 2; Table 1). The seven sites were chosen
based on their variety of vent activity and their biological
diversity (i.e. calcified and non-calcified macroalgae, as well
as numerous species of invertebrates and fish). The vent loca-

tions were chosen based on previous studies and included one
large vent (V1; previously examined by Brinkman and Smith
2015), a smaller vent (V2) and a moderate vent (V3). Vent sites

V1 and V2 were located 8–10 m below the surface at the north-
eastern tip of the island, whereas V3 was on the western side at a
depth of 14.5 m. Control sites were chosen, based on accessibil-

ity and weather conditions during sampling, with at a distance of
at least 25–30m fromvisible vent activity. Prevailingwater flow
in NewZealand’s Bay of Plenty is west to east as part of the East

Auckland Current (Ridgway and Greig 1986), and thus control
sites C3 and C4 experience flow regimes most similar to the
sampled vent sites on the east side of the island. The control site
C4 was located midway between V1 and V2 and was referred to

as a ‘vent control’, whereas C3 was established in the outer part
of the bay, north of the vent field, and was expected to be more
representative of pH around the island with less influence from

the vent field. The control site C2 located on the western site of
the Island was established outside the influence of theWhakaari
vent field and was thus expected to be more representative of

ambient seawater conditions. The open ocean control sample
(C1) was taken approximately mid-way between White Island
and mainland New Zealand over the continental shelf, thus
giving a regional context.

Sample collection and sampling procedure

Sampling – water chemistry. Temperature, conductivity

(salinity) and depth were measured in situ at the study sites using
an RBR CTD XR 620 (RBR Ltd, Stadhampton, UK) alongside
water sampling. In addition, seawater pH (on the total scale,

hereafter pHT) and temperature were monitored half hourly from
13 to27November using SeaFETpH sensors (SeaBird Scientific,
Bellevue, WA, USA) placed on the reef within V1 and V2 and at

two nearby control locations (C3 and C4; Fig. 2). The SeaFET
sensors were deployed to investigate the temporal variability of
pHT and temperature around Whakaari. Unfortunately, there was
an unknown problem with the SeaFET sensor at C3, and the data

were deemed unreliable. However, additional data are available
from C3 and C4 from before and after the long-term deployment,
which allows some comparison in pHT between the two controls.

Vent samples for total dissolved trace metal concentrations,
Cu speciation, total mercury (HgT), sulfide (the term ‘sulfide’
used in this study refers to total reduced sulfur; i.e. the sum of

H2S, HS
� and S2�) and nutrient (ammonium, nitrogen oxides

(NOx) and phosphate) concentrations were taken by SCUBA
divers directly at the vent outflow (which, for the larger vents,
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was beneath the reef surface), and at a distance of 2m from the
emanating vent fluid at ,1m from the bottom using acid-
cleaned 5-L collapsible containers. Surface and subsurface

samples at the vent and control sites were taken from the
research vessel for the same parameters using a peristaltic pump
connected to acid-cleaned polyethylene tubing, which was
rinsed with 1 L of sample seawater before sample collection,

except for sample C3 SW, which was taken manually by
submersing a sample bottle from aboard ship because of the
huge swell. After recovery, sample aliquots reserved for trace

metal, Cu speciation, HgT, sulfide and nutrient analysis were
subsequently filtered in-line through a 0.2-mm polycarbonate
cartridge filter (Acropak, Pall Corporation, Port Washington,

NY, USA; one filter per site) and individually stored in pre-
cleaned and rinsed low-density polyethylene (LDPE) bottles.
Total dissolved trace metal samples were stored in the dark at

room temperature in two plastic bags until they were acidified to
pHNBS 2 using quartz distilled HCl (analytical grade; Scharlau,
Scharlab, Barcelona, Spain; 37%) in the laboratory of the
University of Otago (Dunedin, New Zealand). Sample bottles

for Cu speciation analysis were double-bagged and immediately
frozen (�208C) and kept frozen until analysis. Bottles reserved

for nutrient and HgT analysis were placed into two resealable
plastic bags, refrigerated (48C) and stored in the dark until
analysed in the laboratory. HgT samples were acidified in the

laboratory of the University of Otago with 0.5% (v/v) HCl and
subsequently sent to the University of California (Santa Cruz,
CA, USA) for analysis. Sample analysis for sulfide was con-
ducted on board. Equipment and sample bottles used for total

dissolved trace metals, HgT and Cu speciation analysis had been
cleaned according to conventional trace metal clean protocols
(Sander et al. 2009; Leal et al. 2016).

Dissolved inorganic carbon (CT) and total alkalinity (AT)
samples were collected following the method prescribed by
Dickson et al. (2007). Vent samples were collected in 1-L Schott

glass bottles without headspace by SCUBA divers, and surface
samples were collected by hand off the side of the boat. Two
samples were collected at each site and each sample was

analysed for both CT and AT. Immediately after sample recov-
ery, 5mL of each sample was discarded and 0.5mL of saturated
HgCl2 solution was added to poison and preserve the samples
(i.e. to avoid biological alteration) for later analysis at the

National Institute for Water and Atmospheric (NIWA)/Univer-
sity of Otago Research Centre for Oceanography.
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Sampling – biological samples. Samples for phytoplankton
species composition were collected at five different stations

(Table 1). Surface samples at Champagne Bay (C3 SW) were
taken off the side of the boat, whereas the other deeper samples
were pumped on board using a peristaltic pump set-up. Samples

for larger phytoplankton cells (.20mm) were stored in 200-mL
brown borosilicate glass bottles and preserved with 0.5mL of
Lugol’s solution. Samples for analysis of small phytoplankton

species (,20 mm) by flow cytometry were snap frozen in liquid
nitrogen until analysis in the home laboratory at the University
of Otago.

Zooplankton samples were collected using a vertical haul of

a 0.5-m diameter, 150-mm plankton net from a depth of 10m at
C1, C3 and V1. Three replicate zooplankton hauls were taken at
each location (total n¼ 9), which, assuming 100% efficiency,

filtered 1.95m3 of seawater. Samples were subsequently fixed
with 2–4% formalin. Unfortunately, poor weather prevented a
representative zooplankton sampling haul at V1 at a depth of

10m. In addition, extreme mixing within Champagne Bay
meant that the V1 sample was contaminated with benthic
crustaceans and coralline algae.

Seven individuals of the two most abundant species of coral-

line alga (i.e. Corallina officinalis, n¼ 5; and Amphiroa anceps,
n¼ 2) around the study sites were collected by SCUBA divers
from V1 (n¼ 1), V2 (n¼ 2) and C2 (n¼ 4) using hammer and

chisel. Specimens were stored on silica gel for analyses of d11B at
the University of Western Australia (Crawley, WA, Australia) to
subsequently determine the pH in the calcifying fluid (pHcf) of the

collected coralline alga (Cornwall et al. 2017b).

Analysis of water chemistry

Analysis of physicochemical parameters

Nutrient samples were analysed in duplicate at the University
of Otago using a Lachat QuikChem 8500 Series 2 flame ionisa-

tion auto analyser (Hach, Auckland, New Zealand). CT and AT

were both measured at the NIWA/University of Otago Research
Centre for Oceanography. AT was measured by potentiometric

titration in a closed cell using a custom-built system (Metrohm
Dosimat 765, Metrohm AG, Herisau, Switzerland; Fluke high-
precision voltmeter, Fluke Calibration, Everett, WA, USA; in-

house-built closed cell and custom-written software) following
the method of Dickson et al. (2007). CT was determined on a
custom-built system (following the Guide to Best Practices
SOP2; Dickson et al. 2007) by coulometric analysis (UICModel

5011, UIC Inc., Joliet, IL, USA) of evolved gas (single-operator
multi-parameter metabolic analyser (SOMMA) style CO2

extraction system). The accuracy of bothmethods, as determined

by analysis of certified referencematerials (provided byAndrew
Dickson, Scripps Institution of Oceanography, San Diego,
CA, USA), is estimated to be �2 mmol kg�1 for AT and

�1 mmol kg�1 for CT. CT and AT data were used to calculate
pHT (total scale), pCO2, CO3

2� concentration and calcite and
aragonite saturation states (Ocalcite andOaragonite respectively) of

each sample at the in situ temperature, salinity and pressure
(CTD XR 620 values) using the refitted Mehrbach CO2 equilib-
rium constants (Mehrbach et al. 1973; Dickson et al. 2007).
Stored CT and AT samples were analysed within 3 months of

collection.

Analysis of total dissolved trace metals, HgT, sulfide and
Cu speciation

Total dissolved trace metal measurements for Mn, Fe, Co, Ni,

Cu, Zn, Cd and Pb were made at the Centre for Trace Metal
Analysis at the University of Otago using an automated off-line
SeaFAST (Elemental Scientific Instruments, Omaha, NE, USA)

preconcentration system (Biller and Bruland 2012; Middag et al.
2015) combined with a subsequent trace metal analysis by a Nu
Attom high-resolution sector field inductively coupled plasma

mass spectrometer (HR-SF-ICP-MS; Nu Instruments Ltd,
Wrexham, UK). A detailed description of the method and sample
preparation procedure is provided elsewhere (Biller and Bruland
2012; Bown et al. 2017; Rapp et al. 2017). Quantitative resin

(Nobias-chelate PA1) recovery was within an acceptable range
for the trace metals of interest and the accuracy of the method,
verified bymultiplemeasurements of certified referencematerial

(SLEW-3; National Research Council (NRC), Ottawa, ON,
Canada), was within�7% (s.d.) of the certified values for Mn,
Fe, Co, Ni, Cu, Zn, Cd and Pb (for more detail, see Table S1,

available as Supplementary material to this paper).
Trace metal concentrations for Li, Rb, Sr, Mo, Cs, Ba and U

were determined by ICP-MS (NexION; Perkin Elmer, Foster

City, CA, USA) at the Jacobs University (Bremen, Germany).
For quality control, the seawater reference material NASS-7
(NRC) and an in-house standard were measured along with the
samples. The analytical error was within�8% (s.d.) of the

reference values for the trace metals of interest (for more detail,
see Table S2).

HgT was measured at the University of California by cold

vapour atomic fluorescence spectrometry using the methods of
Bloom and Crecelius (1983) and Balcom et al. (2004). Samples
were measured in duplicate for quality assurance.

Sulfide (H2S, HS
� and S2�) was measured on board using a

vibrating, mercury-coated, gold microwire electrode in con-
junction with rapid electrochemical cathodic stripping square
wave voltammetry (IviumStat electrochemical analyser, Ivium

Technologies B.V., Eindhoven, Netherlands) following a pro-
cedure adapted from Bi et al. (2013) and Al-Farawati and van
den Berg (1997). The electrode was precoated withmercury and

calibrated in the field using thiourea, which was found to give a
similar sensitivity to that of free sulfide. Samples were mea-
sured in duplicate. The concentration of hydrogen sulfide (H2S)

in the samples was estimated using the calculation described by
Boyd (2014).

Cu speciation parameters (i.e. binding strength of the organic

Cu-complexing ligands (log(K )), concentration of organic

ligands ([L]) and concentration of bioavailable Cu ([Cu0]; sum
of the concentration of free hydrated Cu ions ([Cu2þ]) and the

concentration of Cu weakly bound to inorganic ligands

([CuXIN])) were determined using adsorptive cathodic stripping

voltammetry (AdCSV) with salicylaldoxime as the complexing

agent (Lucia et al. 1994; Kleint et al. 2015; Cotte et al. 2018) at

the University of Otago on a Metrohm 663 VA stand (Metrohm

Autolab B.V., Utrecht, Netherlands). A description of the

instrumental set-up is given in Zitoun et al. (2018). Samples

underwent pretreatment to remove acid volatile sulfides from

the sample solutions, which enabled the electrochemical mea-

surement of Cu0 in sulfide-rich vent samples (Sander et al. 2007;
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Kleint et al. 2015; Cotte et al. 2018). For comparison purposes,
sample aliquots were measured before the acid pretreatment as

well as after the acid pretreatment with subsequent filtration
(0.2 mm) of the samples to remove potential metal precipitates
formed during the pretreatment (Sander et al. 2007). For

detailed information on removal of acid volatile sulfides, sample
preparation and operating conditions of the instrument, see
Sander et al. (2007) and Kleint et al. (2015). Samples were then

analysed with the AdCSV method and every measurement was
repeated three times. After completion of the titration, Cu
speciation parameters of each sample were obtained using the
one- or two-ligand complete complexation-fitting model incor-

porated in the ProMCC software (https://sites.google.com/site/
mccprosece/download, accessed 14 August 2019; Omanović
et al. 2010). Fitting of the titration data for a two-ligand-system

failed with the ProMCC software, and thus samples were fitted
to a one-ligand model.

Analysis of biological samples

Analysis of phytoplankton

Larger phytoplankton cells (.20 mm) of each station were
counted and identified after the Utermöhl method in Utermöhl

chambers (HYDRO-BIOS Apparatebau GmbH, Kiel-
Altenholz, Germany) following procedures recommended in
Karlson et al. (2011). An Accu-Scope inverted microscope

(Olympus, Auckland, New Zealand) was used for counting.
Phytoplanktonwas identified to genus level and down to species
level when possible. Samples of small phytoplankton species
(,20 mm) were analysed without the addition of preservative

immediately after returning to the home laboratory at the
University of Otago (within 10 days of sampling). Samples
were analysed on an Accuri C6 (BD Biosciences, San Jose, CA,

USA). Cryptophytes were identified and counted on the plots
of phycoerythrin (PE) v. chlorophyll (CHL) fluorescence.
After exclusion of this group, picoeukaryotes, nanoeukaryotes

and coccolithophores were identified based on side scatter
(SSC) v.CHL fluorescence. The different phytoplankton groups
were identified as described in Tarran and Bruun (2015).

Analysis of zooplankton

Zooplankton samples of the three sampled sites were com-
pared at the University of Auckland using a binocular micro-
scope and a Bogoroy tray in a semiquantitative manner,

identifying abundant (.10 individuals per sample) and rare
categories of both holoplankton and meroplankton.

Analysis of coralline algae

Recent analysis of d11B has implied that these values can be
used as proxies for determining pH in the fluid (pHcf) where
coralline algal calcite is formed (Cornwall et al. 2017b, 2018;

Comeau et al. 2018). This finding enables us to understand how
the vent systems can alter the calcification physiology of these
species. Coralline algae collected around Whakaari were pro-

cessed in the clean laboratory of the Advanced Geochemical
Facility for Indian Ocean Research (AGFIOR), University of
Western Australia). Sample analysis and preparation followed
that of Cornwall et al. (2017b). Boron was quantitatively

separated on ion exchange columns according to McCulloch

et al. (2014) and boron isotopes were subsequently measured
using theNUPlasma IImulticollector ICP-MS (Nu Instruments,

Charlestown, MA, USA). Boron isotopes were transformed to
pHcf using the calculations of Trotter et al. (2011) assuming all
primary boron uptake was as the borate species at a temperature

of 17.58C and salinity of 35.0.

Results

Water chemistry

Physicochemical parameters

Mean (�s.d.) temperature and salinity values obtained with

the CTD XR 620 were 17.68� 0.438C and 34.39� 0.91 ppt
(Fig. 3; Table 2) during the observation period with rough
weather conditions. The highest mean temperatures were

recorded at the vent shafts, followed by control sites and then
vent 2-m sites. Mean salinities followed the order of control
sites. vent 2-m sites. vent shafts (Fig. 3; Table 2). Tempera-

ture and salinity values showed some temporal variability of up
to�1.28C and�2.59 ppt at the vent sites. Calculated mean
(�s.d.) sample pHT for the control stations was consistent with
normal present-day pH of seawater (8.06� 0.01), whereas vent

fluids showed lower mean pHT values of 7.43� 0.43 within the
vents and 7.94� 0.25 at a distance of 2m from the vent outflow
(Fig. 3; Table 2). As expected, because of dilution and mixing

processes of the vent fluid with seawater, calculated pHT values
commonly increased to ambient seawater pH levels with 2-m
distance from the vent outflow. Calculated pHT values showed

some temporal variability of up to�0.71 at the vent sites for
samples taken on the same day (n¼ 2) and up to�0.77 for
samples collected on the two different sampling occasions

(Fig. 3; Table 2). The temporal variability of pHT and tempera-
ture is more obvious in the SeaFET data. It is worth noting that
the CTD XR 620 data were collected during large swells, which
possibly resulted in mixing around the sites where measure-

ments were taken, whereas the SeaFET operated from 13 to 27
November under reasonably calm conditions.

The water temperature obtained with the SeaFET within V1

and V2 was consistently higher than at the vent control site (i.e.
C4; Fig. 4a). On average, the water temperature at V1 and V2
was 1.19 and 0.958C higher than at C4. Consistent with the

CTDXR620 data, temperaturewasmost variable at V1, and this
appears to be related to tidal height, with warmest temperatures
within the vent consistently associated with low tide (Fig. 4a).
Temperatures at V2 did not appear related to tidal height and

were positively correlated with temperatures at C4 (r2¼ 0.79).
Temperature at C4, and to a lesser extent at V2, exhibited diel
variation, peaking between 1300 and 1700 hours and lowest

from 0200 to 0700 hours (for more detail, see Fig. S1).
Seawater pHT obtainedwith the SeaFETwithin the vents was

highly variable and was, on average 0.54 (V2) and 1.19 (V1) pH

units lower than seawater at C4 (Fig. 4b), which is consistent
with the CTD XR 620 data. In addition, diel variation was
evident at the two vents. Similarly, at C4 mean pH was 7.95 and

showed periodic drops in pH to ,7.5. These drops in pH at C4
typically coincided with low tide, particularly at night-time.
Overall pH at C4 was weakly correlated with pH at V1 and V2
(r2¼,0.33 and 0.38 respectively), but many of the large drops

in pH at C4 coincided with drops in pH at the vents, suggesting
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some effect of the vents on pH at C4. The pH at V1 and V2 was
more strongly correlated (r2¼ 0.54; Fig. 4b). Diel variation in

pH was most evident at C4, with lowest pH between midnight
and 0700 hours, a steady increase throughout the day and a
decline after ,1700 hours (for more detail, see Fig. S1).
Additional pH data collected at C3 and C4 suggested pH at C3

was consistently higher (typically.8), with less variation in pH
than seen at C4 (Fig. S2). Drops in pH were evident at C3, but
they were not as large as those observed at C4.

Nutrient concentrations in the study area were in the range of
0.29–11.66 mM for ammonium, 0.03–0.53 mM for NOx and
2.26–17.71 nM for phosphate. Ammonium and NOx concentra-

tions decreased with distance from the vent outflow, following
the order of vent fluids. vent 2-m sites. control sites, whereas
phosphate concentrations followed the order of vent 2-m sites.
vent fluids. control sites (Table 2).

Values of CT, AT and pCO2 declined from vent fluids to vent
2-m sites to control sites, whereas CO3

2� concentrations and
Ocalcite andOaragonite levels increased along this gradient (control

sites. vent 2-m sites. vent fluids). Carbonate chemistry sam-
ples collected with distance from the vent fluids (i.e. 2m from
V1, V2 andV3) did not differ significantly from data obtained at

the control sites (C1, C2 and C3). Undersaturation with respect
to aragonite was observed for V1 during both sampling periods
and for V1-2m and V2 on 3 December. Values of Ocalcite, 1

were calculated for V1 on 2December and for V1-2m andV2 on
3 December. Values of CT, AT, pCO2, CO3

2� concentration,

Ocalcite and Oaragonite suggest large temporal (i.e. samples taken
on 2 and 3 December) and environmental (i.e. samples taken on

the same day; n¼ 2) variability in the carbonate chemistry of the
vent sites.

Total dissolved trace metals, HgT and sulfide

Trace element and metal concentrations of Mn, Fe, Co, Ni,
Cu, Zn, Cd, Pb, HgT and sulfide were between,2 to 70 000-fold
higher at all nine study sites than values commonly measured in

open ocean seawater samples around New Zealand (TAN1604,
Station CS19, depth 25m, Hauraki Gulf; R. Middag, C. Stirling,
M. Reid, andK. Seyitmuhammedov, unpubl. data; Table 3).Mn,

Fe and Cs concentrations declined from vent fluids to vent 2-m
sites to control sites, whereas Zn, Cu, HgT, Sr and Rb concen-
trations were in the order control sites. vent fluids. vent 2-m
sites (Table 3). Concentrations of Ba, Li, Co, Pb and Ni were in

the order vent fluids. control sites. vent 2-m sites, whereas
sulfide concentrations were in the order vent 2-m sites. vent
fluids. control sites (Table 3). Cd, Mo, and U concentrations

were higher at the control sites, followed by vent 2-m sites and
then vent fluids (Table 3). However, Li, Rb, Sr, Mo, Ba and U
concentrations did not vary considerably between vent and

control sites (difference between the maximum and minimum
concentration,5%; Table 3). Concentrations of Ni, Zn, Cd, Pb,
Co andCu at all nine study sites atWhakaari werewell below the

Australian and New Zealand Environment and Conservation
Council (2000) guidelines for a 95% level of protection for biota
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in saltwater systems, whereas the concentration of HgT far
exceeded the guideline threshold by up to two orders of magni-

tude (Table 3).

Copper speciation

Titration data demonstrated the presence of one ligand class

with uniform Cu-binding capacities (log(K)) of 11.9� 0.2
(mean� s.d.) for sulfide-containing samples and 12.6� 0.6
for sulfide-free samples (Table 4). Ligand concentrations ([L])

were higher in the sulfide-containing vent samples (i.e. V1, V2
andV1-2m;Table 3), before the pretreatment comparedwith [L]
in pretreated samples (Table 4). By contrast, the change in [L]
between the untreated and pretreated control sample (C3) that

had fairly moderate sulfide concentrations was negligible. This
trend highlights the important role of sulfide as an inorganic
ligand around the CO2 vents at Whakaari.

In pretreated samples, mean (�s.d.) [L] ranged from as low
as 3.9 � 0.9 nM for the V1-2m station to 29.4 � 8.4 nM for the
C3 station. The highest [L] was found at C3, followed byV1, V2

and then V1-2m. At V1, [L] decreased with distance from the
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Fig. 4. Variation in (a) seawater pH on the total scale (pHT) and (b)

temperature of seawater in the CO2 vents sampled (V1, large vent site; V2,

small vent site) and the nearby ‘vent control’ (C4) at Champagne Bay,

White Island (New Zealand) in November 2015, obtained using SeaFET

pH sensors (Sea Bird Scientific). Black dots show the timing and height of

high and low tides.
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vent outflow (Table 4), which appears reasonable considering
prevailing fluid–seawater mixing and dilution processes. [L]

after the pretreatment was always in excess of the total dissolved
Cu concentration ([CuT]; Tables 3, 4), with the consequence that
[Cu2þ] was low in the sampling area. Bioavailable Cu concen-

trations ([Cu0]) ranged from 0.6 to 2.6 pM, with highest [Cu0]
found at C3, followed by V2, V1-2m and then V1.

Biological samples

Phytoplankton community

The larger phytoplankton community in the working area

was reasonably similar and showed no major differences in
either cell concentrations or the number of phytoplankton
species between the vent and control sites in the direct vicinity

of Whakaari (Fig. 5; Table 5). However, the number of larger
phytoplankton species at C1, halfway betweenWhite Island and
the main coast, was approximately half that of all other sites

close to Whakaari (12 v. 21–30; Table 5).
Further, there were distinct differences in the relative phyto-

plankton composition of the larger phytoplankton community
around Whakaari, with diatoms accounting for 42.9–73.9% of

the phytoplankton community at sites in the direct vicinity of
Whakaari (i.e. C2, C3 SW, V1 and V3-2m), but only 2.65% at
C1 (Fig. 5). At the same time, the relative contribution of

dinoflagellates and flagellates to the larger phytoplankton com-
munity was fairly stable (at 24.0–39.6 and 0.5–7.5%
respectively) in the whole working area (Fig. 5).

At C1, total cell numbers for large phytoplankton were up to
twofold higher compared with stations around the island
(Table 6). At the same time, at C1 we found less than half the

large phytoplankton species compared with the Whakaari sta-
tions (Table 5). A large difference was again observed for
heterotrophic plankton species, which accounted for 60.0% of
total cell numbers at C1 but for only 12.0–22.2% at the four sites

(C2, V3-2m, V1 and C3 SW; Fig. 5) in the direct vicinity of
Whakaari.

The picoeukaryote species (i.e. small phytoplankton groups),

as identified by flow cytometry, showed a similar trend,with total
cell numbers being approximately twofold higher and only three
groups of picoeukaryotes identified at C1 compared with four

groups of picoeukaryotes identified at the four sites in the direct
vicinity ofWhakaari (Fig. 5; Table 6). In addition, the picoeukar-

yote community showed differences in relative group composi-
tion. Although four distinct groups could be identified by

Table 4. Copper speciation parameters for four stations sampled at Whakaari–White Island in the Bay of Plenty, New Zealand

Cu speciation parameters were computed using the complete complexation-fitting model embedded in the ProMCC software (D. Omanović, RuXer Bošković
Institute, Center for Marine and Environmental Research, Laboratory for Physical Chemistry of Traces, Zagreb, Croatia; Omanović et al. 2010). Ligand

concentrations ([L]) and conditional stability constants (log(K)) are shown for samples before and after the acid pretreatment (PT) to remove acid volatile

sulfides (AVS) in the sample solutions. The errors for [L] and log(K) values are the fitting errors of the complete complexation-fitting model used to calculate

Cu speciation parameters in the ProMCC software. Sample sites are shown in Fig. 2. [CuXIN], concentration of inorganic Cu complexes; [Cu2þ], free Cu ion
concentration; [Cu0], bioavailable Cu concentration (sum of [CuXIN] and [Cu

2þ]); C3, ChampagneBay control; V1, large vent site; V1-2m, vent 1 sampled at a

distance of 2m from the vent outflow; V2, small vent site

Site Before AVS PT After AVS PT

[L] (nM) log(K) [L] (nM) log(K) [CuXIN] (pM) [Cu2þ] (pM) [Cu0] (pM)

C3 33.6� 8.8 12.0� 0.2 29.4� 8.4 11.8� 0.2 2.52 0.1 2.62

V1 30.5� 4.0 11.9� 0.2 6.9� 1.1 13.2� 0.2 0.61 0.03 0.64

V1-2m 18.2� 5.2 11.6� 0.2 3.9� 0.9 12.8� 0.2 0.97 0.04 1.01

V2 13.0� 1.9 11.9� 0.1 5.8� 1.8 12.5� 0.3 2.2 0.09 2.28
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Fig. 5. Relative composition of (a) phytoplankton species .20 mm and

heterotrophic dinoflagellates and (b) the different small phytoplankton

groups identified by flow cytometry at the five stations at Whakaari–White

Island in the Bay of Plenty, New Zealand. Sample sites are shown in Fig. 2.

V1, large vent site; V3-2m, an active vent on the western side of White

Island, sampled at a distance of 2 m from the vent outflow; C1, open ocean

control; C2, White Island control; C3 SW, Champagne Bay control surface

water.
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flow cytometry at the four sites close to Whakaari, with picoeu-
karyotes accounting for 38.6–45.5%, nanoeukaryotes accounting

for 33.4–48.3%, coccolithophores accounting for 11.2–20.0%
and cryptophytes accounting for 1.4–3.8%, only three groups
were identified at C1 (Fig. 5). At C1, picoeukaryotes clearly

dominated the small phytoplankton community (accounting for

73.6%), whereas nanoeukaryotes and coccolithophores
accounted for 21.2 and 5.2% respectively.

Zooplankton community

The zooplankton samples of C1 were more than 20-fold the
volume of samples collected at the two stations close to

Whakaari (C3 and V1) because of the dominance of salps.
Calanoid copepods and pericarid larvae were the dominant
zooplankton component at C1 (Table 7). Zooplankton samples

collected in the direct vicinity of White Island (C3 and V1)
contained the same abundant taxa as C1 within a very small
plankton volume (,5 mL), with a slightly higher diversity of
meroplankton (Table 7). Overall, there was no compositional

difference in the abundant zooplankton taxa between vent and
control sites.

Benthic algae, especially corallines

Articulate and crustose coralline algae were present in

reasonably high abundances at Whakaari, both near active
venting locations (i.e. V1 and V2) and control locations (i.e.
C2; C. Cornwall, pers. obs.). The articulate coralline alga
C. officinalis maintained a mean (�s.d.) pHcf of 8.66 � 0.04

Table 5. Number of phytoplankton species.20 lm,Shannondiversity

index (H) and Shannon equitability index (E) for the five stations

sampled at Whakaari–White Island in the Bay of Plenty, New Zealand

Sample sites are shown in Fig. 2. V1, large vent site; V3-2m, an active vent

on the western side of White Island, which was sampled at a distance of 2m

from the vent outflow; C1, open ocean control; C2,White Island control; C3

SW, Champagne Bay control surface water

Site Number of species H E

C1 12 1.30 0.11

C2 21 2.31 0.12

C3 SW 28 2.76 0.10

V1 30 2.78 0.09

V3-2m 26 2.65 0.12

Table 6. Total cell numbers for phytoplankton species.20 lmand heterotrophic dinoflagellates as identified bymicroscopy and total cell numbers

for picoeukaryotes (small phytoplankton) as identified by flow cytometry (duplicate measurements) at the five sampling stations atWhakaari–White

Island in the Bay of Plenty

Sample sites are shown in Fig. 2. V1, large vent site; V3-2m, an active vent on the western side of White Island, sampled at a distance of 2m from the vent

outflow; C1, open ocean control; C2, White Island control; C3 SW, Champagne Bay control surface water

Site Heterotrophic dinoflagellates (cells mL�1) Phytoplankton (cells mL�1) Picoeukaryotes (cells mL�1)

C1 66.58 44.44 4699.387–5699.387

C2 5.36 18.80 2104.294–2108.571

C3 SW 3.24 28.68 2024.540–2122.699

V1 12.80 31.64 1797.546–2226.994

V3-2m 6.22 24.64 2570.552–3079.755

Table 7. Summary of abundant (.10 individuals per sample) and rare (0–10 individuals per sample) zooplankton taxa at three stations sampled

at Whakaari–White Island in the Bay of Plenty, New Zealand

Note that the White Island vent sample (V1) was contaminated with large amounts of benthic material that is not recorded in the table. Zooplankton taxa were

classed into abundant and rare categories based on three replicate samples. Dominant taxa are shown in bold. Sample sites are shown in Fig. 2. C1, open ocean

control; C3, Champagne Bay control; V1, large vent site

Site Plankton sample

volume (mL)

Holoplankton Meroplankton

Abundant Rare Abundant Rare

C1 106 Salps Chaetognath Pericarid larvae Mysid larvae

208 Calanoid Copepod Doliolid

172 Cyclopoid Copepod Hydrozoan medusae

Ctenophore

Amphipod

C3 ,5 Calanoid Copepod Oikopleura Mysid larvae

,5 Cyclopoid Copepod Chaetognath Fish egg

,5 Salps Harpacticoid copepod Crab larvae

Amphipod

V1 ,5 Calanoid Copepod Hydrozoan medusae Ascidian tadpole

,5 Cyclopoid Copepod Fish egg

,5 Salps Polychaete nectochaete
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at the venting site and 8.75 � 0.07 at the control site. A. anceps
had a mean (�s.d.) pHcf of 8.67 � 0.06 at the control site, but

was unfortunately not sampled at the vent location (Table S3).
Although pHcf is affected by external seawater pH, it was still
elevated at the venting location.

Discussion

Even though shallow submarine CO2 vents are not exact ana-
logues of future ocean conditions, they are commonly used as
the best natural settings to investigate community composition

shifts and ecosystem-scale effects of OA, over long timescales
(Hall-Spencer et al. 2008; Fabricius et al. 2011; Pichler et al.
2019). The suitability of the unique rocky coastal temperate
submarine CO2 vents aroundWhakaari–White Island in the Bay

of Plenty (New Zealand) as a ‘living laboratory’ for OA science
is discussed below. However, it has to be noted that the research
findings of this study are limited by the short sampling period

and the low sampling resolution, which prohibited statistical
analysis. These limitations add a level of uncertainty to data
interpretation.

Overall water chemistry

Physicochemical parameters

At Whakaari–White Island, vent sites were strongly influ-

enced by the tides and the volcanic CO2 seeps resulting in
localised acidification of seawater (i.e. decreased mean pHT),
large pHT fluctuations and a mean decrease in Ocalcite and

Oaragonite relative to control sites (Fig. 3, 4; Table 2). In the
proximity of the vents (i.e. V1, V2 and V3), pCO2 levels were
high, ranging between 484 and 10015 matm, and calculated

seawater pHT values were constantly lower than 7.98, which are
projected average global sea surface pH values for the year 2100
and beyond (e.g. Caldeira andWickett 2003;Gattuso andLavigne
2009). As a result, Ocalcite and Oaragonite at the vent sites (V1 and

V2) substantially decreased to values ,1, producing progres-
sively lower saturation states for prevalent calcifying organisms.
In addition, the water temperature at V1 and V2 was consistently

higher than at the control site C4 (Fig. 4a),whichmakes theWhite
Island CO2 vents also useful analogues for the effect of ocean
warming on marine biota (González-Delgado and Hernández

2018). As expected, the effects of volcanic vent emissions on
pCO2, pHT and carbonate chemistry drop off quickly with
distance from the vent outflow (Brinkman and Smith 2015;
Pichler et al. 2019), creating close to ambient seawater conditions

for biota at a distance of 2m from the active vent sites on the dates
sampled for this study during rough weather.

Even though the SeaFET data of Whakaari demonstrate a

well-mixed water column during the ‘White Island Blitz’ due to
the large swell (Fig. S2), pHT values and other carbonate
chemistry parameters still showed large temporal variability at

the vent sites during the 3-day sampling trip (Table 2). SeaFET
data taken during an earlier study in the working area in
November 2015 (see Fig. 4, S2) show more intense sudden

changes, extreme variations and irregular fluctuations in pHT at
Champagne Bay, which is in accordance with pH data recorded
at other CO2 vent settings off Ischia (Italy; Kerrison et al. 2011)
and Ambitle Island (Papua New Guinea; Pichler et al. 2019).

This variability is typical for dynamic CO2 vent systems that can

undergo short-term changes in physicochemical conditions due
to changes in geological conditions (e.g. German and Von

Damm 2003), volcanic activity (Chiodini et al. 2006), discharge
rates, chemical composition of hydrothermal fluids and gases
(Pichler et al. 2019) and hydrodynamic conditions (i.e. tidal

cycle, storms, wind, stratification, currents) of the surrounding
water column. Hence, as suggested by Pichler et al. (2019), it is
important to describe hydrothermal study sites using either

continuous or multiple discrete measurements over time of
abiotic parameters (i.e. temperature, salinity, pH, CT, AT, pHT,
pCO2, [CO3

2�], Ocalcite and Oaragonite) to better quantify means
and variability, as well as to account for short-term fluctuations

that can affect the biological responses of prevalent biota. This is
particularly important for calcifying organisms when undersat-
urated conditions for aragonite and calcite continue for a long

time, affecting their calcification rates and acid–base regulation
processes in the absence of protective mechanisms (Fabry et al.
2008). However, the biological implications of natural physical

and chemical fluctuations for flora and fauna adjacent to vent
sites are so far scarce (e.g. Kerrison et al. 2011), and their effects
are difficult to reproduce in laboratory experiments (Rivest et al.
2017). Nevertheless, with seawater pH, temperature and pCO2

variability expected to intensify in the future global ocean,
considerations of the natural environmental variability of abi-
otic parameters are essential to understand species susceptibili-

ties to future ocean conditions and to predict future organism
responses at physiological, ecological and evolutionary levels.

In the marine environment, nitrogen and phosphorous are

important nutrients affecting primary production, aquatic plant
growth and the community composition of phytoplankton,
macroalgae and vascular plants (e.g. Ngatia et al. 2019). The

Redfield ratio (N : P) in the working area of Whakaari ranged
between 31 and 695, and was thus above the optimal N : P ratio
for marine biota of 16 (Redfield et al. 1963). However, an N : P
ratio.16 suggest a P limitation of the study area (Redfield et al.

1963). The Australian and New Zealand Environment and
Conservation Council (1992) recommends that marine
(coastal) nitrogen and phosphorus concentrations should not

exceed PO4-P values of 10 mg L�1, and NO3-N values of
60 mg L�1, and should not fall short of NH4-N values of
5 mg L�1 to prevent adverse effects on the ecosystem (i.e.

eutrophication leading to hypoxia and anoxia, reduced water
quality, changes in food web structure, habitat degradation, loss
of biodiversity and noxious and harmful algal blooms; Ngatia
et al. 2019). All nutrient samples measured around Whakaari–

White Island were within these Australian and New Zealand
Environment and Conservation Council (1992) guidelines,
suggesting that the nutrient composition of the study area is

suited to the requirements of prevalent biota.

Total dissolved trace metals, HgT and sulfide

Elements are naturally present in seawater and are either
enriched or impoverished in hydrothermal fluids relative to their
background content in ambient seawater (e.g. German and Von

Damm 2003; Tarasov 2006; Kleint et al. 2015; Pichler et al.
2019). Themain processes affecting the concentration, speciation
and bioavailability of elements in the water column around CO2

vents are precipitation as sulfides, sediment resuspension, com-

plexation with ligands and biological uptake (e.g. Bruland et al.
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2014; Sander and Koschinsky 2011). Therefore, the enrichment
of trace metals in the hydrothermal fluids of the working area

relative to their concentrations in open ocean seawater samples
around New Zealand (TAN1604, Station CS19, depth 25 m,
Hauraki Gulf; R. Middag et al., unpubl. data; Table 3) may be

explained by ligand complexation, which stabilises dissolved
metals in solution, or by the resuspension ofmetal-rich sediments
within the dynamic Taupo Volcanic Zone (Sarano et al. 1989).

Zn, Cu, Cd, Sr, Rb,Mo,U andHgT concentrationswere highest at
the control sites, suggesting a terrestrial input of these metals,
whereas Ba, Cs, Li, Mn, Fe, Ni, Pb and Co concentrations were
highest at the vent shafts, which hints towards a hydrothermal

source of these metals. However, Li, Rb, Sr, Mo, Ba and U
concentrations were quite uniformly mixed in the working area
due to the large swell experienced during sampling, which high-

lights the difficulties in finding suitable control sites in the Bay of
Plenty, at least during bad weather conditions. Because sulfide is
a common low-temperature product of hydrothermal activity

(Boatta et al. 2013), we expected enriched sulfide concentrations
in theworking area, except forV3, particularly becauseWhakaari
has large terrestrial sulfur deposits (Nairn et al. 1996). Future
studies are needed to assess bioaccumulation and the importance

of biological uptake of these elements and metals in the working
area.

Some trace metals, such as Mn, Fe, Co and Zn, are essential

elements for the metabolism of organisms, whereas other
metals, such as Cd, Pb and Hg, have no biological function
and are entirely toxic to marine organisms, even at low con-

centrations (Rainbow 2002; Jakimska et al. 2011; Tercier-
Waeber et al. 2012), or, in the case of Cu, are both essential
and toxic depending on the concentration (Bruland et al. 1991;

Kleint et al. 2015). Concentrations of Zn, Cu, Co, Cd, Pb and Ni
around Whakaari were well below the Australian and New

Zealand Environment and Conservation Council (2000) guide-
lines for a 95% level of protection for biota in saltwater systems,
whereas the concentration of HgT far exceeded the guideline

threshold at all sites, including the open ocean control site C1
,40 km away from White Island, by up to two orders of
magnitude. High Hg concentrations around White Island were

also reported by Brinkman and Smith (2015). As a result of the
high HgT concentrations in the water column around White
Island, there is a risk of its accumulation in aquatic organisms,

which is not only a threat for the organisms themselves, but also
a concern for human health following the consumption of
locally caught seafood from this area (e.g. Mousavi et al.

2011; Gworek et al. 2016). However, understanding Hg toxicity
requires an understanding of its speciation, because different
forms of Hg are variously toxic to aquatic biota and humans

(Mousavi et al. 2011). In light of addressing the toxicological
concerns of Hg around White Island, future studies need to
investigate the occurrence and speciation of Hg at the vent sites,

and quantify the degree of methylation and the adsorption and
accumulation levels of Hg in local biota. Owing to bioaccumu-

lation, the more toxic organic Hg species are usually elevated in
higher trophic levels of fish, which may be a concern for human
health at this popular recreational fishing spot. Similarly,

macroalgae accumulate contaminants in proportion to their
environmental concentrations (e.g. Karthick et al. 2012), and
thus future studies could include macroalgae to monitor and

characterise the status of environmental risk andwater quality in
the shallow waters around Whakaari.

Trigger values for Li, Rb, Sr, Mo, Cs, Ba, U, Mn, Fe and
sulfide are not given in the Australian and New Zealand
Environment and Conservation Council (2000) guidelines.

However, H2S is a known toxicant in the marine environment
because it imposes severe respiratory stress to aquatic biota even
at low concentrations, and thus affects the health, survival,

productivity and distribution of various organisms (Jahn and
Theede 1997; Boyd 2014). HS� anions may also contribute to
toxicity at high sulfide concentrations (Jahn and Theede 1997;
Boyd 2014), whereas S2� ions are not an issue because they only

occur in the water column at pH values .12 (Boyd 2014). The
96-h LC50 values of H2S to marine species range from 1.5 to
14.7 mM, but should not exceed 146.6 nM in aquaculture (Boyd

2014). According to these values, thewater column aroundV1 is
considered harmful for local biota. Nevertheless, vent organ-
isms could be ecologically adapted to high sulfide concentra-

tions in their environment (Dahms et al. 2018), but more
research is needed to validate this assumption.

The elevated HgT and sulfide concentrations, among other
elements, found at the control sites, especially the open ocean

control site C1, suggest that other sites in the Bay of Plenty are
affected by extensive hydrothermal activity, which accords with
earlier findings of Sarano et al. (1989) and Kleint et al. (2015).

These two studies concluded that hydrothermal activity and
element signatures are not confined to the vicinity of the White
IslandCO2 vents, but result from the positioning of various other

submarine CO2 vents and gas seeps in the Bay of Plenty that
extend along the whole Taupo Volcanic Zone (mainly between
Whale Island and White Islands). Therefore, there are no ‘real’

experimental control sites in the Bay of Plenty with regard to the
element and metal composition of the water column. However,
there may be a possible bias in the hydrothermal element
signature collected during the ‘White Island Blitz’ due to the

influence of large swells, which likely magnified the spatial
distribution of the elements in the water column around the
working area. That is, if the regional context of water chemistry

is to be understood, there is a need to understand the temporal
variability of the element and metal composition in the Bay of
Plenty during both calm and well-mixed periods.

For the shallow CO2 vents around Whakaari sampled in this
study, high amounts of Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, HgT and
sulfide were observed, which could confound the effects of
pCO2 and low pH on the ecosystem in isolation. However, we

emphasise that this study does not establish such confounding
effects. We suggest that scientists should be cautious when
relating ecosystem-scale effects and biological responses of

prevalent biota along pH gradients in the working area to the
unifactorial and direct effect of pH, because interactions with
concurrent, multiple simultaneous stressors, including bioactive

metals, high sulfide concentrations and fluctuation of carbonate
chemistry, may occur (Boyd 2010; Vizzini et al. 2013; Chen
et al. 2018; Dahms et al. 2018). Knowledge of whether these

stressors will have synergistic, antagonistic or additive effects is
limited because of the scarcity of published research, but
multiple stressors have the potential to affect the environment
ofWhakaari at multiple scales (e.g. Ivanina and Sokolova 2015;

Boyd et al. 2018). To progress an understanding of the
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individual and interactive effects of these multiple stressors,
both laboratory and field studies are needed so that the effects of

these stressors on biotic responses can be understoodwhen using
vents as a natural laboratory for studying biotic responses to
projections of future climate.

Copper speciation

Chemical speciation is the driving factor for understanding
metal bioavailability and toxicity to marine organisms (Van
Briesen et al. 2010). According to the literature (e.g. Morel

1983; Kozelka and Bruland 1998; Paquin et al. 2000), metal
toxicity is primarily related to the labile inorganic metal frac-
tion, consisting of free hydrated trace metal ions and trace
metals weakly complexed to inorganic ligands, rather than the

total dissolved metal concentration in a system. However, some
forms of organically complexed metals are also considered
bioavailable (Lorenzo et al. 2005; Semeniuk et al. 2015), but

it is generally accepted that the labile inorganic metal fraction
represents the most readily bioavailable, and thus toxic, form of
metals to marine organisms. Organic ligands generally increase

the stability and effective solubility of trace metals in the water
column, and thereby decrease the biologically available metal
fraction in the surrounding water and the metal toxicity to

marine biota (e.g. Laglera and Van den Berg 2009; Bundy
et al. 2015; Whitby et al. 2018).

The voltametric data of the present study demonstrated the
presence of stable organic and inorganic (i.e. thiols and sulfide)

Cu complexes in the hydrothermal vent fluids aroundWhakaari.
Values of [L] in analysed samples were consistently in excess of
the measured [CuT], suggesting that most of the CuT in the water

column was complexed and stabilised by ligands (,99.9%),
thereby reducing the concentration of the bioavailable free Cu2þ

ion to optimal levels between Cu2þ deficiency (#10 fM; Peers

et al. 2005; Maldonado et al. 2006; Annett et al. 2008; Amin
et al. 2013; Jacquot et al. 2014) and Cu2þ toxicity (.1 pM;
Brand et al. 1986) for prevalent marinemicroorganisms (Kiaune
and Singhasemanon 2011; Tercier-Waeber et al. 2012). Further,

[L] exceeded [CuT] and the [CuT] was significantly higher at C3
and the [L] followed that trend, which strongly hints towards an
active biological ligand production by local biota to mitigate the

toxic effects of elevated Cu2þ concentrations around C3. This
theory is further supported by the mean log(K) value of
12.6 � 0.6 for sulfide-free samples around Whakaari, because

log(K) values in the range of 10–13 are predominantly attributed
to marine-derived humic substances or thiols (Whitby et al.

2018) produced by bacteria (e.g. Shimotori et al. 2009; Romera-

Castillo et al. 2011), decaying phytoplankton (e.g. diatoms;
Lorenzo et al. 2007), mussel embryos (Mytilus galloprovincia-

lis; Zitoun et al. 2018) and other microorganisms (e.g. Synecho-
coccus, Fucus vesiculosus and Emiliania huxleyi; Brand et al.

1986; Moffett et al. 1990; Moffett and Brand 1996; Gledhill
et al. 1999; Leal et al. 1999; Klevenz et al. 2012; Echeveste et al.
2018) during Cu2þ stress, which adds an additional cost for

their fitness (e.g. growth, development and reproduction;
Ivanina and Sokolova 2015) but provides an advantage when
exposed to potentially harmful Cu loads. All in all, ligands play

an important role in controlling the solubility, bioavailability
and toxicity of CuT around the shallow CO2 vents of White
Island.

The active production of ligands may be a general survival
strategy of prevalent biota around Whakaari, and some of these

ligands may have binding affinities for multiple metals (Kogut
and Voelker 2001) and thus ameliorate the potential toxicities of
several free metal ions by the formation of metal–ligand com-

plexes. As a result, the importance of ligands in the working area
may not be confined to Cu, and may be conferred to other
bioactivemetals that are enriched in thewater column, including

Mn, Fe, Ni, Zn and Hg (e.g. Lamborg et al. 2003; Vraspir and
Butler 2009; Oldham et al. 2015). Consequently, ligand com-
plexation of bioactive metals around Whakaari may allow biota
to tolerate otherwise toxic metal concentrations in their envi-

ronment, and hence may play a critical role in shaping the
environmental niches and survival strategies of vent organisms.
Nevertheless, more speciation research is necessary to evaluate

the importance of organic and inorganic ligands in lowering the
lethal and sublethal effects of elevated metal concentrations,
especially Hg, to the local communities around White Island.

Ecological responses

Phytoplankton and zooplankton

The phytoplankton community structure at all stations
around Whakaari (including the control stations) was very
similar, which is not surprising given the strong water mixing

in the area. However, it was surprising to see higher absolute cell
numbers and lower diversity of the phytoplankton community at
C1, the control station further away from the island. The C1

station showed the lowest ammonia level and a moderate NOx

concentration, which could indicate that there has been elevated
phytoplankton growth in this region for a longer time, resulting

in the higher cell numbers and lower nutrient concentrations
observed. The difference in phytoplankton biomass and diver-
sity between the control station and all stations around the island
could be caused by differences in concentrations of potentially

toxic trace metals such as Hg, Pb and Cd (Thomas and Seibert
1977; Thomas et al. 1980; Tortell and Price 1996). The much
higher relative concentration of diatoms around the island

compared with C1 could be explained by the high ratio of
Mn : Cd, Mn : Cu and Mn : Zn in the water column because all
fourmetals are taken up by the samemembrane uptake system in

diatoms and high Mn concentrations are known to block the
biological uptake of toxic metals (Sunda et al. 1981; Sunda and
Huntsman 1996, 1998a, 1998b, 1998c). Therefore, diatoms are
able to tolerate higher concentrations of toxic metals released by

volcanic material that also release high Mn concentrations
compared with other phytoplankton groups (Hoffmann et al.

2012). In addition, diatoms and coccolithophores are known to

have a high metal tolerance because of the production of metal-
binding ligands (e.g. Lorenzo et al. 2007; Echeveste et al. 2018).
This statement is supported by our data, showing a greater [L] at

C3 relative to V1 (Table 4) accompanied by a higher abundance
of these two species at C3 SW (Fig. 5).

The zooplankton community showed parallel patterns to the

phytoplankton, with a lower abundance at White Island com-
pared with C1 in the Bay of Plenty. Chavtur (1992) also
identified abundant holoplanktonic and meroplanktonic species
at White Island with overlapping composition to the ‘White

Island Blitz’ sampling (e.g. Oikopleura sp., calanoid and

336 Marine and Freshwater Research R. Zitoun et al.



cyclopoid copepods), but also noting lower densities compared
with the Hauraki Gulf. In the present study, sampling at the vent

and control sites focused on the water column, and thus future
sampling could also include waters in the immediate vicinity of
the vent outlets, where high numbers of harpacticoid copepods

are found (Tarasov et al. 1986).

Macroalgae

The natural history of Whakaari–White Island is broadly
typical of subtidal temperate rocky coasts of Australia (Connell

and Irving 2008) and northernNewZealand (Shears andBabcock
2007). It comprises mosaics of kelp (E. radiata), infrequent and
small patches of turf-formingmacroalgae (,10 cm in height) and

urchin barrens (i.e. hard substratum sea urchin barrens devoid of
vegetation). Turf-forming algae at the vents appear to be more
productive and have a greater biomass at vents (Connell et al.

2017), which is comparable to algae raised under similar condi-
tions in controlled laboratory and mesocosm experiments
(Connell and Russell 2010; Connell et al. 2013). Such concur-
rence between experimental field and laboratory observations

across a wide variety of conditions provides the kind of
investigative approaches needed to illustrate CO2 as a driver
of ecological responses in nature (Connell et al. 2013). The

most conspicuous herbivores were damselfishes (Parma
alboscapularis) and sparse densities of urchins common to
Australia (Centrostephanus rodgersii) and moderate densities

of urchins common to New Zealand (Evechinus chloroticus;
Connell et al. 2018; Ferreira et al. 2018). Where a species has a
positive association with turfs, its density can be substantially

greater near vents (Connell et al. 2017). It is worth noting that the
differences between these biological studies and the present study
may be due to the fact that the studies were conducted in different
locations, with the biological studies done at greater distances

from vents (,25 m) than the sampling undertaken in the present
study (i.e. within the vent fluids and 2 m from the vents).

Coralline algae

Evidence supports the hypothesis that those coralline algae
that are capable of regulating pH at the site of calcification in their
internal calcifying fluid (pHcf) under OA demonstrate more

robust responses to lower pH conditions (Cornwall et al.

2017b). The articulate coralline alga C. officinalis maintained
mean (�s.d.) pHcf of 8.66 � 0.04 at the venting site and
8.75 � 0.07 at the control site. Although pHcf is affected by

external seawater pH, it is still elevated at the venting location
relative to the surrounding seawater. The capacity ofC. officinalis
to maintain elevated pH in the calcifying fluid under OA could

explain why this species of coralline algae is still in such high
abundance near the high-CO2 locations at Whakaari. This mech-
anism of resistance could enable some species of coralline algae

to persist in the future under OA, despite past conclusions that
they are, in general, among the most susceptible taxa to OA
(Fabricius et al. 2011).

Articulate and crustose coralline algae were present in
seemingly high abundances at Whakaari, both near active
venting sites and at control sites. This is in contrast with other
vents sites studied off Vulcano (Italy; Cornwall et al. 2017a),

Ischia Island (Italy; Hall-Spencer et al. 2008) and Milne Bay

(Papua New Guinea; Fabricius et al. 2015), where coralline
algae are nearly absent. Other coralline algae from New

Zealand have shown similar robust responses to OA
(Cornwall et al. 2013, 2014; James et al. 2014) compared with
large declines in calcification observed in other coralline algal

species (Anthony et al. 2008; Fabricius et al. 2015). The high
abundance of coralline algae around the vents at Whakaari
could include the fact that mean pH is higher or variability in

pH lower at the study site relative to other shallow CO2 vent
sites in the Mediterranean (Hall-Spencer et al. 2008; Cornwall
et al. 2017a) and Papua New Guinea (Fabricius et al. 2015),
which would elicit different responses. Some coralline algae

are particularly susceptible to both increased variability in pH
and abrupt changes in pH (Cornwall et al. 2013; Kamenos et al.
2013; Roleda et al. 2015). However, pHcf usually responds to

changes in seawater mean pH rather than pH variability
(Cornwall et al. 2018). This is most likely also occurring at
White Island. Further research is required to understand the

comparatively high coralline algal abundance here compared
with other CO2 seep locations.

Conclusions

Findings of the ‘White Island Blitz’ suggest that the CO2 system
of Whakaari–White Island represents one of many globally dis-
tributed vent systems that require care in their use as modern
models of the ‘future ocean’. Although they create a pH and

carbonate chemistry environment suitable for OA research (e.g.
for predictions of 2100 and beyond), they also have several
caveats, some of which have the potential to co-vary with scales

of biological sampling, although this was not observed in this
study. First, seawater carbonate chemistry was altered in only
quite small areas around the vents, preventing a study of potential

responses of pelagic and wide-ranging mobile organisms. Sec-
ond, as around most other natural vents, the carbonate chemistry
showed substantial variability, with unknown physiological and
ecological consequences. Third, HgT concentrations at both vent

and control sites reached concentrations that are considered
biologically toxic (Australian andNewZealandEnvironment and
ConservationCouncil 2000). Finally, even though concentrations

of most elements and metals around the study site were within
acceptable ranges, some (Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb and
sulfide) were elevated at both the vent and control sites, poten-

tially affecting the metabolic rates of sensitive taxa.
Our results provide particular warning for the ability of

metals and elements to confound studies of CO2 research at this

hydrothermal vent system. The inconsistent variation of ele-
ments and dissolved metals in the working area across such
small spatial scales suggests that these non-CO2 effects need to
be measured and understood, along with CO2 concentrations, to

improve our ability to reliably predict and manage for further
ocean changes. It is possible that the ecology of Whakaari is
different from assemblages elsewhere because of the general

and variable chemical environment that envelops the broader
coast of the Bay of Plenty. Therefore, the reporting of biological
responses needs greater attention to potential prevalent multiple

environmental stressors.
Our initial interdisciplinary results highlight that consider-

ably more work is needed to better understand the biological
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responses to and ecosystem-scale effects of the environmental
factors around White Island and vent systems worldwide. To

tackle the lack of information and to better quantify the
suitability of the temperate CO2 vents at White Island, or any
other marine CO2 vent system, as a climate change analogue,

future studies are encouraged to include the following steps and
practices:

� map the spatial and temporal changes in pH and other
parameters of seawater carbonate chemistry during calm
and well-mixed periods

� consider the location of suitable control sites outside the
influence of the hydrothermal signatures of the numerous
CO2 vents at the study site to provide a regional context for
biotic and abiotic interpretations

� make detailed a priori investigations of the temporal and
spatial trace element distribution and speciation of bioactive
trace metals (e.g. Cu, Hg, Cd and Pb) at both vent and

control sites
� characterise the effects of OA on metal speciation, bioavail-

ability and toxicity (Future decreases in OH� and CO3
2�

concentrations will directly affect the solubility, distribution
and speciation of metals in natural waters (Millero et al.

2009). Trace metals that form inorganic complexes with OH�

and CO3
2� will undergo significant changes in speciation as

the pH of seawater decreases, resulting in elevated levels of
the bioavailable free ionic form of these metals (e.g. Millero
et al. 2009; Ivanina and Sokolova 2015; Stockdale et al.

2016). Although some OA-induced changes in metal specia-
tion will be beneficial (e.g. in the open ocean and in deep
waters where productivity is limited by the low availability of

micronutrients), others will exacerbate the harmful effects of
bioactive metals to marine organisms (Ivanina and Sokolova
2015). Lower pH will also affect the adsorption of metals to

organic ligands (Millero et al. 2009; Stockdale et al. 2016).
However, the effect of pH on organic metal complexation in
the marine environment is so far not well characterised and
future studies are needed to examine the effect of OA on

organic metal complexation and associated effects on marine
organisms (e.g. Millero et al. 2009; Ivanina and Sokolova
2015; Stockdale et al. 2016).)

� understand the interaction between CO2 and heavy metal
concentrations, especiallyHg, on biological responses (Based
on published research, OA can change the toxicity, accumu-

lation and intracellular binding processes of metals in several
marine organisms, thereby affecting key physiological func-
tions, including acid–base regulation, protein synthesis and

energy homeostasis (e.g. Ivanina and Sokolova 2015; Zeng
et al. 2015). Nevertheless, because of the scarcity of pub-
lished research on OA–metal interactions, it is difficult to
assess the degree to which both stressors are likely to affect

the survival, performance and fitness-related functions
(e.g. reproduction and growth) of marine organisms in the
future ocean (Ivanina and Sokolova 2015).)

� improve understanding of biological responses to sulfide,
particularly at the scales of biological observation and
experimentation

� distinguish and quantify the individual and interactive
effects of multiple stressors in the field and in the laboratory

(e.g. laboratory-based experimental studies could be used to
tease apart the effects of the increased CO2 and Hg on vent

biota)
� improve understanding regarding the biological and

ecosystem-scale effects of the environmental variability

around the vent sites
� perform detailed laboratory investigations of the effects of

CO2 on target taxa so that variation in response among taxa at

vents can be better interpreted; calcareous organisms, such as
mussels and coralline algae, may be investigated for their
capacity to integrate CO2 exposure over time in their
skeletons

� focus on benthic sessile organisms because these communi-
ties integrate environmental conditions around the vent sites
and thus provide a good proxy for the investigation of

ecosystem processes (e.g. Pichler et al. 2019)
� compare broad-scale and long-term OA and climate change

studies in the field with laboratory-based experiments to

validate findings and associated conclusions (González-
Delgado and Hernández 2018)

Although research of CO2 vents was intended to improve the
realism of OA research, which relies heavily on laboratory and
mesocosm experiments, we acknowledge that CO2 vents are not

perfect analogues for forecasts of OA, and Whakaari–White
Island is no exception. Indeed, there are few study sites or
methods that can be relied upon to progress an entire discipline.
Multiple approaches are needed, and each method needs con-

stant reflection and refinement as to whether they establish the
cause (abiotic change) and effect (biological response) for the
chemical parameters of concern. Do ecological studies of

volcanic vents measure the consequences of CO2 enrichment?
The ‘White Island Blitz’ shows that care is needed in the use of
this particular multivariate site in New Zealand as a natural

laboratory for studying temperate communities in future pH
projections. The ‘White Island Blitz’ points to the need for
validation by intensive laboratory and field investigations.
Although laboratory investigations (e.g. mesocosms) tend to

oversimplify and exaggerate their measured effects of OA and
obscure important natural processes (Goldenberg et al. 2018),
they provide insight into the types of responses and their

mechanisms and causes. Although field investigations of natu-
rally complex ecological systems incorporate a multitude of
drivers, and thus reflect a more environmentally realistic sce-

nario than laboratory-based experiments, they make any one
driver or even multiple stressors challenging to isolate (Sommer
2012; Ivanina and Sokolova 2015; Boyd et al. 2018). If research

into OA is not to stagnate, we need to understand biological or
ecological responses to OA, as well as the sensitivity and
legitimacy of our tests of OA.
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Mousavi, A., Chávez, R. D., Ali, A. M. S., and Cabaniss, S. E. (2011).

Mercury in natural waters: a mini-review. Environmental Forensics

12(1), 14–18. doi:10.1080/15275922.2010.547549

Nagelkerken, I., Russell, B. D., Gillanders, B.M., and Connell, S. D. (2016).

Ocean acidification alters fish populations indirectly through habitat

modification. Nature Climate Change 6, 89–93. doi:10.1038/

NCLIMATE2757

Nairn, I. A., Houghton, B. F., and Cole, J. W. (1996). ‘Volcanic Hazards at

White Island’, 2nd edn. Volcanic Hazards Information Series 3.

(Ministry of Civil Defence: Palmerston North, New Zealand.)

Ngatia, L. III, J. G., Moriasi, D., and Taylor, R. (2019). Nitrogen and

phosphorus eutrophication in marine ecosystems. In ‘Monitoring of

Marine Pollution’. (Eds H. B. Fouzia.) pp. 1–17. (IntechOpen.)

Oldham, V. E., Owings, S. M., Jones, M. R., Tebo, B. M., and Luther, G.W.

III (2015). Chesapeake Bay.MarineChemistry 171, 58–66. doi:10.1016/

J.MARCHEM.2015.02.008
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Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M.,
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