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Abstract. Understanding the spatial and temporal scales over which key population processes occur is fundamental to

effective fisheries management, especially when informing recovery actions following extreme events. In 2018–19,
hypoxia-induced fish kills occurred in the lower Darling River, south-eastern Australia. We collected carcasses of three
potamodromous species that perished during these events to reconstruct their lifetime movements and identify potential
recovery mechanisms. Golden perch Macquaria ambigua, Murray cod Maccullochella peelii and silver perch Bidyanus

bidyanus otolith 87Sr/86Sr profiles were compared with water 87Sr/86Sr ratios to better understand natal provenance and
movement history, and to identify the scale at which migration influences population processes. Golden perch were
predominantly locally spawned (Darling River), although we found some evidence of emigration into the nearby Murray

River early in life and return movements into the Darling River. Murray cod were mainly locally spawned and thereafter
lifelong residents, with some evidence of stocking supplementing populations. Silver perch were mostly immigrants, with
the Murray River (.500 km away) the principal source of fish. For recovery of native fish populations to be effective

in the Darling River, recovery actions are required that incorporate knowledge on the relevant spatial and temporal scales
over which life history processes occur.

Keywords: hypoxia, river regulation, freshwater fish, otolith microchemistry, strontium isotope.

Received 7 December 2020, accepted 3 May 2021, published online 4 June 2021

Introduction

Human-facilitated river development is affecting freshwater
ecosystems at an alarming rate, with an estimated 50% of
available freshwater run-off captured for human use (Jackson

et al. 2001). A global boom in irrigation expansion and hydro-
power development will see an unprecedented level of addi-
tional water infrastructure construction over the next two

decades (Neumann et al. 2011). Indeed, it is estimated that by
2050 irrigated agriculture will expand by 140% globally
(Caldera and Breyer 2019). Such development is significantly

altering aquatic ecosystems from their natural state (Ormerod
et al. 2010) and promoting a global decline in freshwater bio-
diversity (Strayer and Dudgeon 2010).

River development adversely affects native freshwater fish

through changes to the seasonal timing and volume of river
flows (Zeiringer et al. 2018), obstruction of movement path-
ways (Baumgartner et al. 2014a) and habitat alteration (Seliger

and Zeiringer 2018). Cumulatively, these factors act in concert
and over many years, which can have substantial implications
for populations and community composition. For instance, flow

regulation may decrease river discharge and subsequently
reduce natural cues for fish to move and spawn (Krabbenhoft
et al. 2014). In years when cues do occur, barriers to migration

may prevent longitudinal movements required for individuals to
complete their life cycle (Harris et al. 2017). And, if spawning is
successful, then the altered timing, quantity or quality of river
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flows can affect the availability or suitability of both in-channel
and off-channel nursery habitats, leading to reduced growth

(Spurgeon and Pegg 2017), dispersal (Robinson et al. 1998) and
survival of recruits (Tonkin et al. 2021). Understanding the
spatial and temporal scales of these interactions is critical to

effectively control and manage the negative effects of river
development.

The degree of interruption to these natural riverine pro-

cesses caused by human development, and the associated
ecological impacts, are not static. Rivers are dynamic entities
and are predicted to experience more severe climate extremes,
specifically increased frequencies and duration of drought

interspaced with extreme floods (Arnell and Gosling 2013;
Du et al. 2014). Therefore, fish populations may be subject
to rapid fluctuations in the availability of suitable habitats, with

access to these habitats limited by migration barriers, such
as dams and weirs (e.g. Mueller et al. 2011), as well as the
frequency and duration of connection events (e.g. Lyon et al.

2010). These fundamental changes in the quantity and connec-
tivity among critical habitats affect the structure and function
of fish populations (Koster et al. 2020) and favour species with
tolerances to flow extremes, flexible movement strategies and

generalist habitat needs (Koehn 2004).
Drought and flooding are natural features of dryland rivers

(Walker et al. 1995; Baumgartner et al. 2017). Correspondingly,

many riverine fish species have evolved complex life history
strategies to exploit specific habitat and flow conditions across
different spatial and temporal scales (Lange et al. 2018; Zeug

and Winemiller 2008). For example, some species have eggs
and larvae that passively drift or actively move hundreds of
kilometres (Copp et al. 2002; Stuart and Sharpe 2020). Others

have ontogenetic habitat preferences that transition from nurs-
ery habitats as juveniles to feeding and spawning habitats as
adults (Rosenberger and Angermeier 2003). The migration
requirements of many species also change ontogenetically,

and small-scale movements at juvenile stages can be replaced
by larger, system-scale, movements as fish grow into adulthood
(Kynard et al. 2002). For long-lived species, these processes act

over decades. Thus, understanding the spatial and temporal
nature of critical life history needs is essential to the design
and implementation of effective recovery programs.

In multispecies fish communities, there is usually a range of
life history strategies across species. More often than not,
different species have contrasting needs at the egg, larval,
juvenile and adult stages (Van Winkle et al. 1993); this is

despite experiencing the same environmental conditions. These
requirements can be difficult to disentangle without an adequate
understanding of the life history for each species over its entire

lifetime (Baumgartner et al. 2014b). There is then the significant
challenge of designing recovery programs for altered river
systems that provide for the ecological needs of each species

while also accounting for the increasing challenges presented by
climate change (Daufresne and Boët 2007). As such, effective
fisheries management requires the development of a robust

recovery program that incorporates knowledge of the spatial
and temporal scales over which key population processes occur,
and is dynamic enough to account for extreme events and the
required recovery actions associated with these (Lyon and

O’Connor 2008; Koehn and Todd 2012; Thiem et al. 2017).

The Barwon–Darling River (hereafter referred to as the
Darling River), located in south-eastern Australia, is symptom-

atic of a large dryland river affected by human modification and
a changing climate (Mallen-Cooper and Zampatti 2020). The
highly modified river hydrology has had a chronic detrimental

effect on native fish populations (Gehrke et al. 1995;Gehrke and
Harris 2000). In 2018–19, overabstraction and drought induced
an extended cease-to-flow period. Concurrent high water tem-

peratures resulting from climate extremes culminated in a series
of hypoxia-induced fish kills that occurred over a constrained
reach of the lower Darling River, near Menindee in New South
Wales (NSW; Jackson and Head 2020). The death of significant

numbers of native fish sparked national and international
outrage, prompting widespread calls for a significant govern-
ment response to facilitate recovery (Vertessy et al. 2019).

However, for this recovery to be effective, empirical data on
the spatial and temporal scales over which key population
processes occur are required to guide investment.

We investigated the age structure, provenance and move-
ment history of three species collected in the region of the fish
kill using otolith-based approaches. Specifically, we collected
otoliths from the carcasses of golden perchMacquaria ambigua,

Murray cod Maccullochella peelii and silver perch Bidyanus

bidyanus. These species are native to theMurray–Darling Basin
(MDB), are relatively long lived (maximum age.20 years) and

are considered potamodromous (Lintermans 2007). Long-
distance riverinemovements of all three species have previously
been documented, particularly during periods of high river

discharge and flooding (e.g. Reynolds 1983; Llewellyn 2014;
Thiem et al. 2020). These large movements are often associated
with periodic spawning in adult golden perch and silver perch,

and the subsequent long-distance dispersal of eggs, larvae and
juveniles (Koster et al. 2021; Stuart and Sharpe 2020). By
contrast, long-distance movements of adult Murray cod appear
facultative and are not required for reproduction, with predict-

able annual spawning occurring under a range of river dis-
charges and the well-developed larvae of this nesting species
able to actively settle out in favourable, localised habitats

(Reynolds 1983; Kopf et al. 2014).
Otoliths were used to assess age structure and generate stable

isotope (87Sr/86Sr) profiles. This information was used to eluci-

date whether these species complete their life cycle within the
Darling River (lifelong ‘local’ residents) or whether immigra-
tion and emigration influence population demography, as has
been demonstrated in other parts of the southern MDB for both

golden perch and silver perch (Zampatti et al. 2018). Using
87Sr/86Sr as a geochemical marker is useful because: (1) the
stable isotope ratio of dissolved Sr in water reflects the age and

composition of the underlying soil and bedrock, which typically
varies between sub-basins within catchments; and (2) it is
readily substituted for Ca at an approximate 1:1 ratio in the

otolith structure. Thus, changes in the 87Sr/86Sr ratio can repre-
sent movements between isotopically distinct rivers or regions
within rivers (Humston et al. 2017; Kennedy et al. 2000). We

hypothesised that, although occupying similar habitats as adults,
the three species would display contrasting lifetime movements
that extended beyond the direct fish kill area. If true, recovery
actions would need to be applied across larger spatial and

temporal scales than the immediate fish kill location.
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Materials and methods

Study area and fish kill context

The Darling River is 2740 km long and has a catchment area of
650 000 km2 that drains the north-western section of theMDB in

south-easternAustralia (Fig. 1, inset; Thoms and Sheldon 2000).
The hydrology of the river and its tributaries is characterised by
extreme climatic variability that has been exacerbated by river

regulation and water abstraction (Mallen-Cooper and Zampatti
2020). For example, capture of rainfall by large dams in the
headwaters and the subsequent diversion of flows for irrigated

agriculture has resulted in reductions in annual run-off. This has
brought about a loss of periodicity in small floods, as well as
changes to seasonal components of the flow regime (Thoms and
Sheldon 2000). End-of-system flows from the Darling River

into theMurrayRiver are now largely regulated by releases from
the Menindee Lakes, a series of naturally occurring, but modi-
fied, ephemeral lakes ,500 km upstream of the junction of the

two rivers (Fig. 1). The lake system was converted for water
storage and subsequent re-regulation of Darling River flows in
the 1960s.

In late 2018, the combination of extended low river flows
(Fig. 2) resulting from upstream water abstraction and drought
and high water temperatures led to persistent thermal stratifica-

tion of the lower Darling River downstream of Menindee Main
Weir near the town of Menindee in NSW (Fig. 1). Hypoxic
conditions occurred in the lower water layers, particularly in the
,40 km of weir pool upstream of Weir 32 (Fig. 1). On three

occasions in the summer of 2018–19, localised weather patterns
were suspected to have caused sudden destratification of
the water column upstream of Weir 32, resulting in hypoxic

conditions in the whole water column and subsequent fish kill
events (AustralianAcademy of Science 2019; NSWDepartment

of Primary Industries 2019; Vertessy et al. 2019).

Fish collection and otolith analyses

In December 2018 and January 2019, golden perch (n ¼ 39),
Murray cod (n ¼ 40) and silver perch (n ¼ 41) carcasses were

opportunistically collected from the fish kill reach. Where
possible, biological information, including length (mm) and
weight (g), were recorded from all specimens, although in some

instances the advanced state of decompositionmeant that weight
could not be reliably obtained. Sagittal otolith pairs were
removed from each individual, and these were cleaned, dried
and stored in individually labelled vials.

To determine the annual age of each individual, and subse-
quent birth year, the right sagittal otolith from each fish was
prepared as a transverse section based on established protocols

that have previously been used for these species (Anderson et al.
1992; Mallen-Cooper and Stuart 2003; Wright et al. 2020).
Estimated age was assigned based on a combination of annulus

count and edge type in relation to capture date, and all indivi-
duals were assigned a nominal birth date of 1October (Anderson
et al. 1992). Otoliths were aged, independent of any knowledge

of fish length, by two experienced readers.
The left sagittal otolith was used to retrospectively determine

the provenance and movement history of each individual.
Otoliths were first embedded in epoxy resin and a transverse

section through the primordium of,400 mmwas obtained. Thin
sections were polished using 9-mm lapping film, excess resin
was trimmed and sections were placed with the side closest to
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Fig. 1. Location of the fish kills (black square) and associated sample collection in 2018–19 on the lower Darling

River, New South Wales. Inset, the shaded area shows the Murray–Darling Basin.
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the primordium facing upwards. Otolith sections were fixed by a

thin layer of epoxy resin onto master slides, with 20–50 otolith
sections per slide (depending on otolith size) and set in a drying
oven at 508C for 4 h. Master slides were rinsed and sonicated in

Milli-Q water (Millipore) and air-dried overnight in a Class 100
laminar flow cabinet at ambient temperature.

Laser ablation–inductively coupled plasma mass spectrome-
try (LA/ICP-MS)was used tomeasure 87Sr/86Sr in the otoliths of

each individual. Analysis was undertaken by the Advanced
Geochemical Facility for Indian Ocean Research at the Univer-
sity of Western Australia. The system consisted of a Thermo

Scientific NEPTUNE Plus multicollector ICP-MS coupled to a
Teledyne Analyte G2 excimer LA system. Master slides were
placed in the sample cell and the primordium of each otolith was

located visually with a 400� magnification objective and a
video imaging system. The intended LA path on each sample
was then digitally plotted using an image analysis system
calibrated to the laser. Otoliths were ablated along a transect,

from the primordium (core) to the proximal margin (edge;
Fig. 3), using a 25 � 100-mm rectangular laser slit. The laser
was pulsed at 10 Hz and scanned at 10 mm s�1 across the sample.

Standardisation and Rb correction were undertaken following the
methods detailed by Woodhead et al. (2005), and external repro-
ducibility was assessed using three in-house carbonate standards

with mean (�2 s.d.) 87Sr/86Sr ratios of 0.709176 � 0.000025
(n¼ 20), 0.70592� 0.00012 (n¼ 21) and 0.713017� 0.000028
(n ¼ 20).

All research was undertaken in accordance with Fisheries
NSW Scientific Collection Permit P01/0059(A)-2.0.

Natal origin assignment

To match otolith-derived 87Sr/86Sr ratios with location-specific
water 87Sr/86Sr ratios, we used existing water 87Sr/86Sr sample

collections that were obtained across the mainly contiguous
MDB spanning 2012–18 (Zampatti 2019; Zampatti et al. 2018,
2019; Ye et al. 2020). Because theMenindeeMainWeir is 12 m

in height and forms an impassable barrier to upstream fish
movement, except in major flood years, we compared 87Sr/86Sr
ratios from water samples of the lower Darling River to con-
nected rivers and tributaries of the southern MDB. The lower

Fig. 3. A transverse section of a sagittal otolith from a Murray cod

(749 mm total length, estimated age 16þ years). The black line indicates

the laser ablation path used to generate the 87Sr/86Sr profile.
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Fig. 2. Mean daily river discharge for the lower Darling River atWeir 32 (Gauge 425012; see Fig. 1). The vertical dashed line indicates the

approximate period over which fish kills occurred near Menindee in 2018–19. Data were sourced from WaterNSW (https://realtimedata.
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Darling River exhibits a temporally stable unique 87Sr/86Sr,
rendering this approach robust (Zampatti et al. 2019; see Fig. S1

of the Supplementary material). We acknowledge that under
some circumstances (i.e. predominantly during flooding)
downstream movement of individuals between the mid and

lower Darling River may occur (e.g. Stuart and Sharpe 2020),
although we are unable to resolve these movements with the
approach used in this study.

Using the unique 87Sr/86Sr of the lower Darling River
(mean� s.d. 0.70766� 0.00014, based on 61 samples collected
over 7 years; Zampatti et al. 2019) and Murray River (87Sr/86Sr
all above 0.710; Fig. S1), we first assessed the probability of the

sample coming from the lower Darling River. To do this, we
assumed that the lower Darling River 87Sr/86Sr was normally
distributed with a mean (�s.d.) of 0.70766� 0.00028 (based on

smoothed 87Sr/86Sr profiles from resident fish in the lower
Darling River). We then took the average of all 87Sr/86Sr reads
at ,100 mm from the core and estimated the probability of

obtaining that 87Sr/86Sr or higher (one-sided approach). Next,
we used a total error rate of 0.5% across the 120 fish. With this
error rate, we calculated a threshold probability (0.00013) for
each fish. If fish had a higher probability than the threshold, it

was classified as lower Darling River origin, otherwise it was
classified as being from the Murray River (immigrant). Indivi-
duals originating from the Murray River were further classified

as coming from the lower Murray or mid-Murray River
(Fig. S2–S4 of the Supplementary material) using the threshold
87Sr/86Sr of 0.717 or higher for the mid-Murray. We acknowl-

edge, however, temporal variability in water 87Sr/86Sr ratios.
This is particularly evident for the lower Murray River based on
variable input from the Darling River (Fig. S1). As such, for the

purpose of this studywe grouped different regions of theMurray
River and simply defined inter-regional movement as move-
ment between the lowerDarling andMurray rivers, regardless of
direction and occurring at least once during a lifetime.

A complication is that some golden perch and Murray cod,
but not silver perch, were stocked as fingerlings (,60 days of
age) into the lower Darling River in several years (Table S1 of

the Supplementary material). The origin of these fish is from
hatcheries that use water sourced from the Murrumbidgee River
(a large tributary of the Murray River in the southern MDB).

To elucidate hatchery origin for the Murray River-assigned
fish, we used the same approach as for the lower Darling River
except using the known 87Sr/86Sr ratio (mean ¼ 0.715) and
deviation (0.00028) from the Murrumbidgee River. Stocked

fish in the lower Darling River also show an abrupt change in
the Sr profile between 100 and 800 mm, reflecting the transition
from hatchery water to lower Darling River water when fish are

released as fingerlings. Therefore, fish were classified as
stocked if they showed this transition and had an indicative
hatchery 87Sr/86Sr.

Results

Golden perch of a wide range of sizes and ages were collected,
with a modal age of 9þ years equating to the nominal birth year

of 2009 (Table 1; Fig. 4). Similarly, Murray cod spanned a large
size and age range (up to 1270 mm long and 26 years old,
equating to a birth year of 1992), with a modal age of 11þ years

equating to a nominal birth year of 2007 (Table 1; Fig. 4). By
contrast, silver perch had a narrow range of sizes, ages and
associated nominal birth years, with a modal age of 8þ years

equating to a nominal birth year of 2010 (Table 1; Fig. 4).
In general, 87Sr/86Sr profiles were indicative of contrasting

lifetimemovement patterns among the three species in the lower

Darling River study reach (Fig. 4) and could be summarised as
follows:

1. Murray cod: predominantly lower Darling River natal source
with limited inter-regional movements.

2. Golden perch: predominantly lower Darling River natal

source with some inter-regional movements.
3. Silver perch: predominantly Murray River natal source with

substantial inter-regional movements.

An assessment of individual fish 87Sr/86Sr profiles
(Fig. S2–S4) revealed the lower Darling River was the predomi-

nant natal origin of both golden perch (92%) and Murray cod
(83%), although it accounted for only 27% of silver perch
(Fig. 4). The Murray River was the predominant (73%) natal
source of silver perch in our sample and for a small proportion of

golden perch (8%) and Murray cod (12%). Stocking also
contributed a small proportion of Murray cod (5%) to the lower
Darling River. No golden perch or silver perch were of stocked

origin. Although all the lower Darling River natal originMurray
cod exhibited lifelong residency within the lower Darling River,
golden perch and, to a lesser extent, silver perch exhibited two

contrasting lifetime movement patterns. Specifically, of the 36
golden perch with a lower Darling River natal origin, 56% were
lifelong residents, whereas 44% moved into the nearby Murray
River early in life and subsequently returned to the lower

Darling River (Fig. 4). And, of the 11 silver perch with a lower
Darling River natal origin, 64%were lifelong residents, whereas
36% moved into the nearby Murray River at various stages in

their life and subsequently returned.

Discussion

Our assessment of three species of lowland river fish that died
during hypoxia-induced fish kills indicates support for our

hypothesis that, in a short reach of the lower Darling River,
individuals spanned a range of ages and exhibited contrasting
lifetime movement patterns and natal origins. Otolith stable
isotope analysis suggests that localised spawning and recruit-

ment of all three species had occurred, but that movement
(both emigration and immigration) among regions varies in
relative importance for the different species and is contrastingly

Table 1. Summary statistics of three large-bodied fish species collected

following fish kills in the lower Darling River nearMenindee in 2018–19

Unless indicated otherwise, data are presented as a range (minimum–

maximum)

Golden perch Murray cod Silver perch

Number 39 40 41

Length (mm) 130–480 246–1270 302–402

Estimated age (years) 2þ–16þ 2þ–26þ 5þ–10þ
Nominal birth years 2002–16 1992–16 2008–13
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influencing population dynamics. Understanding the intricacies

of these results at a species level, in the context of managing fish
populations in modified rivers, is essential to determine the
variable recovery pathways that may be required to restore

riverine fishes (Zeug and Winemiller 2008; Baumgartner et al.
2014b). More generally, it highlights the importance of main-
taining connectivity between habitats to ensure population

function (Radinger and Wolter 2014).

Life history and movement among species

For fishes inhabiting regulated rivers, the frequency and extent
of large-scale movements has been affected by the interaction
between regulating structures, water abstraction and diversion
and the often-exacerbated low-flow conditions they create,

resulting in serial disconnection (Barbarossa et al. 2020;
Mallen-Cooper and Zampatti 2020). As a result, extensive
global population declines of migratory species have ensued

(Wilcove and Wikelski 2008; Limburg and Waldman 2009).
The present study validates spawning and recruitment ofMurray
cod, golden perch and silver perch in the lower Darling River, as

has been documented previously (e.g. Sharpe and Stuart 2018;
Zampatti 2019), but indicates variable influence of inter-
regional movements on population structure. For example,
most Murray cod collected in this study spent their entire lives

(up to 26 years) in the lower Darling River, indicating limited
reliance on inter-regional movements for population function.

Although large-scale movements of adults have been docu-

mented, particularly in response to elevated river flows (e.g.
Llewellyn 2014; Thiem et al. 2020), both juveniles and adults
are largely considered site attached (Jones and Stuart 2007;

Koehn and Nicol 2016; Thiem et al. 2018), a result generally
supported by the findings of the present study.

Although inter-regional movement was rare for Murray cod

in our sample, it was common for silver perch and, to a lesser
extent, golden perch. Immigration from the Murray River into
the lower Darling River was the dominant movement type

exhibited by silver perch that were affected by the fish kill
event. For golden perch, movements were predominantly char-
acterised as return migrations following emigration out of the
Darling River early in life, consistent with the findings of

Zampatti (2019). Both species have been documented to exhibit
large bidirectional movements over a range of life stages, often
in response to elevated flows (Reynolds 1983; Baumgartner

et al. 2014a; Llewellyn 2014; Thiem et al. 2020), and these
movements appear important to support population function and
resilience of both species in the lower Darling River.

Silver perch have suffered substantial reductions in abundance
and distribution throughout their range, including in the Murray
River, as result of the negative effects of river regulation includ-
ing reduced river discharge, altered seasonal timingof river flows,

barriers to migration and cold water pollution (Lintermans 2007;
Mallen-Cooper and Brand 2007). Despite this, spawning and
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recruitment of silver perch in the remaining lotic sections of the
Murray River are regularly observed (e.g. Tonkin et al. 2007,

2019; King et al. 2016). Tonkin et al. (2019) identified substan-
tial interannual variation in silver perch recruitment strength in
the Murray River, attributing strong year classes to high river

flows the year after spawning, with these high flows promoting
growth and dispersal. Several studies have documented move-
ment of Murray River silver perch into other connected habitats

(e.g. Zampatti et al. 2018; Koster et al. 2021). Further, Zampatti
et al. (2018) identified that some silver perch captured in the
lower Murray River exhibited a Darling River natal origin. It is
likely that large-scale (hundreds of kilometres), longitudinally

intact and perennial lotic habitats of the mid-Murray River and
Darling River support the spawning and early stage recruitment
of silver perch (Mallen-Cooper and Zampatti 2018, 2020;

Tonkin et al. 2019). At times, the lower Murray River also
supports spawning and recruitment of silver perch (Zampatti
et al. 2018). Individuals may remain within these regions or

migrate into other regions at a range of life stages. Thus, the
results of this study and others highlight the importance of inter-
regional connectivity that enables the movement of silver perch
as a fundamental process to maintain resilient populations in all

three regions.
In contrast to silver perch, golden perch collected after the

fish kill in the lower Darling River predominantly exhibited a

Darling River natal origin. Two movement modes were
observed from these fish: (1) life-long residency; and (2)
downstream emigration to the Murray River followed by return

migration to the Darling River. Both movement types were
represented in similar proportions. Spawning and recruitment of
golden perch within the Darling River have been identified in

other studies (e.g. Ebner et al. 2009; Sharpe 2011). In turn, high
river discharge, including overbank flood events, has been
shown to influence the dispersal of eggs, larvae and juveniles
that may span substantial distances and can include the down-

stream movement of individuals from the mid to lower Darling
River past Menindee Main Weir (Stuart and Sharpe 2020).
Using the approach presented in this study, we were unable to

resolve potential downstream movement of golden perch from
themid to lower Darling River, thus potentially underestimating
the spatial scale of movements. Nevertheless, regardless of the

specific origin in the Darling River, in some years spawning of
golden perch in the Darling River contributes to population
contingents beyond the Darling River, including the lower and
mid-Murray River (Zampatti et al. 2015, 2018, 2019). As such,

provision of elevated flows at the local scale, which are
generally required for spawning, recruitment and dispersal,
can have regional-scale benefits if connectivity with theMurray

River is facilitated.

Recovery and management

Contrasting lifetimemovement and natal origin among the three

fish species collected after the fish kill suggests a range of
fisheries management actions may be required to promote
population recovery and persistence in the lower Darling River,
particularly in the reach between Weir 32 and Menindee Main

Weir. For Murray cod, limited inter-regional movement means
interventions can be considered at the local scale. In the first

instance, this should include protecting the remnant population
in unaffected reaches of the lower Darling River to ensure that

localised spawning and recruitment combined with small-scale
movements can contribute to repopulation (Koehn and Todd
2012). Murray cod spawn annually, although the presence of

gaps in numerous age classes suggests that recruitment in the
lower Darling River is variable. To rebuild populations,
recruitment needs to be supported by the provision of hydrau-

lically complex, flowing water habitats at key times to support
growth and survival (Tonkin et al. 2017, 2021; Mallen-Cooper
and Zampatti 2018; Stuart et al. 2019). Indeed, Murray cod are
often a focal species for environmental water allocation within

the MDB, and the storage and subsequent reregulation of water
in theMenindee Lakes means that targeted environmental flows
can be delivered to the lower Darling River to support popula-

tion restoration (Koehn et al. 2014; Sharpe and Stuart 2018).
In contrast, age structure data from the fish-kill reach suggest

golden perch and silver perch recruitment is more episodic and

that population structure may be highly reliant on inter-regional
movements between the lower Darling andMurray rivers. Thus,
management of these populations needs to consider regional
processes and bidirectional connectivity. For silver perch,

contiguous, large-scale lotic habitats in the mid-Murray and
lower Darling rivers are associated with spawning and down-
stream larval drift, with both spawning and recruitment able to

be supported through the provision of environmental flows
(King et al. 2016; Tonkin et al. 2019).

For golden perch, promoting local spawning and recruitment

in the Darling River represents a critical first step. This can be
achieved by protecting or augmenting key hydrological charac-
teristics, particularly spring–summerwithin-channel or overbank

flows (Sharpe 2011; Zampatti 2019). Following this, maintaining
bidirectional passage past weirs is essential (Baumgartner et al.
2014a). This requires both the installation and maintenance of
effective fishways, the provision of longitudinal hydrological

connectivity and suitable hydraulic conditions to disperse early
life stages and juveniles, and the promotion of immigration into
the Darling River (Baumgartner et al. 2006, 2014a; Koehn et al.

2014). Indeed, in other regions of the MDB, immigration has
been demonstrated to promote the recovery of golden perch
populations following fish kills (Thiem et al. 2017).

Conclusion

Effective and efficient management of fish population recovery
following catastrophic events requires an understanding of
potential recovery pathways and processes (Lyon and O’Connor

2008; Thiem et al. 2017). Our results demonstrate the contrasting
spatial scales of movement exhibited by individuals of three
moderate- to long-lived potamodromous species throughout their

lifetime in a regulated reach of the lower Darling River. In par-
ticular, the importance of inter-regional movements in structur-
ing populations varied among species. Native fish populations in

the lower Darling River, already under stress from a range of
human-induced stressors, were locally depleted following severe
fish kills in 2018–19. The results from this study emphasise the
need for complementary local and regional-scale management

that will differ in relative importance for each species. Protection
of remnant fish populations in unaffected reaches of the lower
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Darling River is paramount. Further, pairing flow restoration at
the local scale to promote spawning, growth and recruitment with

regional processes including the provision of end-of-system
flows for enhanced connectivity and effective fish passage
represents viable restoration activities that will have measurable

local and regional benefits.
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