How many species of *Hexabranchus* (Opisthobranchia: Dorididae) are there?

Ángel Valdés

Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. Email: avaldes@nhm.org

Abstract

Anatomical examination of several specimens of *Hexabranchus*, collected from the extreme boundaries of its geographic range and other localities, revealed that there are two distinct species within this genus. One of these species is widely distributed throughout the tropical Indo-Pacific. The oldest available name for the Indo-Pacific species is *Hexabranchus lacer* (Cuvier, 1804). The study of the original type material of *H. lacer* confirmed that it is a senior synonym of other names introduced subsequently, including *Hexabranchus sanguineus* (Rüppell & Leuckart, 1830), which is the name most commonly used for this species. However, according to the provisions of the International Code of Zoological Nomenclature (Article 23.9.1), the name *H. sanguineus* has precedence over *H. lacer*, which has never been used as valid, except for the original description. *Hexabranchus praetextus* Ehrenberg, 1828 is also a senior synonym of *H. sanguineus* that has not been used as valid since its original description and it is also invalidated under the provisions of Article 23.9.1.

The other species, *Hexabranchus morsomus* Ev. Marcus & Er. Marcus, 1962, appears to be endemic to the Caribbean Sea. *Hexabranchus sanguineus* and *H. morsomus* are clearly distinguishable by the morphology of the reproductive system and the radula. Hypotheses on the speciation process that took place in *Hexabranchus*, the possible origin of the two species and the geographic range of the genus are discussed.

Introduction

A number of species belonging to genus *Hexabranchus* have been described from the tropical Indo-Pacific (Table 1). Most of these nominal species had been distinguished, when originally introduced, by differences in the colour pattern. Eliot (1910) suggested that it was highly probable that all the common species of *Hexabranchus* were varieties of the same species, with the possible exception of *Hexabranchus adamsii* Gray, 1850. He commented that the valid name for the most common Indo-Pacific species was probably *Hexabranchus marginatus* (Quoy & Gaimard, 1832). He commented that the valid name for the most common Indo-Pacific species was probably *Hexabranchus marginatus* (Quoy & Gaimard, 1832). Since then, a few more species of *Hexabranchus* have been introduced. Østergaard (1955) described *Hexabranchus aureomarginatus* and *H. tinkeri* from Hawaii. Marcus and Marcus (1962) agreed in considering all the Indo-Pacific species as synonyms but, at the same time, described the new species, namely *H. morsomus*, from the Caribbean Sea. These authors justified the introduction of a new species of this genus based on morphological differences and the geographic isolation of the Caribbean.

Steps towards the synonymyisation of all species of *Hexabranchus* were taken up again by Gohar and Soliman (1963), who illustrated the colour variation within *Hexabranchus sanguineus* in a small geographic area in the Red Sea. More recently, Thompson (1972) argued that the colour pattern of the species of *Hexabranchus* is extremely variable and regarded all the Indo-Pacific species as synonyms (including *H. aureomarginatus* and *H. tinkeri*), but he did not provide anatomical evidence to sustain this conclusion. Regarding *H. morsomus*, Thompson (1972) stated that there are no compelling reasons to separate it from the Indo-Pacific species besides the geographic range and small radular differences, and regarded both species as synonyms. In addition, Thompson (1972)
considered that *H. sanguineus* was the oldest available name for this species. Currently, this name is used widely as the valid name for the tropical Indo-Pacific species of the genus. Whether *H. morsomus* is the same species is an open question.

In the present study, I attempt to determine how many valid species of *Hexabranchus* there are, based on the study of specimens collected from the extreme boundaries of the geographic range of the genus. The material examined is deposited at the following institutions: Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, USA (CASIZ), Instituto Nacional de Biodiversidad, Costa Rica (INBio), Natural History Museum of Los Angeles County, USA (LACM), Muséum National d’Histoire Naturelle, Paris, France (MNHN), Marine Invertebrate Museum, University of Miami, USA (UMML) and Museum für Naturkunde der Humboldt-Universität, Berlin, Germany (MNHB).

Table 1. Available species names introduced for Indo-Pacific species of *Hexabranchus*, including authorship, publication date and type locality

<table>
<thead>
<tr>
<th>Species name</th>
<th>Type locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doris lacera Cuvier, 1804</td>
<td>Timor</td>
</tr>
<tr>
<td>Hexabranchus praetextus Ehrenberg, 1828</td>
<td>El Tûr, Egypt (Red Sea)</td>
</tr>
<tr>
<td>Doris sanguinea Rüppell & Leuckart, 1830</td>
<td>El Tûr, Egypt (Red Sea)</td>
</tr>
<tr>
<td>Doris flammulata Quoy & Gaimard, 1832</td>
<td>Tonga</td>
</tr>
<tr>
<td>Doris marginata Quoy & Gaimard, 1832</td>
<td>Amboina</td>
</tr>
<tr>
<td>Heptabranchus burnetti A. Adams, 1848</td>
<td>Borneo</td>
</tr>
<tr>
<td>Hexabranchus adamsii J. E. Gray, 1850</td>
<td>Borneo</td>
</tr>
<tr>
<td>Hexabranchus sandwichensis J. E. Gray, 1850</td>
<td>Honolulu, Hawaii</td>
</tr>
<tr>
<td>Doris cardinals Gould, 1852</td>
<td>Honolulu, Hawaii</td>
</tr>
<tr>
<td>Doris sumptuosa Gould, 1852</td>
<td>Tonga</td>
</tr>
<tr>
<td>Doris superba Gould, 1852</td>
<td>Tutuila, Samoa</td>
</tr>
<tr>
<td>Doris cardinals Gould, 1852</td>
<td>Honolulu, Hawaii</td>
</tr>
<tr>
<td>Doris sandwichiensis Souleyet, 1852</td>
<td>Hawaii</td>
</tr>
<tr>
<td>Doris gloriosa Kelaart, 1858</td>
<td>Tricomalie, Sri Lanka</td>
</tr>
<tr>
<td>Hexabranchus pulchellus Pease, 1860</td>
<td>Hawaii</td>
</tr>
<tr>
<td>Hexabranchus suezensis Abraham, 1876</td>
<td>Red Sea</td>
</tr>
<tr>
<td>Hexabranchus pellucidulus Abraham, 1876</td>
<td>Unknown</td>
</tr>
<tr>
<td>Aethedoris indica Abraham, 1877</td>
<td>Madras, India</td>
</tr>
<tr>
<td>Hexabranchus aneiteumensis Abraham, 1877</td>
<td>Aneiteum, New Hebrides</td>
</tr>
<tr>
<td>Hexabranchus mauritiensis Abraham, 1877</td>
<td>Mauritius</td>
</tr>
<tr>
<td>Hexabranchus orbicularis Abraham, 1877</td>
<td>Mauritius</td>
</tr>
<tr>
<td>Hexabranchus amateus Bergh, 1878</td>
<td>New Hebrides</td>
</tr>
<tr>
<td>Hexabranchus faustus Bergh, 1878</td>
<td>Aibukit, Palau</td>
</tr>
<tr>
<td>Hexabranchus notatus Bergh, 1878</td>
<td>Tonga</td>
</tr>
<tr>
<td>Hexabranchus peterisi Bergh, 1878</td>
<td>Mozambique</td>
</tr>
<tr>
<td>Albania formosa Collingwood, 1881</td>
<td>Ke Lung, Taiwan</td>
</tr>
<tr>
<td>Doris imperialis Kent, 1897</td>
<td>Abrolhos Islands</td>
</tr>
<tr>
<td>Hexabranchus digitatus Eliot, 1903</td>
<td>Maldives Islands</td>
</tr>
<tr>
<td>Hexabranchus plicatus Hägg, 1903</td>
<td>El Tûr, Egypt (Red Sea)</td>
</tr>
<tr>
<td>Hexabranchus marginatus var. moebii Eliot, 1905</td>
<td>Zanzibar</td>
</tr>
<tr>
<td>Hexabranchus punctatus Bergh, 1905</td>
<td>West of Sulawesi, Indonesia</td>
</tr>
<tr>
<td>Hexabranchus aureomarginatus Ostergaard, 1955</td>
<td>Waikiki, Hawaii</td>
</tr>
<tr>
<td>Hexabranchus tinkeri Ostergaard, 1955</td>
<td>Waikiki, Hawaii</td>
</tr>
</tbody>
</table>
Systematics

Family HEXABRANCHIDAE Bergh, 1891

Genus Hexabranchus Ehrenberg, 1831

Diagnosis

Remarks

The genus *Hexabranchus* has been traditionally placed within the cryptobranch dorids, despite the fact that it lacks the major synapomorphy of this clade, which is the ability to retract the gill into the gill pocket.

Fischer (1880–1887) introduced the taxon Cryptobranchia and included *Hexabranchus* as one of its three members. Subsequently, Bergh (1891) placed *Hexabranchus* in its own family, also within the cryptobranch dorids. These opinions were later sustained in the classifications by Odhner in Franc (1968), Thompson (1976) and Rudman (1998). More recently, Wägele and Willan (2000) showed that *Hexabranchus* is the sister taxon to cryptobranch dorids, but at the same time, they excluded this genus from the Cryptobranchia on the basis of the absence of a retractable gill.

Further phylogenetic studies are necessary to resolve the systematic position of *Hexabranchus*, which appears to be a derived phanerobranch rather than a cryptobranch dorid (Wägele and Willan 2000).

Hexabranchus sanguineus (Rüppell & Leuckart, 1830)

(Figs 1A, C, 2–4)

Doris lacera Cuvier, 1804: 452, 453–465, 473, pl. 73, figs 1–3 (*nomen oblitum*).

Doris sanguinea Rüppell & Leuckart, 1828–30: 28–29, pl. 8, fig. 1 (*nomen protectum*).

(For a complete list of synonyms, see Table 1).

Material examined

Syntypes. Doris lacera Cuvier. Indian Ocean (= Mer des Indes): date and exact locality unknown, two specimens 30 and 76 mm preserved length, dissected (MNHN).

Syntypes. Hexabranchus praetextus Ehrenberg. Egypt: El Tûr (= Tor), date unknown, one specimen 125 mm preserved length (MNHB 566); El Tûr (= Tor), date unknown, one specimen 110 mm preserved length, partially dissected (MNHB 567).

Other material examined. Hawaii: Pono Kai Condominum, Kappa, Kunai Island, 27 Feb. 1986, one specimen 48 mm preserved length, dissected, collected by M. T. Ghiselin (CASIZ 074266).

South Africa: exact locality unknown, Natal, Nov. 1992, dissected, collected by A. Camnell (CASIZ 087386).

Mozambique Channel: reef near Hotel Coelacanth, north end of Moroni, Grand Comore Island, 6 Mar. 1975, one specimen 104 mm preserved length, dissected, collected by S. Earle and A. Giddings (CASIZ 068296).

Madagascar: Tire Reef, 2 km north of Mora Mora Village, 9 Apr. 1989, two specimens 94–100 mm preserved length, dissected, collected by T. M. Gosliner (CASIZ 071897).

Philippines: Fishery Station Ground, Zamboanga City, Oct. 1947, one specimen 110 mm preserved length, collected by J. S. Domantay (LACM 140743).
External morphology

The general colour of the living animals is highly variable, from pale orange to bright red (Fig. 1A). In some specimens, there are a number of small white or yellowish dots on some areas or on the entire dorsum (Fig. 1C). Other specimens have large bright red or pinkish spots, or a pale concentric band. Sometimes, the mantle margin is surrounded by a white or yellow line. In other specimens, there is a white area on the inner side of the mantle margin that is visible when the animal is swimming. The rhinophores are red to yellowish, with white spots in some specimens. The gill has normally the same colour as the dorsum, with the rachises of the branchial leaves white or yellowish. The dorsum is smooth. There are seven to nine tripinnate, non-retractile branchial leaves. The anal papilla is prominent, situated in the centre of the branchial circle of leaves. The rhinophores are elongate, having 45 lamellae in a 100-mm preserved length specimen.

Ventrally, there are two large, flattened and lobate oral tentacles (Fig. 2B). The anterior border of the foot is simple, lacking a notch and a groove.

Anatomy

The radular formula is $33 \times 49.0.49$ in a 32-mm preserved length specimen (CASIZ 087386), $35 \times 48.0.48$ in a 48-mm preserved length specimen (CASIZ 074266) and $36 \times 77.0.77$ in a 100-mm preserved length specimen (CASIZ 071897). There are no rachidian teeth in any of the specimens examined. The innermost lateral teeth are hamate, with a long apical prolongation and a short, curved cusp (Figs 3A, 4A). In some rows, there is an additional cusp on the outer side of the innermost tooth. The mid-lateral teeth are also
How many species of Hexabranchus?

293

hamate, but larger and having a longer cusp than the inner laterals (Figs 3B, 4B). The outermost teeth become smaller again and are similar in shape to the mid-laterals, also having an apical prolongation (Figs 3C, 4C). The jaws are composed of a number of small and simple rodlets, approximately 30 µm long (Figs 3D, 4D).

The reproductive system is triaulic (Fig. 2A). The ampulla is very long and convoluted. It branches into the prostatic portion of the deferent duct and the short oviduct that connects to the female glands. The deferent duct is very long and convoluted. The prostatic portion occupies the most proximal end of the deferent duct and is short and glandular; it connects to a short, thin duct that expands into the long, wide, muscular and convoluted ejaculatory portion of the deferent duct. The deferent duct opens into a common atrium with the vagina. The penis is devoid of hooks. The vagina is also wide, long and convoluted. At its proximal end, the vagina connects to the rounded bursa copulatrix. From the bursa copulatrix leads another duct that connects to the beam-shaped seminal receptacle and the female glands.

Fig. 2. Hexabranchus sanguineus (Rüppell & Leuckart, 1830), anatomy (CASIZ 074266). A. Reproductive system. B. Detail of several reproductive organs. C. Ventral view of the mouth area. am, Ampulla; bc, bursa copulatrix; dd, deferent duct; fg, female gland mass; ot, oral tentacle; pr, prostate; sr, seminal receptacle; v, vagina.
Geographic range

There are numerous references to this species throughout the tropical Indo-Pacific, from East Africa and the Red Sea to Hawaii (Thompson 1972).

Remarks

Comparison between tropical Indo-Pacific specimens of *Hexabranchus*, collected from the two opposite boundaries of its geographic range (East Africa and Hawaii) and other localities, confirms that there are no consistent morphological or anatomical differences

Fig. 3. *Hexabranchus sanguineus* (Rüppell & Leuckart, 1830); scanning electron micrographs of a specimen from South Africa (CASIZ 087386). A, Inner lateral teeth. B, Lateral teeth from the central portion of the half-row. C, Outermost lateral teeth. D, Jaw elements.
How many species of Hexabranchus?

and, therefore, that only one species of Hexabranchus occurs in this region. Similar conclusions had already been attained by Eliot (1910) and Thompson (1972), but never sustained by anatomical studies.

Following Thompson (1972), all modern authors have been using the name H. sanguineus for the tropical Indo-Pacific species of this genus. However, examination of the syntypes of Doris lacera Cuvier, 1804 confirms that they belong to the same species and that Hexabranchus lacer constitutes a senior synonym of H. sanguineus. Doris lacera has been ignored by all authors dealing with the Hexabranchus problem. According to the
International Code of Zoological Nomenclature (ICZN 1999), if a senior synonym has not been used as a valid name after 1899 and its junior synonym has been used for the same species in at least 25 papers, published by at least 10 authors in the immediately preceding 50 years and encompassing a span not less than 10 years, the usage of the junior synonym must be maintained (Article 23.9.1). The name H. lacer has only been used as valid in its original description in 1804, whereas the name H. sanguineus is in constant usage in modern literature. More than 30 papers, books and field guides using the name H. sanguineus as valid have been published during the past 20 years by more than 15 authors. Therefore, the name H. sanguineus is here conserved (nomen protectum) and H. lacer is regarded as invalid (nomen oblitum).

According to Winckworth (1941), the original description of H. sanguineus and some other species of nudibranchs (see Rüppell and Leuckart 1828–1830; pp. 23–47) was most likely published in 1830. Another synonym of H. sanguineus, namely Hexabranchus praetextus, was first and validly introduced in a plate published in 1828, but the written description of the species appeared in 1831 (Winckworth 1941). Again, the name H. praetextus has only been used as valid in its original description in 1828–1831. Therefore, the name H. sanguineus is here conserved (nomen protectum) and H. praetextus is regarded as invalid (nomen oblitum).

Recently, Johnson (2001) posted photographs of Hexabranchus specimens from Hawaii, which show remarkable colour differences with other specimens of H. sanguineus from Hawaii and other Indo-Pacific localities. Johnson (2001) suggested the possibility that the distinct specimens could belong to the species Hexabranchus aureomarginatus Ostergaard, 1955, but anatomical information is required to confirm this. In the meantime, H. aureomarginatus is maintained as a synonym of H. sanguineus.

Hexabranchus morsomus Ev. Marcus & Er. Marcus, 1962

(Figs 1B, 5–6)

Material examined

Holotype. British Virgin Islands, Virgin Gorda, Harbour of Spanish Town, 4 Dec. 1959, 26 mm preserved length, dissected, collected by A. Chess (UMML 302696).

Other material examined. **Costa Rica:** Punta Mona (on the west side of the islet), Limón, 19 Oct. 1998, 0 m depth, one specimen 52 mm preserved length, dissected, collected by S. Ávila (INBio 1495908).

External morphology

The general colour of the living animals is orange to reddish, with an irregular pattern of pale orange or yellow pigment. Some specimens have a white powdery colour (Fig. 1B). The mantle margin has a large whitish band situated on the inner end that is only visible when the animal is swimming. The rhinophores are uniformly reddish. The gill is reddish with the apices white. The dorsum is smooth. There are six to seventripinnate, non-retractile branchial leaves. The anal papilla is prominent, situated in the centre of the branchial circle of leaves. The rhinophores are elongate, having 30 lamellae in a 52-mm preserved length specimen.

Ventrally, there are two large, flattened and lobate oral tentacles (Fig. 5B). The anterior border of the foot is simple, lacking a notch and a groove.
How many species of *Hexabranchus*?

Anatomy

The radular formula is $41 \times 116.1.116$ in a 52-mm preserved length specimen (INBio 1495908) and $40 \times 90.1.90$ in a 26-mm preserved length specimen (UMML 302696). There is a small, triangular rachidian tooth in each row. The rachidian teeth have a single, central cusp and a convex base (Fig. 6A). The innermost lateral teeth are hamate, with a small apical prolongation and a short, curved cusp (Fig. 6A). The mid-lateral teeth are also hamate, but larger and have a longer and more straight cusp than the inner laterals (Fig. 6B,C). The outermost teeth become smaller again and are similar in shape to the mid-laterals, having longer apical prolongations and shorter cups (Fig. 6D). The labial cuticle is smooth, devoid of jaws.

Fig. 5. *Hexabranchus morsomus* Marcus & Marcus, 1962; anatomy (INBio 1495908). A, Reproductive system. B, Ventral view of the mouth area. am, Ampulla; bc, bursa copulatrix; dd, deferent duct; fg, female gland mass; ot, oral tentacle; pr, prostate; sr, seminal receptacle; v, vagina.
The reproductive system is triaulic (Fig. 5A). The ampulla is very long and convoluted. It branches into the prostatic portion of the deferent duct and a short oviduct that connects to the female glands. The deferent duct is long and convoluted and narrows abruptly at the end of the ejaculatory portion. The prostatic portion occupies the most proximal end of the deferent duct and is short and glandular; it connects to a long, thin and convoluted duct that expands into the wide and muscular ejaculatory portion of the deferent duct. The deferent duct opens into a common atrium with the vagina. The penis is devoid of hooks. The vagina is wide and short. At its proximal end, the vagina connects to the rounded bursa copulatrix.

How many species of *Hexabranchus*?

From the bursa copulatrix leads another duct that connects to the folded seminal receptacle and the female glands.

Geographic range

Only known from the Caribbean Sea, there are records from the British Virgin Islands (Marcus and Marcus 1962), Puerto Rico (Marcus and Marcus 1970), Panama (Meyer 1977) and Costa Rica (present paper).

Remarks

Hexabranchus morsomus is clearly distinguishable from *H. sanguineus* in several regards. The radulae of the two specimens here studied of *H. morsomus* have rachidian teeth that are absent in all examined specimens of *H. sanguineus*. The inner, mid- and outer lateral teeth of *H. sanguineus* have a long apical prolongation that is absent or very small in *H. morsomus*. The outer teeth of *H. sanguineus* are hook shaped, whereas in *H. morsomus* they are more triangular. It is also remarkable that the labial cuticle of *H. morsomus* is smooth, whereas it is covered with numerous denticles in *H. sanguineus*.

In addition, the reproductive system of these two species is different. The deferent duct and vagina of *H. sanguineus* are very long and convoluted, whereas in *H. morsomus* they are much shorter. Also, the seminal receptacle of *H. sanguineus* is proportionally larger to the bursa copulatrix than that of *H. morsomus* and the duct connecting both organs is shorter in the former species. There is no question that these two species should be maintained separate.

Meyer (1977) considered that *H. morsomus* is most likely a synonym of *H. sanguineus*. She examined five specimens collected from Galeta Point, Panama, and found no rachidian teeth in the radula, except for a few rows in a 20-mm long specimen. Meyer (1977) concluded that this difference probably does not justify, by itself, the separation of two different species. All the specimens examined here of *H. morsomus* have rachidian teeth in all the rows of the radula and also show other consistent differences with specimens of *H. sanguineus* mentioned above. The lack of rachidian teeth in the Panama animals could be due to variability within *H. morsomus* or inaccurate observation (Meyer used a regular compound microscope and, sometimes, rachidian teeth are difficult to observe), but there are enough anatomical differences that justify the maintenance of *H. morsomus* as a valid taxon.

Discussion

The genus *Hexabranchus* is distributed throughout the tropical Indo-Pacific, from Hawaii to East Africa, and in the Caribbean Sea, but it is absent from other tropical areas in the Eastern tropical Atlantic and the Eastern Pacific. Specimens of *Hexabranchus* are normally found in shallow coral reef areas (Francis 1980), which are common in the Indo-Pacific and the Caribbean Sea.

There are no published phylogenies on this group that would allow developing a hypothesis about the relationships of *Hexabranchus* and, therefore, about its origin. However, because there are no more species in this taxon or other dorid nudibranchs with similar anatomical or external features, it can be assumed that *H. sanguineus* and *H. morsomus* are sister taxa. In addition, there are several synapomorphies of *Hexabranchus*, including the swimming and defensive behaviour (Marcus and Marcus 1962; Edmunds 1968; Bertsch and Johnson 1981), the large and lobate oral tentacles and the smooth dorsum devoid of spicules, that support the monophyly of this taxon.
Assuming that *Hexabranchus* is monophyletic, there are two most likely hypotheses to explain the present distribution of its species. One would involve a split of the original geographic range of the ancestor of these two species and subsequent speciation. In this scenario, the most likely possibility is that the original range of the ancestor was divided during the closure of the Panama land bridge that ended 3.1 million years ago. The absence of *Hexabranchus* species in the Eastern Pacific would be due to subsequent extinction. The vicariant event of the closure of the Panama land bridge has been widely described in the literature for numerous groups of marine animals (Collins 1996), including opisthobranchs (Valdés 2001), and it is considered as a classic example of marine vicariant generalised track (Humphries and Parenti 1986).

The second hypothesis requires that the origin of this genus is situated in either the tropical Indo-Pacific or the Caribbean and that one of these two original populations colonised the other region. This colonisation would have occurred before the closure of the east–west communication. In this scenario, species of *Hexabranchus* probably never became established in the Eastern Pacific or Eastern Atlantic due to the absence of favourable conditions or went extinct subsequently. Accepting any of these hypotheses implies that the two species have been separated for a minimum of 3.1 million years, which would explain the notorious anatomical differences between them.

Acknowledgments

The author is very grateful to several individuals. The material studied was made available by Yolanda Camacho (INBio), Terry Gosliner (CASIZ) and Nancy Voss (UMML). Hans Bertsch made constructive comments on the manuscript. He and Mary Jane Adams also provided information and photographs that were critical for the completion of the work. This paper has been supported, in part, by the US National Science Foundation (through the PEET grant DEB–9978155 ‘Phylogenetic Systematics of Dorid Nudibranchs’).

References

How many species of Hexabranchus?

http://www.publish.csiro.au/journals/mr