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Abstract. With examples from Australo-Papuan ornithology, we examine the technical and theoretical roots of
molecular phylogeography and review its development. We describe the progression from ad hoc interpretation of
gene trees in single species phylogeographic studies through to comparative phylogeography and currently advocated
model-testing approaches. Mitochondrial DNA (mtDNA) sequences have provided most advances to date, although we
demonstrate and advocate the future use of multilocus datasets analysed with coalescent methods. We examine
interrelationships among speciation research, historical biogeography, phylogeography and landscape genetics.
Mitochondrial paraphyly, in which individuals of one species or population have mtDNA that is more closely
related to that of another than to their own, emerges in 44% of Australian studies to date as a common, important
result in Australian avian phylogeography. Accordingly, we explore at length its most common causes and its impact on
case studies in Australo-Papuan avian phylogeography. The impact of so much paraphyly on avian phylogeography and
taxonomy is a major theme of the review. We suggest a full research agenda for avian phylogeography in the Australo-
Papuan region that spans diverse topics: the need for more studies of pelagic birds, spatio-temporal links between
New Guinea and Australia, island populations, testing of long-established biogeographical hypotheses, and integration of
molecular and non-molecular datasets into integrated evolutionary understanding of species and populations. Studying the
full continuum of divergences from landscape genetics, to phylogeography, to recently diverged species with evidence of
paraphyly, to highly divergent species with many fixed differences will lead to a more complete understanding of the
processes and patterns of avian evolution.

Introduction

Molecular phylogeography (hereafter ‘phylogeography’) is the
study of how genetic diversity within a species has evolved
(phylo-) and how it is organised across the geographical
distribution of that species (-geography) (Avise et al. 1987).
Here we trace the origins and development of phylogeography
to address three interrelated objectives: (1) to understand
phylogeography’s own recurring themes and conceptual
debates; (2) to review and interpret how these issues relate to
Australo-Papuan avian biology, biogeography and systematics;
and (3) to suggest future phylogeographic research programs and
agendas in the theatre of ornithology and the stage provided,
mainly, by Australo-Papuan birds. A major theme to emerge is
thatmorphological andmolecular analyses ofAustralian birds are
frequently at odds in how they suggest the evolutionary history of
a species and the populations within it should be understood.
Throughout we examine relationships among phylogeography,
speciation research and other disciplines, such as historical

biogeography (the study of how geological processes have
shaped present-day species distributions) and landscape
genetics (the study of present-day genetic structure within
species at the scale of individual landscapes) (see also Avise
andWalker 1998;Diniz-Filho et al. 2008).Our review focuses on
Australo-Papuan avian phylogeography with an intended
emphasis on Australia itself. Examples from outside Australia
will provide context for some points.

Since the inception of phylogeography in 1987, a revolution
has occurred in the study of DNA-level diversity within species
and how it informs relationships among populations within
and between species. Studies on birds have been prominent
in this revolution (Avise and Walker 1998). Reviews of
phylogeographic data for North American birds (Zink 1997)
and South American and African montane birds (Roy et al.
1997) have appeared but no review has been tailored for
ornithological audiences and certainly not for the southern
hemisphere avian focus of Emu (see also Beheregaray
2008, Zink and Barrowclough 2008). Our intended audience is
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conservation managers and ornithologists interested in
relationships at the species–population level interface. Much of
this audience is increasingly frustrated with what is sometimes
seen as counterintuitive, contradictory or inconclusive
results from phylogeography and molecular data in general.
We hope to clarify relevant issues, especially in an Australo-
Papuan context. Also, ornithologists and Australo-Papuan
ornithology have tackled questions on the spectrum from
historical biogeography, taxonomy and hybrid zones through
phylogeography to landscape genetics (Keast 1961; Ford 1987;
Schodde and Mason 1999; Schodde 2006; Christidis and Boles
2008; review in Joseph 2008a). That literature is now a wealth of
questions and hypotheses for the resources and tools of
phylogeography to address. This review is timely because each
studyweconsider is apiece in a larger jigsaw that informsusof the
origins andhistory of the avifauna, aswell as helping to determine
where future work is needed (Box 1).

Phylogeography: an overview of its context
and development

Phylogeography’s place in the spectrum from speciation
to landscape genetics

Studies of speciation, historical biogeography, phylogeography
and landscape genetics can be seen as points on a continuum that
seek to understand evolutionary history of one or more species
in relation to the landscape onwhich theyhave evolved. It is useful,
therefore, to examine how they differ from each other. Figure 1 in
Diniz-Filho et al. (2008) usefully depicts phylogeography’s
relationships to these and other facets of evolutionary biology.

Speciation research often addresses how reproductive
isolation evolves and how it is maintained. Price’s (2008)
survey of speciation in birds does not index ‘phylogeography’.
This is informative because it stresses speciation’s relationship to
reproductive isolation, which is not a primary conceptual focus of
phylogeography although it can be fruitfully inferred in some
cases from gene trees. (Note here the debate over whether
reproductive isolation is a cause or consequence of speciation
– see Zink and McKay 2008.) Phylogeography can help define
where in the landscape or betweenwhich populations of a species
one might usefully look for incipient reproductive isolation.
It offers patterns for further investigation, not a mechanism of
speciation (Edwards 2008a, 2008b) and issuesof tensionbetween
phylogeography and speciation research can be tested with
phylogeographic methods (Knowles 2004). Examples are
whether founder events are involved in speciation or whether
reproductive isolation is aby-product of thegradual accumulation
of species differences by genetic drift. Price (2008) argued the
greater relevance of selection in generating reproductive isolation
in avian speciation.

Historical biogeography studies the relationships between
Earth history and species distributions. Its temporal framework
is necessarily long-term but overlaps with phylogeography when
single species are discussed. At the other end of the continuum,
landscape genetics shares with phylogeography the question of
how landscape features may explain major evolutionary
disjunctions or events in the history of a species, but they
differ in temporal and spatial scales. Landscape genetics
analyses spatial genetic data without requiring that discrete

Box 1: Mitochondrial DNA: a reminder
Phylogeography has relied heavily on analysis of
mitochondrial DNA (mtDNA). The mitochondrion, the
organelle responsible for generating much of the energy for
eukaryotic cellular functions, has its own circular genome
with a total length of ~16 000 base pairs (A, T, C and G) and a
core in many animals of 16 genes. Mitochondrial DNA has
provided a wealth of data about the last few thousand to few
million years of evolutionary history. Several reviews have
discussed three main reasons for the great utility of mtDNA
(Avise et al. 1987; Moritz et al. 1987). First, mtDNA mutates
and accumulates substitutions approximately 10 times more
rapidly than nuclear DNA (nDNA; Allen and Omland 2003).
This is largely because mitochondria lack repair mechanisms
of the cell nucleus. Second, mtDNA is almost universally
inherited maternally (but see Birky et al. 1989), without
confounding effects of genetic recombination (but see
Ladoukakis and Eyre-Walker 2004; Tsaousis et al. 2005).
Third, whereas a nuclear gene is represented on two copies
of one autosome each of which has two chromatids, there is
just onemtDNAgenome, albeit inmany copies. ThusmtDNA
has a lower effective population size than nDNAby a factor of
four in diploid organisms with operational sex-ratios of unity.
As a consequence of reduced effective population size,
random genetic drift, which is a stochastic process and can
influence mtDNA diversity, is generally 3–10 times faster for
mtDNA thannDNA(Kimura andOhta1969;Birkyet al. 1989;
Moore 1995; Palumbi et al. 2001; Hudson and Turelli 2003).
These various factors explain how mtDNA has provided a
wealth of data for understanding recent evolutionary history:
geographical variation within species, relationships among
closely related species, studies of species limits and
speciation.

Reliance on mtDNA alone has limitations (e.g. Rand
2001; Ballard and Rand 2005). A single locus may not
be representative of the whole genome (Moritz 1994;
Bermingham and Moritz 1998; Palumbi and Cipriano
1998). Bias in mtDNA evolution could happen under
scenarios including sex-biased dispersal or reproductive
success, mitochondrial introgression between closely
related species or conspecific populations, variation in
evolutionary rate in different parts of the genome, selection
or selective sweeps on mtDNA genes, and severe population
bottlenecks (Ballard and Whitlock 2004). Many such
limitations apply to any single locus. The greatest
challenge, which we discuss later, is stochastic variation in
the history of different loci.

Assumptionsareoftenmade thatmtDNAevolvesneutrally
and in a clocklike manner, that departures from neutrality
do not have an impact on analyses of population history, and
that it evolves at clocklike rates, but these assumptions should
be tested or made explicit (Peterson 2006; Weir and Schluter
2008). At times large parts of mtDNA have been copied into
thenuclear genome,where, on losing theuniqueproperties of
mtDNA, they can mimic genuine mtDNA and mislead
analyses (Sorenson and Quinn 1998). Heteroplasmy occurs
when genetically different copies of mtDNA occur within a
single organism, tissue or cell. Inheritance can be paternal
and biparental although paternal inheritance is not yet
known in birds. Although we necessarily focus on results
from mtDNA, we emphasise the value of increased use of
nDNA.
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populations be identified a priori. It is focused at the finest
geographical scales of a species’ range. It addresses processes
and patterns of gene flow and local adaptation through to how
landscape characteristics structure populations (Manel et al.
2003). It usually studies individuals in geographical areas that
are phylogenetically more closely related to each other than to
individuals in other such units, as defined by phylogeography
(i.e. within its phylogroups). The two have much in common
whenbiological interest focussesonzonesof contact between two
phylogroups within a species. Then both are concerned with
measuring gene flow across such zones. Phylogeography has a
broader interest in that past geneflowandpopulation size are of as
much interest as current ones, whereas landscape genetics is
concerned only with the present. Population genetics straddles
phylogeography and landscape genetics. The microevolutionary
process of how thegenetic variationpresent in a commonancestor
sorts into unique clusters (phylogroups, clades) in descendent
populations or species is unique to these areas and generates
the monophyly that higher level systematics and biogeography
depend on. We explore this process at length in this review but it
is, we suggest, a very real difference betweenmicroevolution and
macroevolution. Speciation research, historical biogeography,
phylogeography and landscape genetics, in our view, are
continua, or different points, on a spectrum, not independent
fields of study. A given question might be cast in terms of one or
the other but full illumination of an evolutionary problem may
require some or all of the different perspectives offered by these
fields be considered.Australian examples of this interdependence
that we will discuss are in studies of the Australian Magpie
(Gymnorhina tibicen) (Hughes et al. 2001; Toon et al.
2007), the White-winged Fairy-wren (Malurus leucopterus)
(Driskell et al. 2002), and blue-cheeked parrots of the Crimson
Rosella (Platycercus elegans) complex (Joseph et al. 2008).

Origins: the late 1980s and early 1990s

Phylogeography has technical and theoretical roots. The late
1970s and early 1980s saw wide application of the technique of
allozyme electrophoresis to answer species-level taxonomic
questions with the genetic distance data that it generates.
Studies of birds were prominent but found little within-
species variation (Avise et al. 1980a, 1980b; Avise and
Aquadro 1982; see Joseph and Hope 1984 for an Australian
example). For questions of within-species variation, other kinds
of data have occasionally proven useful, and still do, especially
in organisms other than birds. Chromosomal variation in the
Australian rock-wallabies (Petrogale spp.) is an outstanding
example (Sharman et al. 1989). Allozymes are cost-effective
and especially useful in the discovery of cryptic diversity
(Hillis et al. 1996). But they are one step removed from the
ultimate ideal for molecular data, DNA sequences, which have
now largely supplanted them.

By 1987, theoretical and practical disconnects had grown
between population genetics, which was concerned with
heredity and microevolutionary processes, and systematics and
palaeontology, which studied phylogeny and macroevolution.
The stage was set for the profound theoretical impact of a
seminal paper by Avise et al. (1987). They noted that
several classic population genetics texts had not indexed

‘phylogeny’, ‘systematics’ or ‘speciation’ and that important
texts in systematics could be read with only basic Mendelian
and population genetics. Molecular evolution with its own
grounding in genetics and phylogeny was an obvious way to
link the study of microevolution and macroevolution. Critically,
Avise et al. (1987) argued that phylogenetic reasoning could
provide the basis for a dialogue between population genetics and
systematics. They illustrated this by showing that a phylogenetic
tree comprises family pedigrees or genealogies. Figure 1
illustrates this simple but profound concept. Their central
thesis was that mitochondrial DNA (mtDNA) by virtue of
properties discussed above provided a ‘liaison service for
expanding communication between population geneticists
and systematists’. They coined the term ‘intraspecific
phylogeography’ because it unites phylogenetic relationships
of mtDNA molecules within a species with the geographical
distributions of those phylogenetic groupings.

Thus began the era of building mtDNA gene trees. The
primary currency of phylogeography has been a phylogenetic
tree of mtDNA relationships among individuals and populations
within a species. Where structure exists, the different clades
within a species can be termed phylogroups. Such trees are
overlain on maps of the landscape, and then the goal is to
understand how the species and its component populations
have evolved on that landscape. It has often been stressed that
gene trees are embedded in the true species tree, which is the
ultimate concernof phylogenyandphylogeography, and that they
do not always correspondwith each other, a concept illustrated in
Fig. 2. We examine the reasons for discordance between gene
trees and species trees in more detail later but it is important to
emphasise the principle here. Maddison (1997) noted that
‘Phylogeny is more like a statistical distribution than a simple
tree of discrete thin branches. It has a central tendency, but it also
has a variance because of the diversity of gene trees. Gene trees
that disagree with the central tendency are not wrong; rather, they

A C1 D E A C1 D E

C2BC2
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C2BC2

Fig. 1. Phylogenetic trees are composites of pedigrees and individual gene
trees (modified from Avise 2000). Two copies are shown of a tree of
relationships among populations A, B, C1, C2, D and E. Solid arrows
trace different gene pedigrees. Solid black indicates acquisition of intrinsic
reproductive isolating barriers. Branch volume is proportional to population
size. At left, for example, some individuals in population C1 are more closely
related for the indicated gene pedigree to individuals in population A, from
which it is reproductively isolated, than to other individuals in C1.
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are part of the diffuse pattern that is the genetic history.’One can
now estimate phylogenetic trees of populations and species from
collections of gene trees, which are the real characters of trees at
the level of species and populations (Maddison and Knowles
2006; Liu et al. 2008).

Explosion of phylogeography: the mid- to late 1990s

Avise et al.’s (1987) crystallisation of links between micro-
evolution, macroevolution and geography came at a time
ideally suited for profound impacts on systematists and
population geneticists. This was because of two further
developments that fuelled phylogeography’s growth. First was
technical access to the genotype. By 1989, mtDNA variation
could readily be quantified with Restriction Fragment Length
Polymorphism (RFLP). InAustralian ornithology,Ovenden et al.
(1987), Edwards andWilson (1990), Degnan andMoritz (1992),
Austin et al. (1994) and Joseph andMoritz (1993a, 1993b, 1994)
applied this technique to rosellas (Platycercus spp.), babblers
(Pomatostomus spp.), white-eyes (Zosterops spp.), Short-tailed
Shearwaters (Puffinus tenuirostris) and scrubwrens (Sericornis
spp.), respectively. Degnan’s (1993a, 1993b) work on whiteyes
was among the first demonstrations of the importance of using
nuclear DNA (nDNA) and mtDNA. Direct sequencing of DNA
has been more common since ~1992. Second was the
development of software for phylogenetic and population
genetics analyses of DNA sequences. There is now a
bewildering array of packages, though only a few stalwarts do
much of the published work (see reviews in Excoffier andHeckel
2006; Latch et al. 2006; Chen et al. 2007).

A revolution followed Avise et al. (1987). A 2007 search of
the internet for citations of the paper showed 1173 citations.

Similar searches on the word ‘phylogeography’ for the periods
1988–97 and 1998–2007, found 115 v. 3048 papers, respectively.
Corresponding totals for ‘avian phylogeography’, though likely
underestimates, show the same trend: 6 v. 129, respectively.
Typically, many of these papers described mtDNA diversity
within a species, estimated its phylogenetic structure and then
overlaid that structure on the geography of the species’ range.
Armedwith this essentially correlative approach, inferenceswere
made about how landscape features had shaped genetic diversity.

Two early key examples from Australian avian
phylogeography showed how statistical approaches could take
data interpretation beyond simple correlation. They also
detected major phylogeographic breaks in this early era of
phylogeography. First, Edwards’s (1993a) study of the
Grey-crowned Babbler (Pomatostomus temporalis) was the
first, large-scale, continent-wide phylogeographic study of an
Australian vertebrate. Statistical testing demonstrated a
phylogeographic break correlating with the previously
recognised Carpentarian Barrier about the Gulf of Carpentaria.
This set the scene for further phylogeographic work on
grass-finches (Poephila spp.) (Jennings and Edwards 2005)
and fairy-wrens (Malurus spp.) (Lee and Edwards 2008).
Second, for birds of Australia’s Wet Tropics with differing
degrees of specialisation to rainforest, Joseph et al. (1995)
used permutation tests to show statistically significant
associations between habitat specialisation and structure of
gene trees. They concluded that the more habitat-specialised a
species is to rainforests, the earlier itwouldhavebeen isolated into
separate subpopulations by the Pleistocene’s increasingly severe
cycles of aridity. They also detected a phylogeographic break in
rainforest species north of Cairns across what is known as the
Black Mountain Barrier (see Hugall et al. 2002).

Comparative phylogeography

By 1998, the merit of comparative phylogeography, the study of
phylogeographies of unrelated species that share the same
distribution, was being stressed: if unrelated species with
similar distributions shared the same phylogeographic
structure, then a common extrinsic, environmental cause could
be sought. The journal Molecular Ecology devoted an issue to
comparative phylogeography (Bermingham and Moritz 1998).

Comparative phylogeographic studies of birds of Australo-
Papuan rainforests have been done on scales ranging from New
Guinea and Australia together (Joseph et al. 2001; Norman et al.
2002, 2007) to within eastern Australia generally (Joseph et al.
1993; Joseph and Moritz 1994; Nicholls and Austin 2005;
Nicholls et al. 2006), to within Wet Tropics rainforests
(Joseph et al. 1995). They have clarified histories of habitat
specialisation and long-standing systematic issues.

Observation of two co-distributed but unrelated species
having the same branching pattern but at different depths may
seem to offer compelling evidence that they evolved that structure
at very different times. This could equally well be explained,
however, by differentiation within the two having occurred
at the same time but with different ancestral population sizes
in the different pairs of populations (Edwards and Beerli 2000).
The smaller population will sort more quickly and might be
misinterpreted as having diverged at a different time than the
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Fig. 2. Reiteration that gene trees (interior, thin lines) sampled from
present day species or populations X and Y descended from a common
ancestor, A, will not always be concordant with species or population trees
(outer, thick branches). Gene divergences,G, pre-date population divergence,
P. Redrawn from Avise (2000).

4 Emu L. Joseph and K. E. Omland



larger populations. This emphasises the relationship between
phylogeography’s goal of describing patterns of phylogroups
within species on one hand and understanding the processes
that generate those patterns on the other hand. An example is
how population size interacts with genetic diversity. Larger
populations require more time for ancestral variation to sort
into groups that correspond with population divergence. This
reiterates differences between population and gene divergences
(Fig. 2). Perhaps most crucially, the link is stressed between
understanding and estimation of phylogeographic structure and
the need to understand past and present demographic processes.
This is why data from multiple loci, not just mtDNA, will
be increasingly important if, as Zink and Barrowclough
(2008) argued, modern evolutionary genetics is to integrate
phylogeography and evolutionary process. The value of
multilocus data is illustrated in Fig. 3 and we return to it
throughout the review. Also, Cook and Crisp (2005) argued
that environmentally induced bias in dispersal direction could
also derail phylogeographic reconstruction. This raises how gene
divergences are analysed, and a key part of this in recent years has
been coalescent theory (Kingman 2000), which we now briefly
examine.

Coalescence and multiple loci

At the same time as the explosion of phylogeography in the mid-
1990s, two major shifts occurred in how DNA sequence data are
gathered and analysed. In classical population genetics, one

measured gene frequencies in populations, and microevolution
was seen as a shift in gene frequencies in a population over time.
In coalescent theory, the genetic diversity in a sample of
individuals in one or more populations is traced back to its
common ancestor along the branches of a phylogenetic tree
estimated from present-day diversity. The mathematics of this
approach allows estimates of population divergence times,
ancestral and present-day population sizes, and ancestral and
present migration rates. A full review of coalescent theory is
beyondour scope.Wewill reiterate two important pointsmade by
Edwards andBeerli (2000). First is that when present-day genetic
variation (allelic diversity) is sampled within and between two or
more populations of a species, diversity traces to a single allele
thatwas present in the population thatwas, in turn, ancestral to the
present-day, descendent populations. That ancestral population
necessarily had some allelic diversity, which will manifest itself
as some coalescent depth to its gene trees. Therefore, gene
divergences used to estimate population divergences that are
often of prime interest will precede the population divergence.
Care is needed in analyses to acknowledge this (Fig. 2; Jennings
and Edwards 2005). Discrepancy between the times of
divergence of genes and populations will be greater for a
larger ancestral population. A second point was increased
awareness of the value of data from multiple loci to counteract
the stochasticity that can arise from working with a single gene
(Fig. 3). Stochastic sortingof lineageshas thepotential togenerate
artefactual geographical structuring in single genes, leading to
over-interpretation of geographical history when studies are

I II

Divergence Time 1

Divergence Time 2

(a) Past

Present

III IV

Divergence Time 1

Divergence Time 2

(b) Past

Present

V

Fig. 3. Diagrammatic illustration of the merit of multilocus data (redrawn from Edwards and
Beerli 2000). (a) In the single-locus case, when retrieving gene trees I and II, we cannot
distinguish between population divergence times 1 and 2. If divergence times are assumed to
be the samewhen gene trees I and II are recovered, population divergence time is only constrained
to be less than divergence time 2. (b)Withmultilocus data (gene trees III–V) divergence owing to
ancestral population size can be assessed by the variance in coalescence time among loci and can
be distinguished from divergence owing to differences in population divergence time. When
variance among loci is small (tree III), population time is likely to be more ancient (divergence
time 1); when variance among loci is large (tree V), population divergence time is likely to be
more recent (divergence time 2). Multilocus datasets also narrow confidence limits and the
range of compatible population divergence times between co-distributed species-pairs.
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limited to a single gene (Wilkins 2004;KuoandAvise 2005).This
is particularly a concernwhen inference is froma single species or
where multiple species do not have congruent geographical
breaks. Thus, testing for concordance across loci within and
among species can be at least as important as screening across
concordantly distributed species. This is because congruent
patterns across species and different loci rather than across
species for one locus are more likely to describe common
historical events (Avise 2000; Jennings and Edwards 2005;
Brito 2007).

Statistical phylogeography, model-testing
and nested clade analysis

A legitimate criticism of phylogeography was that ad hoc
inferences of phylogeographic datasets and their gene trees are
littlemore thanqualitative guesses. These guessesmayormaynot
accurately capture the biogeographical and temporal features of a
species’ history (Knowles and Maddison 2002). For example, a
simple underlying population history is often assumed, such as
simple divergence of two undivided populations of constant size.
But what of more complex and realistic histories such as
sequentially diverging populations with varying migration
rates between them? In response, Templeton et al. (1995)
introduced Nested Clade Analysis (NCA), a protocol for
rigorously repeatable interpretations of phylogeographic
datasets. It integrated geographical and genetic data from
specimens in a study to determine, for example, where
vicariance could be supported or rejected, where dispersal was
needed to explain the data, and so on. Although widely seized
upon by phylogeographers, NCA is controversial (Knowles and
Maddison 2002; Templeton 2004). Petit (2008a) argued that
NCA is fatally flawed in generating false-positive results at
unacceptable rates and more debate predictably ensued
(Garrick et al. 2008a; Knowles 2008; Petit 2008b; Templeton
2008). Although used widely in avian phylogeography outside
Australo-PapuaandwithinAustralia for groupsother thanbirds, it
has simply not been used in many analyses of this region’s birds.
Joseph and Wilke (2007) used it as a minor, complementary
analysis in examiningdiversity in three specieswidespread across
the Australian arid zone.

Statistical phylogeography was advocated in response to
perceived problems with NCA (Knowles and Maddison 2002).
Its basic tenet is that phylogeographic data should only be
interpreted against a priori models. That is, one should infer
specific biological processes with explicit reference to
stochastically derived expectations (Knowles 2004; Knowles
and Carstens 2007; Knowles et al. 2007), a basic procedure in
science after all. Some key challenges in this approach are to
define hypotheses simple enough that they can be discriminated
with the data available, yet still capture the essence of the
biologically interesting problem; to determine how complex a
model can be fit without making overly simplified assumptions
that might potentially affect the accuracy of the conclusions;
and to develop more testable and biologically relevant
hypotheses by incorporating external data, including
information from other disciplines. Garrick et al. (2008b)
demonstrate the power of an approach that combines NCA and
statistical phylogeography.

Mitochondrial monophyly and paraphyly – their
impact on phylogeography

We now examine the key concepts of monophyly and paraphyly
in phylogeographic data. This sets the scene for closer
examination of results and challenges in Australo-Papuan
avian phylogeography. We will stress that at the species–
population level interface, one is capturing the dynamics of
what happens to an ancestral gene pool at different snapshots
in time as daughter species split from each other and as the
relevant processes, which we will discuss, unfold. At higher
taxonomic levels when one is looking at neutral markers, these
processes will often have run to completion and are not so
confounding as in phylogeography. Thus, working within and
between species can blur conventional taxonomic boundaries.
This explains our emphasis on these processes in this review.

Intuitively, and from the viewpoint of many field workers, a
reasonable and common a priori expectation is that in a
phylogeographic study DNA sequences for a given species
should have DNA unique to that species, at least for DNA
neutral to selection. Any DNA sequence from Chestnut Teal
(Anas castanea), for example,might reasonably be expected to be
unique to Chestnut Teal, a Grey Teal (Anas gracilis) sequence
should be similarly unique to Grey Teal, and so on. Stated more
robustly, we expect that DNA from any individual Chestnut Teal
will bemore closely related to other individuals of its species than
to DNA of any individual of any other species: Chestnut Teal
DNAs will be reciprocally monophyletic with respect to other
species, and vice versa. Yet phylogeographic studies often reject
reciprocal monophyly and find discordance between gene trees
and species trees (Fig. 2).Australian examples includewhite-eyes
(Degnan and Moritz 1992), scrubwrens (Joseph and Moritz
1993a, 1993b), White-winged Fairy-wren complex (Driskell
et al. 2002) and woodswallows (Artamus spp.) (Joseph et al.
2006) (Fig. 4). DNA ‘intermixing’ between closely related
species is more strictly termed paraphyly (Fig. 2). It occurs
when DNAs of individuals of a species or population are more
closely related to DNAs of individuals that clearly belong to
another species or population (Page and Holmes 1998).

Early molecular studies of phylogeography and species
relationships often had at most a few representatives of each
species. Avise et al. (1990) found that some Mallards
(Anas platyrhynchos) have mtDNA more similar to American
Black Ducks (Anas rubripes) than to other Mallards. In fact,
Mallard mtDNA is paraphyletic with mtDNA of several Anas
species including the Pacific Black Duck (A. superciliosa).
Mallards on a London pond could have mtDNA more closely
related to that of a Pacific Black Duck in Sydney than to that of
others on that sameLondonpond (seeOmland 1997; Johnson and
Sorenson 1999). However, as sample sizes increased, patterns
emerged showing mtDNAs of closely related species often to be
paraphyletic not reciprocally monophyletic. This is increasingly
common in the literature. Joseph and Wilke (2004, 2006) urged
that it be seen not as failure of molecular data to be a magic wand
that would solve long-standing, intransigent taxonomic issues.
Instead, they argue, interesting new biological questions should
be the focus.

Funk and Omland (2003) surveyed paraphyly in published
mtDNA studies of more than 2000 animal species. Of these, 23%
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were not monophyletic in their mtDNA trees. The survey
included 331 species of birds, of which 17% were paraphyletic
or polyphyletic in their mtDNA trees. Levels of mtDNA non-
monophyly may be higher in Australia because eight of the 18
non-pelagic species (44%) surveyed for the present review
(Table 1; see also Jonsson et al. 2008) are paraphyletic. This
level of paraphyly cautions that exact congruence between
molecules and morphology or between gene trees and species
trees almost should not even be expected in phylogeography
when one is at the interface between species and populations.

Rather than dismiss paraphyly as impenetrable, we note the
insight it brings to knowledge of a species’ history and
biology. Accordingly, we now discuss two main causes of
DNA paraphyly relevant to phylogeography and their impact
on understanding of species limits. They are hybridisation and
incomplete lineage sorting (ILS), and we stress the need to
consider whether one is discussing paraphyly between species
or among populations within a species. We exclude frequency-
dependent selection and heterozygote advantage, which
population genetics theory long ago showed can lead to shared

A B C

D E F G

1

2

3

Western

E
as

te
rn

Fig. 4. Unrooted networks for several Australian birds, adapted from sources cited below, showing discordance betweenmolecules andmorphology and also
star-like shape of some networks or their parts that indicate historically recent population expansions.Within each network, a circle represents a unique variant
(haplotype) of the piece of mtDNA studied; the smallest black circles bisected by lines show haplotypes inferred during analyses but which have not been
sampled. Each circle’s size indicates the number of individuals with that haplotype, but note they are not scaled across networks. Solid black or white or shading
shows the species or population fromwhich individualswere sampled.Unmarked lines between haplotypes indicate differences between haplotypes of one base
pair, the numbers of hatch marks indicating differences >1. See text and Table 1 for further discussion (and scientific names). (a) Splendid Fairy-wren: 1 – two
eastern subspecies, emmottorum andmelanotus; 2 – central subspeciesmusgravi; 3 – two clusters of western subspecies splendens (fromKearns et al. 2008). (b)
White-winged Fairy-wren: solid black represents black-and-whiteWestern Australian island populations, hatching represents blue-and-white populations from
across mainland Australia (from Driskell et al. 2002). (c) Australian Magpie: western and eastern populations, as shown (from Toon et al. 2007). (d) Crimson
Rosella (mainland south-eastern Australia only): solid black – crimson subspecies elegans and melanoptera; open – yellow subspecies flaveolus; hatching –

phenotypically intermediate populations (from Joseph et al. 2008). (e) Australian Ringneck: solid black – eastern subspecies barnardi; open – all other
subspecies, including northernmost and westernmost barnardi inferred to have been introgressed by zonarius ormacgillivrayi (from Joseph andWilke 2006).
(f) Singing Honeyeater (top), Spiny-cheeked Honeyeater (middle), and Black-faced Woodswallow (below) (from Joseph and Wilke 2007). (g) White-browed
Woodswallows (black circles) and Masked Woodswallows (white circles) (from Joseph et al. 2006).
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genetic variation between species (see full review of causes in
Funk and Omland 2003).

Causes of paraphyly I(a) – recent hybridisation
between species

Hybridisation between bird species is common (Grant and Grant
1992; Price 2008). It results inflowor introgression of genes from
one species into another and thus paraphyly of at least one of the
species. A simple Australian example concerns the habitat-
generalist White-browed Scrubwren (Sericornis frontalis) and
the rainforest-restricted Atherton Scrubwren (S. keri). The 2.8%
divergence between most mtDNA sequences of these species
implies divergence from a common ancestor on the order of
approximately 1million years ago (Joseph and Moritz 1993a).
One of four Wet Tropics individuals of frontalis caught together
in sclerophyllwoodland hadmtDNA identical (0.0%divergence)
to most keri sequences. The simplest explanation of this is that a
hybridisation event at an unknown time in the past but likely too
recent for mutation to have generated new diversity introduced
mtDNA from keri into frontalis.

Arguably as interesting as the detection of hybridisation itself
are fresh biological questions arising from phylogeography. The
White-browedScrubwren is a rainforest birdwherever the habitat
occurs in its range except in the Wet Tropics. There, the White-
browed Scrubwren is confined to sclerophyllous associations,
secondary growth rainforest and rainforest edges, whereas the
Atherton Scrubwren is confined to rainforest. With molecular
data showing that hybridisation has occurred, the ecological and
demographic dynamics between these two species at the
rainforest–sclerophyll ecotone should be studied.

Causes of paraphyly I(b) – past hybridisation between species

More complicated is the inference and understanding of older
hybridisation events, here defined as having occurred thousands
or hundreds of thousands of years ago. Phylogeography of
Australian white-eyes (Zosterops spp.) is a strong example.
Degnan and Moritz (1992) used mtDNA data in the
widespread Silvereye (Z. lateralis) and the more restricted
tropical northern Yellow White-eye (Z. luteus). Their mtDNAs
were paraphyletic, with one luteus haplotype, labelled i, being
more closely related to haplotypes e, f, g and h that were in many
lateralis individuals than to other luteus. Conversely, of course,
those lateralis haplotypes e, f,g andhweremore closely related to
luteushaplotype i than tomany lateralis haplotypes.However, no
haplotypes were shared between the two species, and these
intermixed haplotypes are 0.3–0.7% divergent from each
other. Assuming a rate of divergence in mtDNA of 1.6–2.0%
per million years (Fleischer et al.1998; also see Lovette 2004;
Ho 2007; Weir and Schluter 2008), one infers that the
hybridisation that caused this paraphyly likely occurred on the
order of hundreds of thousands of years ago. More work on this
subject is in progress.

Degnan and Moritz (1992) argued against ILS as the
explanation for their data because large sequence divergences
were involved.The remaining luteus sampled (haplotypes j and k)
are nearly 4% divergent from the others sampled from the two
species (again implying 2–3million years of separate evolution

for thesemitochondrial lineages and likely for these species). It is
unlikely that any ancestral mtDNA polymorphism would be
retained for such a period. Data from the nuclear genome
provide additional tests of the past hybridisation hypothesis
(Degnan 1993a). Recent ongoing hybridisation and recent
speciation with ILS could both result in many nuclear genes
being shared between species (with identical or similar genotypes
intermixed in the two species). Degnan (1993a) reported data
from two nuclear genes and found that they showed generally
fixed differences and over 0.6% divergence between the two
species. However, one luteus did carry a haplotype found in
lateralis, implying the possibility of some recent or ongoing gene
flow. Although the evidence supports older introgression as the
cause of mtDNA paraphyly between these two species, further
work could reveal much additional complexity with which to test
further the ancient hybridisation hypothesis. This work is
underway using an expanded sample of luteus that has since
been collected (n= 6 in earlier studies), more dense geographical
sampling (especially near the western contact zone between the
species),multiple loci, and currently available analyticalmethods
especially coalescent approaches. Rigorous statistical analyses
are needed to reject the possibility of ILS (Peters et al. 2007;
see below). We now review how ILS occurs and provide likely
Australian examples.

Causes of paraphyly II – incomplete lineage sorting
within and between species

Phylogeography of the widespread Australian Magpie
(Gymnorhina tibicen) was studied by Toon et al. (2007). At the
Last Glacial Maximum 18 000 years ago, Magpies could easily
have been continuously distributed across present-day Tasmania
and the Australian mainland. Later isolation of Tasmania likely
would have caused complete cessation of gene flow between
Tasmania and mainland populations. Diversity of the ancestral
population would have been shared in both daughter populations
for a long time following isolation (see Omland et al. 2006). This
could explain Toon et al.’s (2007, fig. 2) finding of haplotypes
shared among Tasmanian and mainland Magpies. Had genetic
study been done during the early post-isolation period it would
show alleles and diversity that were in the ancestor. That is, it
would detect paraphyly of Tasmanian populations with respect to
the mainland populations and vice versa. A first interpretation
might be of ongoing gene flow. However, recent divergence and
the retentionofancestraldiversity isa sufficient explanation in this
example. The lineages have not ‘sorted out’ to where Tasmanian
and mainland populations are reciprocally monophyletic, or
unique. Thus there is ILS. After a period of time, likely to be
on the order of thousands of years, genetic drift and relevant
demographic variables such as variance in number of female
offspring complete the lineage sorting and reciprocal
monophyly could be attained. The larger the original ancestral
population and the two daughter populations were, the longer
that the ancestral polymorphism will be present and the longer
that ancestral polymorphism will be retained. Thus, larger
‘effective population sizes’ will increase the duration of
the process of lineage sorting. Although mtDNA has a lower
effective population size (see above), complete sorting is hardly
instantaneous.

10 Emu L. Joseph and K. E. Omland



ILS is an important, ubiquitous process that has been involved
in every speciation event on Earth. Therefore, DNA paraphyly
between species even after all geneflowbetween themhas ceased
is neither extraordinary nor special and phylogeographers should
expect it. Examples of ILS of mtDNA in birds are numerous
(e.g. Table 1). In each, the evolutionary process has been captured
at a snapshot in time when variation in two daughter lineages that
our taxonomy may recognise as species still reflects that of their
most recent common ancestor. Discordance between phenotype
and genotype results.

Biological insights from paraphyly

Wehave stressed that the taxonomic level at which one examines
paraphyly can profoundly affect its analysis and interpretation.
Within a species it usually means that gene flow between
populations or that a relatively recent hybridisation event has
been detected. Between species, it can mean a trace of ancient
hybridisation remains or that two species have evolved recently.
In this section, we now explore different insights from paraphyly
at different taxonomic levels. We have also seen (Table 1) that
paraphyly emerges as a common finding in phylogeographic
studies of Australian birds. So, we now consider the interesting
range of biological insights it offers (see also Avise and
Walker 1998).

Levels of paraphyly: historical and contemporary processes

Edwards (1993b) applied coalescent-based methods to interpret
paraphyly among island and mainland populations of the Grey-
crowned Babbler. He favoured the explanation of ongoing gene
flow rather than diversity retained in common from purely
historical association of ancestral populations. Similarly in
another babbler, Hall’s Babbler (P. halli), paraphyly was of
interest because it suggested novel demographic insights
(Miura and Edwards 2001).

A spectacular example of paraphyly at the interspecific level is
in phylogeography of continental populations of woodswallows
(Joseph et al. 2006). Coupled with the examples above and in
Table 1, it hints not that there is gene flow between the two
species involved but that widespread Australian birds have
maintained large effective population sizes historically, not
just currently.

The mtDNA haplotypes of the White-browed Woodswallow
(A. superciliosus) and Masked Woodswallow (A. personatus)
were almost completely randomly intermixed. Closest mtDNA
relatives of many superciliosus haplotypes are personatus
haplotypes, and vice versa. The haplotype network for these
two woodswallows (Fig. 4) is among the most complicated yet
found in birds. Two aspects of the data suggest that ILS, not
hybridisation or gene flow between the two species, best explains
the findings. First, the two species shared no haplotypes whereas
recent gene flow should result in some interspecific sharing of
haplotypes. Second, many weakly divergent haplotypes existed
within each species. Inferences are that both species must have
very large effective population sizes, that their common ancestor
had a large enough population size tomaintain a high number and
diversity of haplotypes, and that both species evidently have
retained or added to this diversity.With large effective population
sizes, the process of lineage sorting will slow dramatically, and

even more rapidly evolving parts of mtDNA, such as the control
region, can retain ancestral polymorphisms and paraphyly, likely
for many hundreds of thousands of years (see Neigel and Avise
1986 for modelling of this process). However, multiple nuclear
loci and coalescentmethods are needed to test furtherwhether ILS
is necessary and adequate to explain the data.

Thewoodswallowdata exemplify apoint in the series of stages
predicted to occur byOmland et al. (2006) asmtDNAdiversity of
two diverging populations undergoes lineage sorting. It is a stage
predicted to involve no sharing of haplotypes yet near complete
paraphyly.This is stage II of intermediate divergenceor ‘neotypy’
because none of the old ancestral haplotypes are shared between
species.

This example suggests a further point. Phylogeographic
studies of northern hemisphere birds commonly infer that
Pleistocene ice-sheets that blanketed the landscape caused
major population bottlenecks and erosion of genetic diversity
and that glaciationgenerally influencedpresent-day structure. For
North American examples see Zink (1997), Boulet and Gibbs
(2006), and Ruegg et al. (2006), and for Eurasian examples see
Yang et al. (2005), Pavlova et al. (2006), and Brito (2007).
Widespread Australian birds studied to date, however, are
showing patterns ranging from deep to shallow nucleotide
diversity at a range of geographical scales across sometimes
vast parts of the continent (Table 1). This suggests that they
havemaintained relatively large effectivepopulation sizesdespite
cycles of Pleistocene glaciation. Pleistocene climatic fluctuations
were global but perhaps being under ice had a more dramatic
effect firstly on habitats and population sizes of animals and
secondly on eradicating genetic diversity than the drying, cooling
and habitat contraction into smaller and more isolated patches as
appears to have occurred in Australia. Perhaps many tropical,
subtropical, arid and, more generally, southern hemisphere land
areasmayhavemaintained larger effective population sizes. If so,
they may be more likely to have maintained ancestral
polymorphisms paraphyletically with close relatives. We await
systematic comparisons of different continents and habitat types
to test whether high levels of mtDNA paraphyly are consistent
across Australian birds, and for birds outside of the Palaearctic
andNearctic ingeneral.Byrne et al. (2008)discuss this in a review
of arid zone phylogeographic data worldwide.

Paraphyly and biological insights: complexity
in the present and past

Rhymer et al.’s (2004) analysis of paraphyly in the Pacific Black
Duck cautions against finding complexity in the present
(paraphyly) while invoking simplicity in the past (reciprocal
monophyly). Mitochondrial DNA diversity in Australian
and New Zealand subspecies of Pacific Black Duck (n= 21 and
34, respectively) involved group I only from New Zealand and
group II with New Zealand and Australian samples.
Rhymer et al. (2004) argued this to be evidence of gene flow and
grounds to question the merit of recognising two subspecies.
The results are compatible, however, with little or no recent
gene flow between Australia and New Zealand if only because
theAustralian samplewould likely havemissed group I if it is rare
in Australia (see Wiens and Servedio 2000). Gene flow between
Australia and New Zealand would result in both groups I and II
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in both places. Recalculating the analyses of molecular variance
(AMOVAs) with the two groups as genotypes, we found that the
two regions explain 20% of the variation. Three haplotypes
shared between Australia and New Zealand in relatively internal
positions of the haplotype network are more likely to be
ancestral haplotypes (Castelloe and Templeton 1994; Omland
et al. 2006), suggesting the possibility of earlier connections.
Even with thorough sampling, inference of population history
on single locus data is especially problematic when there are
important conservation implications.

Interesting questions remain in this case. Might there
have been paraphyly in the past? Need group I represent pure
historical New Zealand and group II pure historical Australia?
Plausible alternative scenarios to explain how two deep
mitochondrial groups could arise in this species are easy
to conceive, such as groups I and II having been in Australia
and New Zealand but group I went extinct in Australia during
Pleistocene climaticfluctuations. Statistical analyses ofmultiple
loci are needed to reject any such scenario and to find models of
best fit.

The exciting complexity of evolutionary processes operated in
the past as well as in the present. Althoughmost studies reviewed
here (Table 1) were limited to gene-tree analysis of mtDNA, this
last case demonstrates problemswhen emphasis is on single-gene
reciprocal monophyly for informing conservation decisions,
determining species and subspecies limits, and understanding
the complex evolutionary histories of Australasian bird species.

Paraphyly in phylogeographic studies of Australian
birds: frequency and causes

Table 1 reviews published studies of the phylogeography and
speciation of Australian birds. Among the non-pelagic
continental taxa, 18 species were tested for mitochondrial
paraphyly (studies that did not include any outgroups do not
test for paraphyly and were excluded). Eight of these 18 species
(44%) revealed species-level paraphyly in mtDNA, much higher
than the 16.7% reported by Funk and Omland (2003) in their
survey of mtDNA paraphyly among 331 species of bird
worldwide. Despite the small number of Australian species
assayed, the difference in frequency is significant (Fisher’s
exact test, P< 0.01). A caveat is that the current survey did not
include strictly phylogenetic studies of genera and families in
which two or more individuals of one species were sampled.
Many such species were included in Funk and Omland (2003),
some with as few as four congeners sampled and thus having a
very low chance of revealing paraphyly. The criteria of the
worldwide survey may have artificially lowered the level of
paraphyly it could detect. Although future studies comparing
different continents and climate zones using the same criteria will
be interesting, the 44%paraphylywe report forAustralian birds is
so much higher that it seems worth exploring further.

Funk and Omland (2003) reviewed factors that could
influence levels of mtDNA paraphyly. One important cause is
‘incomplete taxonomy’–paraphyly arising fromwhat shouldbe a
single species havingbeen ‘oversplit’, or, conversely, two species
mistakenly being treated as one. For example, if only one species
were recognised for Masked andWhite-browedWoodswallows,
mtDNA paraphyly would disappear. This would be warranted if

all other data supported one species, and there was evidence of
simply two ‘morphs’ that randomly interbreed, but it has been
argued that that is not the case (Joseph et al. 2006). Does
mitochondrial paraphyly indicate inadequate taxonomy?
The answer is ‘perhaps’ if one uses only a criterion of mtDNA
monophyly to determine species limits. This would be contrasted
with using it to recognise an Evolutionarily Significant Unit (see
Moritz 1994). Using a ‘mitochondrial species concept’ can result
in taxonomies that aremisleading for reconstructing evolutionary
history, for understanding behaviour and ecology, and for
determining conservation priorities (see Crandall et al. 2000).
We do not think that any of the examples of species
level paraphyly in Australian birds result from inadequate
taxonomy. Rather, we believe the mtDNA paraphyly in most
or all caseswill indicate either hybridisationor ILS, thus reflecting
just one aspect of the history of each of these species.
Ornithology’s attempts throughout the last century to find one
perfect species concept have failed. There is increasing recogni-
tion of the importance of multiple criteria including plumage,
morphometrics, song, mtDNA, nDNA, interbreeding, and
others, when determining species limits (e.g. de Queiroz 1998,
2007; Helbig et al. 2002; Sites and Marshall 2004).

Paraphyly between species and hypothesis testing

Closer examination of paraphyly inmtDNA between two species
is warranted. ILS and ancient hybridisation are possible
explanations but independent data from multiple nuclear loci
are needed to evaluate statistically these two causes of species-
level paraphyly.

Increasingly, the program IM (‘isolation with migration’;
Hey and Nielsen 2004; Hey 2005) (Fig. 5) is being used for
this. Its underlying principle is that shared polymorphism can
result from ILS as well as hybridisation and the resultant gene
flow. Either model could be fitted to a given dataset, but it is more
realistic to estimate simultaneously the likelihood of both. IM
simultaneously estimates divergence between two populations
and the rate of gene flow between them. Importantly, this
coalescent approach incorporates the stochasticity of mutation
and genetic drift when calculating parameters, which in turn are
associatedwith populations rather than genes (Brito andEdwards
2008). Thus, the key output of IM, in Bayesian parlance, is
credibility intervals for each parameter – the 90% highest
posterior densities (HPDs). Joseph et al. (in press) apply this
to paraphyly among Grey and Chestnut Teal and conclude that
ILS is the more likely explanation of the data (see non-Australian
example in Peters et al. 2007). More generally, multiple loci and
rigorous coalescentmethods can help understand paraphyly and a
wide range of other topics in phylogeography and recent
speciation.

To summarise, inference of the cause of mitochondrial
paraphyly in extreme examples can be straightforward. So too,
then, will be implications for speciation and species limits.
Shared haplotypes in spite of otherwise deep mitochondrial
divergences between species suggests recent hybridisation
(scrubwren example). No shared haplotypes with generally
very shallow divergences suggests ILS (woodswallow
example). Discrimination between the two processes can be
harder when they produce very similar patterns, such as when
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hybridisation occurred more distantly in the past or when
speciation has occurred very recently. Two very different
processes, ancient hybridisation and relatively recent
speciation, can produce similar patterns. For such cases,
rigorous analyses are needed, and seemingly straightforward
examples should warrant examination with multiple loci and
coalescent methods (e.g. Peters et al. 2007; Lee and Edwards
2008; Joseph et al., in press).

Paraphyly: multiple nuclear loci and coalescence

Analyses ofmultiple nDNAloci tounderstandmtDNAparaphyly
is not without difficulties. Female birds, for example, are more
strongly affected by hybrid infertility (Haldane’s rule; see Price
2008), so mtDNA is less likely than nDNA to cross species
boundaries in birds (Brumfield et al. 2001; Allen and Omland
2003; Funk and Omland 2003). Furthermore, lower effective
population size of mtDNA means it will generally sort to
monophyly much more rapidly than does nDNA (Moore 1995;
Palumbi et al. 2001). So mtDNA remains an ideal marker with
which to begin studies of phylogeography and speciation in birds.
The problem is that any one locus is subject to stochasticity,
selection and unique events (Figs 2 and 3). Use of multiple
loci is imperative for fully understanding evolutionary history
(e.g. Knowles 2004; Peters et al. 2007), although it is legitimate
to distinguish this more all-embracing task from that of
simply estimating phylogeographic structure in mtDNA (Zink

and Barrowclough 2008). Turning to the nuclear genome is the
crucial next step not because one rapidly evolving nuclear gene
can replace mtDNA, but because many independent nuclear loci
can complete the evolutionary picture of populations and species.
Each one may have variation that can be used to study
evolutionary history, thus complementing, testing and adding
to data from mtDNA. In coalescent analyses the power to obtain
more accurate estimates of population divergence time and to
identify loci under selection comes with more independent loci
(see Edwards and Beerli 2000; Akey et al. 2004; Zink and
Barrowclough 2008).

Trends and directions in Australo-Papuan avian
phylogeography

Understanding the recent evolutionary history of Australo-
Papuan birds should benefit from points discussed above, such
as testing alternative hypotheses, increased and focussed
geographical sampling, coalescent analyses and the use of
many loci to improve sampling of stochastic variation between
loci (e.g. Jennings and Edwards 2005). Their implementation
should become easier with improved access to the nuclear
genome (Backström et al. 2008) and the next generation of
DNA sequencing (Ellegren 2008; Hudson 2008). Our last goal
is to help set and define a research agenda for Australo-Papuan
phylogeography.
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Fig. 5. Proposedbiogeographical barriers in the evolutionofAustralian birds (fromSchoddeandMason
1999). Molecular datasets have been used to test significance mainly of the Carpentarian and Eyrean
Barriers (1 and 15, respectively) and few hybrid zones have been studied.
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Relationships between Australia and New Guinea

New Guinea and Australia share many species and have many
others that are closely related. Study of relationships among
these species and groups demonstrates the interrelatedness
we have described of historical biogeography, speciation
research and phylogeography. Driskell and Christidis (2004),
Edwards (1993a), Norman et al. (2002), Joseph et al. (2001) and
Murphy et al. (2007) illustrated this in studies of honeyeaters
(Meliphagidae), Grey-crowned Babblers, logrunners (Orthonyx
spp.) and the Sooty Owl (Tyto tenebricosa), and the Palm
Cockatoo (Probosciger aterrimus), respectively. Yet the
potential of work of this sort has barely been tapped.
Phylogeographic analyses of groups found only in New
Guinea are even fewer, but work on New Guinean pitohuis
(Pitohui spp.) (Dumbacher and Fleischer 2001) provided
insights into the biology of plumage mimicry.

Origins and maintenance of phenotypic differentiation:
selection v. history

Geographical variation in plumage and morphology within
Australian bird species has overwhelmingly been attributed to
vicariant origins in historical allopatry followed by population
expansion leading to secondary contact and hybrid zones (Keast
1961; Ford 1987; Schodde and Mason 1999). The alternative of
geographically structured variation being in response to selection
along environmental gradients has certainly been championed
(Ford 1981) and occasionally argued (Wooller et al. 1985;
Schodde and Mason 1999) but has rarely been rigorously tested.

Several Australian phylogeographic studies have addressed
this. Geographical variation in back colour of the Australian
Magpie has long been ascribed to historical allopatry of
populations that evolved variously into black- or white-backed
and variable forms and reflected as such in subspecific taxonomy
(e.g. Schodde and Mason 1999). This suggests, in eastern
Australia for example, that there was isolation between
northern and southern ancestral populations. Work from the
laboratory of Jane Hughes, however, has suggested that the
major historical breaks in the species have been east to west,
and that back colour is maintained through selection (see Baker
et al. 2000; Toon et al. 2003, 2007). In the Singing Honeyeater
(Lichenostomus virescens), geographical variation in size and
intensity of plumage markings had been attributed either to
origins of differentiation in historical allopatry followed by
secondary contact (Schodde and Mason 1999) or as a selective
response to environmental gradients (Wooller et al. 1985).
Consistent with the latter hypothesis, mtDNA diversity
showed no structure across the range of the species and
recovered a signal of a recent population expansion (Joseph
and Wilke 2007). Similar discordance between strongly
structured geographical diversity in plumage and unstructured
mtDNA diversity has been found in the western clade of the
Australian Ringneck (Barnardius zonarius) (Joseph and Wilke
2006) and the eastern subspecies of the Splendid Fairy-wren
(Malurus splendens) (Kearns et al. 2008). Recent population
expansions estimated to have occurred within the Pleistocene in
response to climatic fluctuations have been predicted for
many years (Keast 1961; Schodde 1982) and have emerged
commonly in phylogeographic studies of widespread

Australian birds to date (Driskell et al. 2002; Joseph et al.
2002, 2006; Joseph and Wilke 2006, 2007; Kearns et al.
2008). Increased use of datasets with multiple loci should see
an improvement in clarifying the relative roles of selection and
purely historical isolation in generating and maintaining
differentiation.

Hybrid zones, biogeographical barriers
and modes of speciation

The literatures of these topics are intertwined, and Fig. 5 shows
hybrid zones and putative historical biogeographical barriers
recognised for Australian birds (see Keast 1961; Ford 1974a,
1987; Schodde and Mason 1999). Only a few phylogeographic
studies have tested this rich literature, however.

The Carpentarian Barrier (Macdonald 1969; see Fig. 5)
separates populations of many species on Cape York
Peninsula and eastern Australia from those west of the Gulf of
Carpentaria (Jennings and Edwards 2005). In the Grey-crowned
Babbler, a hybrid zone has been recognised as occurring across it
(Schodde and Mason 1999). Phylogeographic analysis of this
species showed theBarrier’s location tobeconcordantwith that of
a major phylogeographic break within the species (Edwards
1993a). Gene flow across the region of the Barrier was
assumed to be low because of the mtDNA monophyly for
each subspecies on either side of the Barrier. Little sampling
was done within the region of the Barrier and this warrants closer
study.

In a further study of the Carpentarian Barrier, Jennings and
Edwards (2005) developed assays for 30 anonymous nuclear
markers and performed coalescent-based analyses in a study of
the Black-throated Finch (Poephila cincta) of Cape York
Peninsula and the Kimberley and Top End forms of Long-
tailed Finch (P. a. acuticauda and P. a. hecki, respectively).
They found thatP.cinctadiverged from theP.a. acuticauda–P.a.
hecki lineage across the Gulf of Carpentaria (the Carpentarian
Barrier of Macdonald 1969), ~700 000 years before the present
(YBP), whereas P. acuticauda diverged from P. a. acuticauda
and P. a hecki across Kimberley–Arnhem Land ~500 000 YBP
(confidence intervals strongly support Pleistocene timing for both
of these divergences).

Similarly, the Eyrean Barrier in southern Australia
(Ford 1974a; Schodde 1982; Fig. 5) has been recognised as an
agent of vicariance giving rise to eastern and western
differentiates in the Australian Ringneck and the Splendid
Fairy-wren (Ford 1987). Phylogeographic studies of these
two species (Joseph and Wilke 2006; Kearns et al. 2008) each
detected major phylogeographic breaks into two clades that are
essentially concordant with the position of the Eyrean Barrier.
Interestingly, some gene flow across the Eyrean and the
Carpentarian Barriers is suggested by intermediate plumage
phenotypes but mtDNA is entirely that of one of the putative
parental forms. Studies of avian hybrid zones beyond Australia
have detected similar asymmetry in mtDNA and discordance
between mtDNA and nuclear markers (Parsons et al. 1993;
Brumfield et al. 2001; Joseph et al. 2003; Gay et al. 2007).

Figure 5 shows much potential for molecular tests of
hypotheses in earlier literature about diversity within and
across putative refugia, barriers and hybrid zones (see Ford
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1987; Schodde andMason 1999; Schodde 2006).Nonetheless, as
noted earlier, new and interesting biological questions do
arise from phylogeographic data gathered to date (Driskell
et al. 2002; Joseph et al. 2006, 2008; Kearns et al. 2008; Lee
andEdwards 2008). Examples are the biological dynamicswithin
hybrid zones (Australian Ringnecks and Splendid Fairy-wrens)
and how reproductive biology and ecology impacts the
movement of genetic markers across and through these zones
(Crimson Rosella group). Brumfield et al. (2001) expressed this
succinctly, noting that a focus on diagnostic phenotypic markers
can create a self-fulfilling notion that hybrid zones are black holes
into which genes enter but never emerge. Multiple neutral
markers coupled with phenotypic data, on the other hand, can
show that hybrid zones are evolutionary conduits for neutral and
adaptive markers. We reiterate that paraphyly in mtDNA
diversity, especially in these zones, should be welcomed for
the new biological insights it can bring to the species being
studied.

Island populations

Islands are the easiest sites atwhich to samplepelagicbirds,which
are conspicuous by their relative dearth in this review
(Table 1; Austin et al. 1994; Abbott and Double 2003a,
2003b; Peck and Congdon 2004). Abbott and Double (2003a,
2003b) illustrated the value to albatross taxonomy of
phylogeographic data obtained by sampling at island breeding
colonies. Island populations should continue to provide excellent
opportunities to see evolution in action and to estimate
demographic parameters such as rates of gene flow between
them and nearby mainlands. Degnan (1993b) and Degnan and
Moritz (1992) argued that the Heron Island population of the
Silvereye (Z. l. chlorocephala) had been founded and presumably
differentiated within the last few thousand years but that current
gene flow from the mainland is rare. Clegg et al. (2002) further
discussed colonisation of Pacific Ocean islands by Silvereyes
(Zosterops lateralis) and documented sequential founder events.
Work on Grey-crowned Babblers on Melville Island and the
mainland has been cited already (Edwards 1993b).

The potential is great for integrating molecular and non-
molecular datasets in island and mainland populations. In the
White-winged Fairy-wren (Driskell et al. 2002; Doucet et al.
2004) phylogeography complements genetic andmicrostructural
analysis of blue–blackplumagevariation.BasedonmtDNA, blue
mainland populations in Western Australia are more closely
related to one of the two nearby black island populations, that
on Dirk Hartog Island, than to eastern Australian mainland blue
populations. Further, it is not clear that the two island black
populations are each other’s closest mitochondrial relatives.
Conversely, there are no molecular data to complement study
of evolution in vocalisations on Rottnest Island near Perth
(Baker et al. 2006).

Work to date on Kangaroo Island and the nearby South
Australian mainland shows the breadth of evolutionary insight
from island–mainland comparisons.Buildingonbiogeographical
analysis of Kangaroo Island (Abbott 1974), work on the
host–parasite biology of birds and their ticks (Kleindorfer
et al. 2006) and adaptive divergence in morphology in the
Superb Fairy-wren (Malurus cyaneus) between island

and mainland (Schlotfeldt and Kleindorfer 2006) elucidates
much interesting evolution. That work, however, awaits
complementary phylogeographic analyses of divergence times
and spatial analysis of diversity within and between mainland
and island populations. Analyses within and between the
phenotypically divergent Kangaroo Island and mainland
populations of the Crimson Rosella group hint at other
complexity (Joseph et al. 2008).

Despite the preceding, few island populations of Australian
birds have been studied phylogeographically. In addition to
examples already mentioned, rewarding examples are likely to
come from phylogeographic analyses of island v. mainland birds
and comparisons between birds and other animals, such as: on
King and Flinders Islands compared with Tasmania; offshore
islands of the Kimberley region comparedwith northernWestern
Australia; Groote Eylandt, the Sir Edward Pellew Group,
Wellesley Islands, including Mornington Island in the Gulf of
Carpentaria, compared with mainland Northern Territory and
Queensland; and the small archipelagos off the south-western and
southern coasts of South Australia and Western Australia,
respectively, compared with the adjacent mainland.

Integrating phylogeography and palaeoclimatic
modelling of distributions

To date, palaeoclimatic modelling of past distributions of
Australo-Papuan birds has not been reconciled with what is
‘retrodicted’ of their past distributions from phylogeography.
Reconciling palaeodistributions of species-pairs that still share
ancestral polymorphism, such as Masked and White-browed
Woodswallows or Grey and Chestnut Teal (Joseph et al.,
in press) should be illuminating. Examples of the approach are
from South American (Peterson and Nyári 2007) and North
American (Ruegg et al. 2006) birds, Australian frogs
(McGuigan et al. 1998) and land snails (Hugall et al. 2002) as
well as reviews by Kozak et al. (2008) and Swenson (2008). In
light of climate change, predicting change in distributions of bird
species and their phylogeographic units will be increasingly
relevant.

Australo-Papuan avian phylogeography andDNAbarcoding

The phylogeographic and recent speciation studies of birds
reviewed here provide tantalising suggestions of differences
between Australian birds and those elsewhere, especially
temperate North America and Eurasia. It seems likely that
widespread Australian birds, at least of arid and semi-arid
environments, may often maintain larger effective population
sizes, develop and retainmore genetic diversitywithin species, be
more likely to retain ancestral polymorphisms between species,
and generally show high levels of interspecific mtDNA
paraphyly. These general trends for widespread Australian
birds will need to be tested with more species, more samples
per species, and more loci. However, if consistent, these
trends suggest caution in the use of mtDNA barcoding
(Hebert et al. 2004) to describe biodiversity.

DNA barcoding in its strict sense uses one gene to identify
unknown tissue samples and discover new species. In animals,
effort has focussed on ~650 base pairs (bp) of the mtDNA
cytochrome c oxidase subunit I (COI) gene. North American
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birds have been used to demonstrate apparent utility of barcoding
(Hebert et al. 2004; Kerr et al. 2007; see also Tavares and Baker
2008). In general, the goals of barcoding will be achieved when
mtDNA paraphyly is rare (see Moritz and Cicero 2004).
Identification of unknown samples can be effective despite
some paraphyly if the taxa involved have been very well
sampled and the extent and causes of specific cases of
paraphyly are well understood. However, discovery of new
taxa in birds is problematic given the high incidence of
paraphyly in birds (Funk and Omland 2003; this review).
Serious problems arise in using some threshold amount
(e.g. 2.3% sequence divergence; Kerr et al. 2007) to diagnose
new species. Penhallurick and Wink (2004) unintentionally
provided a spectacular example of these problems (see also
Omland et al. 2000, 2006; Rheindt and Austin 2005). Even
more problematic would be to suggest that some species-pairs
perhaps should be synonymised because they diverged from each
other recently and are below some threshold level of divergence
(Kerr et al. 2007). Reducing taxonomic decisions to whether a
genetic distance is above or below some arbitrary level is bad
biology and ignores the complexity of the evolutionary process
that molecular tools can describe and uncover.

In sum, DNA barcoding will succeed in identifying unknown
individuals to species in many groups of organisms in many
places. It remains tobe seenwhether itwouldbeas successfulwith
many Australian birds. The combination of the birds’ historical
patterns of speciation with the possibility of relatively high long-
term population sizes may not result in conditions that will
facilitate simple barcoding.

Phylogeography’s impact on taxonomy: a hint
of future debates

Anarea of concern to ornithologists and conservationmanagers is
the interplay between phylogeography and taxonomy (see also
Joseph 2008b). Numerous examples fromAustralian ornithology
reviewed here show that one-to-one correspondence between
units defined by molecular phylogeography (phylogroups) and
subspecies defined by phenotype-based taxonomy, and
sometimes even species, should be abandoned as a default
expectation (Zink 2004). They can be expected to occur in
environments that have been stable for long periods, as in the
Wet Tropics (Joseph et al. 1995), in island-like populations
isolated in inland ranges (Christidis et al. 2008), and eastern
Australian mesic environments (Nicholls and Austin 2005;
Nicholls et al. 2006). But in populations and environments
moulded by the climatic fluctuations of the Pleistocene and
where variance among gene trees can be expected to be high
(Fig. 3), non-correspondence is probably to be expected more
often. This is an interesting consequence of Avise et al.’s (1987)
call to apply phylogenetic reasoning of macroevolution to
microevolution. Whereas in macroevolution one can expect to
be able to recover clearly diagnosable units and establish their
relationships to each other, itmay be farmore challenging to do so
in microevolution if sorting of ancestral polymorphism is still
far from complete. Coalescent methods designed to treat the
population, rather than the gene, as the unit of analysis and
an emphasis on whether gene flow is occurring will greatly aid
this effort.

If named taxa are not monophyletic for mtDNA, are they
invalid? Should new taxa be named only when molecular and
morphological data are at hand? We answer, ‘No’, provided one
acknowledgeswhat different datasets can and cannot achieve and
reveal about the organism and its history. Phenotypic
differentiation, presumably often driven by natural selection
even if drift in allopatry is also involved (Price 2008) and
possibly indicative of reproductive isolation, can evolve more
rapidly than mtDNA can sort to reciprocal monophyly, for
example. We have noted instances of this and argued that
rejection of established taxonomy is not always necessary
(e.g. natural history data in case of the White-browed and
Masked Woodswallows). Conversely, Abbott and Double
(2003a) marshal a case for recognising Shy (Thalassarche
cauta) and White-capped (Thalassarche steadi) Albatrosses as
species despite only aminor difference inmtDNA. Joseph (2002)
named a distinctive species of South American parakeet,
the Madeira Parakeet (Pyrrhura snethlageae), only on
morphological grounds. Later, mtDNA paraphyly of this taxon
with respect to another was shown but was ascribed to recent
divergence, not necessarily incorrect taxonomy (Ribas et al.
2006). That hypothesis now needs testing.

An alternative approach would be that molecular
phylogeographic data must be obtained and that taxonomy, at
least subspecies, should reflect deep historical units
(phylogroups) estimated through the clearly imperfect marker
ofmtDNAdata (Zink 2004). Amajor themewe have addressed is
that this strongly cladistic view is unrepresentative of biological
reality at the species and population level where one deals with
incompletely sorted DNA in phenotypically distinct entities.
Also, interpretation of monophyly in mtDNA can be
confounded by population history and sampling (Crandall
et al. 2000; Edwards et al. 2005; Rosenberg 2007; Edwards
2008b). It is tempting to think that taxa should be underlain by
corresponding genetic units. If one looked hard and long enough
that could be achieved. But such taxonomy would lose much
biological information inherent in the phenotype (e.g. the
woodswallows). Knowles and Carstens (2007) note that it
would take more than 1million years after speciation before
species would be delimited under a strict reciprocal
monophyly criterion if 15 loci were sampled in species with
an effective population size of 100 000 and assuming one
generation a year. If avian speciation involves selectively
driven divergence as much as Price (2008) argued, then
decisions based on neutral DNA divergence will tend to be too
conservative (i.e. will fail to recognise species if the taxa have
recently originated) (see Edwards et al. 2005; Joseph et al. 2006).
It is thus clear that species can be namedwithout a requirement of
mtDNA monophyly.

We share a view with many outside ornithology that
quantum level change is needed in the way we think
about taxonomy. For us, this means not just the need to
explore new naming conventions such as the PhyloCode
(http://www.ohiou.edu/phylocode/, accessed 8 October 2008)
but also the need for managers and theoreticians alike to
discuss change in what we expect taxonomic names to mean,
what they can mean in a Linnaean system, and what we expect
taxonomy to achieve below the generic level. Molecular and
phenotypic data are two different ways of slicing one cake.
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Ideally, they would converge on intuitive expectations we
discussed above (i.e. Chestnut Teal have Chestnut Teal DNA).
That they often do not is because at the population level one is
examining snapshots in time of evolutionary processes that will
eventually lead to the kind of clear-cut reciprocal monophyly that
we are more familiar with at higher taxonomic levels but which
may not have done so at the timewe are examining them. Endless
debates about species concepts, which in ornithology at least are
inextricably tied up in this issue, are exactly that: endless and
unresolvable. They are different ways to slice a cake and are often
paralleled by the molecular–phenotypic dichotomy. The debates
suffer from use of one word, ‘species’, to describe different
concepts that are then discussed at cross purposes. For an
entrée to the large literature on species concepts in birds see
Helbig et al. (2002), Remsen (2005),Watson (2005), Garnett and
Christidis (2007) and de Queiroz (2007, especially fig. 1).

We further conclude that the question of howmany subspecies
are in a species, or even some questions of species or subspecies
status, is often not where primary biological interest lies, interest
in reproductive isolation notwithstanding. Again, for an entrée
into relevant literature with reference to Australia see Ford
(1974b), Schodde and Mason (1999), Zink (2004), and
Phillimore and Owens (2006). Subspecies will always be
useful descriptors of observable geographical variation, which
is itself a result of evolution that we shouldmanage and conserve.
With respect to subspecies especially, we are sceptical, however,
of what external morphology can convey about evolutionary
history for reasons outlined long ago by Wilson and Brown
(1953). Phylogeography of Australian birds clearly show that
molecules and morphology are often discordant in determining
where putative historical breaks should be considered to occur, at
least in widespread species (Driskell et al. 2002; Joseph and
Wilke 2006; Toon et al. 2007; Joseph et al. 2008; Lee and
Edwards 2008). Sometimes molecular data show that the
question itself is inappropriate: Johnson et al. (2005) argue
from molecular data that the Cape Verde Kite, sometimes
considered the rarest raptor in the world, does not even exist!

Clearly,weneednames for reasons ranging fromdiscussionof
evolution through to conservation and management (Garnett and
Christidis 2007). But that need does not equatewith default worth
of the species v. subspecies question. In comparison, the historyof
a population and historical v. contemporary relationships among
populations are arguably more relevant to our understanding of
evolution andconservation,which for thatmatter, is nothing if not
our attempt to maintain evolutionary processes. We hope that
readers will come to think about some of the perspectives on
populations thatwehavedescribed.They relate towhathasdriven
species and subspecies classifications since Darwin’s theory of
evolution by natural selection brought new dimensions to
Linnaean taxonomy. That a nomenclatural system designed
200 years ago cannot always easily account for what we have
learned of evolution from molecular phylogeography ought not
be a surprise. On the contrary, the rejuvenation it brings is
exciting! It challenges conservation and management of bird
populations, not just theoretical aspects of study.

Finally, phylogeography examines neutral markers to
determine present structure and population history. To fully
understand evolution, we also need to understand selection.
Neutral markers must be distinguished from those under

influence of selection. Developments such as pyrosequencing,
the nuclear marker set of Backström et al. (2008), and gene-
chip technology (Cheviron et al. 2008) hold promise here.
Phylogeographic studies of Australian birds have already
hinted at a role for selection in some groups (e.g. Australian
Ringneck, Singing Honeyeater). With genomic data from the
chicken (International ChickenGenome SequencingConsortium
2004) and Zebra Finches (Taeniopygia guttata) (Stapley et al.
2008) already being studied, avian equivalents of studies
such as Akey et al. (2004) in humans are emerging (Axelsson
et al. 2008).

Whither phylogeography? A glimpse into the future
of Australian avian phylogeography

Phylogeography’s major theoretical and practical challenges are
to derive data frommany loci, not justmtDNA, analyse themwith
the power of coalescence theory in a model-testing framework,
and so estimate the history of populations not just the history of
genes sampled from them. Mitochondrial DNA will continue
being a powerful marker for estimating population structure and
phylogeographic patterns, whereas multilocus nuclear data will
be necessary to integrate structure with demographic processes
that have generated it, such as gene flow, coalescence times
and population growth (Zink and Barrowclough 2008). Ways
of meeting these challenges will involve robust model-testing
(Knowles andCarstens 2007).Thehypothesis-testing approach is
neatly illustrated in anAustralian bird byLee andEdwards (2008)
and in non-Australian birds by Congdon et al. (2000) and Peters
et al. (2007, 2008).

Insight into how these challenges may play out comes from
papers such as Jennings andEdwards (2005) already described. It
is increasingly straightforward to isolate multiple nuclear loci in
birds; see, for example, Backström et al.’s (2008) set of primers
for 242 nDNA regions in most birds. Developed with genomic
knowledge of several birds, especially the chicken (International
Chicken Genome Sequencing Consortium 2004) and an
Australian bird, the Zebra Finch (Stapley et al. 2008), the
genome of which is now online, these markers offer high
levels of variation at single sites in DNA sequences (single
nucleotide polymorphisms or SNPs) that could be used for a
wide range of studies from hybrid zones to phylogenies. Finally,
the next generation ofDNA-sequencing technology, for example,
pyrosequencing, which can sequence hundreds of millions of
base pairs in days, will likely have an impact on the study of
natural populations and the ratewithwhich empirical datasets can
catch-up with theory in the study of natural populations of birds
(Ellegren 2008; Hudson 2008). These and other methods such as
gene-chip technology will allow study of loci under the effect of
selection together with those neutral to selection. More complete
evolutionary histories of natural populations should result.

The apparent messiness that paraphyly brings frommolecular
phylogeography to speciation studies in Australian birds also
presents opportunities. One is to use the history of species in
Australia to test generalisations developed in the temperate
northern hemisphere. Second, when species retain much of the
genetic diversity present in a commonancestor, one can lookback
in time and understand past evolutionary events (Edwards and
Beerli 2000). In contrast, if recent bottleneckshad reducedgenetic
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diversity to one or a few haplotypes, then most of the information
about the histories of species would have been erased.

Phylogeographic study of Australia’s birds, coupled with the
continent’s well-documented history (see Hugall et al. 2002;
Byrne et al. 2008), is a theatre for applying theoretical and
technical developments in phylogeography reviewed in the
first part of this paper. Pelagic birds are a little-studied group
in which molecular data should enhance and interestingly
confound understanding of population structure and
demographics. Whether inland mountain ranges have been
arid-zone refugia should be tested with a priori models of
population structure. Do generalisations emerge within and
between different groups of birds for correlations of molecular
andmorphological diversityorwill all cases need tobeconsidered
individually? Understanding of phylogeography, speciation and
hybridisation will be increased by intensive study of some
examples in Table 1 and the framework provided by Fig. 5.
Most bird species in Australo-Papua have not been studied
phylogeographically but we acknowledge that studies are
underway in many. Few, if any, species have been sampled
across their entire geographical range, but good tissue
collections are growing for Australian and New Guinean birds.
With large sample sizes, multiple loci and coalescent approaches,
there will be many exciting avenues for using Australian birds in
advancing important questions in systematics and evolution, as
we have attempted to show. The foundation laid by the last
15 years of molecular phylogeography, and the
morphologically based foundation of biogeography and
systematics that it grew on, will enable research to continue
building on the fine work of earlier Australian ornithologists
(Keast 1961;SchoddeandMason1999;Schodde2006;Christidis
and Boles 2008).

Note added in proof

Christidis et al. (2008) report deep, structured divergence
between populations of the Short-tailed Grasswren (Amytornis
merrotsyi) isolated in inland ranges of the arid zone.
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