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Abstract. We review our current knowledge of the epidemiology and ecology of avian influenza viruses (AIVs) in
Australia in relation to the ecology of their hosts. Understanding the transmission andmaintenance of low-pathogenic avian
influenza (LPAI) viruses deserves scientific scrutiny because some of these may evolve to a high-pathogenic AIV (HPAI)
phenotype. That the HPAI H5N1 has not been detected in Australia is thought to be a result of the low level of migratory
connectivity between Asia and Australia. Some AIV strains are endemic to Australia, with Australian birds acting as a
reservoir for these viruses. However, given the phylogenetic relationships between Australian and Eurasian strains, both
avianmigrants and resident birdswithin the continentmust play a role in the ecology and epidemiology ofAIVs inAustralia.
The extent to which individual variation in susceptibility to infection, previous infections, and behavioural changes in
response to infection determine AIV epidemiology is little understood. Prevalence of AIVs among Australian avifauna is
apparently low but, given their specific ecology and Australian conditions, prevalence may be higher in little-researched
species and under specific environmental conditions.
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Introduction

The presence of avian influenza viruses (AIVs; see Box 1 for
background information) in wild populations of Australian birds
has been known since the early 1970s (see Downie and Laver
1973). The first studies into the occurrence of avian influenza
viruses found a wide variety of subtypes. However, prevalence
appeared low in comparison to that of North America and Europe
(Sims and Turner 2008). This low prevalence, in combination
with relatively few outbreaks in poultry in comparison to South-
East Asia, North America and Europe (Alexander 2007b), has
resulted in AIV research in Australia being focussed on external
sources of infection, notably from Asia (Tracey et al. 2004; East
et al. 2008a, 2008b; McCallum et al. 2008; Sims and Turner
2008). Outbreaks of high-pathogenic AIV (HPAI) H5N1 in
South-east Asia from 1996, and subsequent intercontinental
spread of this strain (see http://www.who.int/csr/disease/avian_
influenza/en/) has further served to reinforce the outward focus of
Australian research. Although transport of poultry and other live
birds and their products have been identified as the main cause
of dispersal of AIVs, the role of wild migratory birds remains
contentious (Van Borm et al. 2005; Kilpatrick et al. 2006; Feare
2007; Gauthier-Clerc et al. 2007). Several studies have reported
temporal and spatial overlap between global H5N1outbreaks and
bird migration patterns (e.g. Gilbert et al. 2006; Si et al. 2009)
and some species held under laboratory conditions have been

seen to shed these viruses without overt clinical symptoms
(Keawcharoen et al. 2008). Yet most isolations of HPAI viruses
in wild birds are from dead or moribund individuals, with only
three reported cases ofHPAIH5N1 from apparently healthy birds
(Feare 2010). In fact, the death of wild birds as a result of HPAI
infection remains one of the hallmarks of local incursions of the
disease for the poultry industry (Feare 2007; Gauthier-Clerc et al.
2007). In the wake of such speculation there has been a surge in
surveillance of wild birds as an early warning system (Spackman
2009; Hoye et al. 2010b) and increased interest in the ecology of
AIVs in wild birds globally over the last decade, although
Australia remains underrepresented (Fig. 1).

In light of these concerns, Sims (2006) drafted an agenda for
future AIV research in Australia. Many of these recommenda-
tions do not directly relate to wild birds but those that do call for a
focus on the ecology and epidemiology of AIVs within Australia
and the region, as well as HPAI H5N1 in South-east Asia. Here
we use Sims’ recommendations to structure our review of the
current knowledge regarding life-history of AIVs in wild birds.
Specifically:
* Which AIVs are found in Australian wild birds?
* What role does avian migration play in the long-distance
dispersal of AIVs to Australia?

* What effectmightAIV infection have on transmission-relevant
host behaviour?
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Fig. 1. An increasing number of monitoring studies for avian influenza have been initiated annually in various
geographical regions across the globe for the periods 1961–96, 1997–2004 and 2005–07. Besides an obvious
increase in the number of studies globally following the outbreak of HPAI H5N1 in Asia in 2004, the data
illustrates the continuing under-representation ofAustralian studies. ‘Other’ combines studies reportingfindings
fromAntarctica, New Zealand, Central Asia (i.e. west of Mongolia and the Bay of Bengal), theMiddle East and
South America. Data from Hoye et al. (2010b).

Box 1. A brief introduction to avian influenza viruses and immunology

Influenza viruses belong to a group of RNA viruses called the Orthomyxoviridae. There are three types of influenza viruses: A, B and C. Type B and C only
infect humans, whereas influenza A viruses have been found to infect a wide range of host species, including humans, domestic livestock, other mammals,
and a wide variety of domesticated and wild birds. Given that influenza A viruses have been found in over 100 species of wild birds across the globe, it is
generally accepted that wild birds form the principal natural reservoir (hence ‘avian influenza viruses’), and that these viruses may, on occasion, be
transmitted from this reservoir to other hosts such as domestic birds, livestock, marine mammals and humans, either directly or indirectly (Webster et al.
1992).

Avian influenza viruses (AIVs) are classified on the basis of the antigenic properties of two surface proteins: haemagglutinin (HA) and neuraminidase (NA).
There are currently 16 HA (H1 to H16) and 9 NA (N1 to N9) known antigenic subtypes, and the majority of possible combinations of these have been
detected in wild birds (Fouchier et al. 2005; Olsen et al. 2006). In addition, AIVs are further classified on the basis of their ability to cause disease in
Chickens.Highlypathogenicavian influenza (HPAI)viruses arevirulent viruses that inducemortality inup to100%of infectedChickens (Alexander2000).
All other AIVs causemuchmilder disease, and are designated low-pathogenic avian influenza (LPAI) virus status. OnlyAIVs of subtypesH5 andH7 have
been found tohave the potential to becomehighly pathogenic and causeoutbreaksofHPAI.Yet importantly, not all viruses of theH5andH7subtypes cause
highly pathogenic disease. To date, HPAI isolates have been obtained primarily from domesticated ducks and poultry, with a few notable isolations from
dead or moribundwild birds (Alexander 2007a). A virus’s pathogenicity may also showmarked variation between host species. A virus that causes severe
clinical signs and highmortality in Chickens may not induce the same effect in other bird species or mammals (Isoda et al. 2006) and the effects may even
differ between closely related wild bird species (Keawcharoen et al. 2008).

Replication of LPAI viruses is thought to be restricted to the gastrointestinal and respiratory tracts, sampled by swabbing the cloaca or droppings and the
oropharynx respectively (Brown and Stallknecht 2008). HPAI viruses, however, are able to replicate throughout the bird in clinical cases of the disease,
causing systemic organ and tissue damage (Alexander 2000). Under laboratory conditions, birds infected with LPAI will shed virus for between 1 and
2 weeks (Homme and Easterday 1970; Kida et al. 1980), though the period of viral shedding appears to be significantly shorter when the individual has
previously experienced an AIV (Kida et al. 1980; Fereidouni et al. 2009; Latorre-Margalef et al. 2009; Jourdain et al. 2010). The transmission of viruses
between avian hosts is not well understood but there are various potential routes. A faecal–oral route is one of the most generally assumed routes, but
infection via aerosols and perhaps even cloacal drinking may occur (Fouchier and Munster 2009).

Three surface proteins of influenza A viruses (HA, NA andmatrix 2) induce a specific immune response in the host. The host may also produce antibodies to
some internal proteins, especially nucleoprotein (NP) and matrix 1 proteins. Unlike the surface proteins, these internal proteins have a highly conserved
genetic sequence,which allows the detection of antibodies frombirds infectedwith any influenzaAvirus (Suarez and Schultz-Cherry 2000). Antibody titre
has been seen to increase rapidly as a result of re-infections, and is thought to be responsible for the decreased sheddingperiod seen in re-infected individuals
(Kida et al. 1980; Fereidouni et al. 2009, 2010; Jourdain et al. 2010). However, there is very little knowledge on how long these antibodies persist, with
current estimates somewhere between a few months to a year (Nishiura et al. 2009; Fereidouni et al. 2010; Hoye et al. 2010a).
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* How are AIVs transmitted among wild birds, and between
wild birds and poultry?

Topics that were not addressed by Sims (2006) but that we
feel should be included are:

* What role do resident birds play in the ecology and epidemi-
ology of AIVs in Australia?

* What are the temporal and spatial dynamics of infection?
* Does infection occur at random within a population or only in
certain individuals, and if so, what effect does this have on
transmission and maintenance?

There are notable differences in the biology and ecology of
many Australian birds compared with northern hemisphere spe-
cies, in which most research on AIVs has been conducted. As
such, we pursue an Australian perspective where current knowl-
edge and hypotheses regarding the epidemiology and ecology of
AIVs inAustralia is reviewed in light of the special characteristics
of the Australian avian hosts and their environment.

Which AIVs are found in Australian wild birds?

Of all the LPAI subtypes identified in wild birds from other parts
of theworld,most have also been found inAustralia (Downie and
Laver 1973; Downie et al. 1977; Mackenzie et al. 1984, 1985;
Nestorowicz et al. 1987; Peroulis and O’Riley 2004; Hurt et al.
2006; Haynes et al. 2009), including subtypes H5 and H7 (which
have potential for HPAI phenotype; see Box 1). Studies on AIV
gene segments isolated from wild birds in Australia indicate
these virusesmaintain phylogenetic relationshipswith those from
Eurasia and, to a lesser extent, North America (Donis et al. 1989;
Banks et al. 2000; Kishida et al. 2008). However, there is also
evidence for the existence of distinct Australian sublineages of
AIVs, suggesting that the maintenance host or hosts of at least
some AIV types reside in Australia (Banks et al. 2000; Bulach
et al. 2010). There is little information on the degree to which H5
subtypes found in Australia are related to the recent HPAI strains
in Asia, or on the rate of exchange of viral material between the
two continents. To resolve the rate of exchange of AIVs between
Australia and other parts of the world, whole genome sequencing
and subsequent phylogenetic analyses are required and are now
being conducted (Bulach et al. 2010).

What role does avian migration play in the long-distance
dispersal of AIVs to Australia?

Considerable focus has been placed on the role of avian migrants
in the ecology and epidemiology of AIVs globally. Given the
apparent similarity of viral diversity to the rest of Eurasia (see
above) it may be prudent to assume avian movements and
migration toAustralia playa role in the ecologyandepidemiology
of AIVs on the continent.

Less clear is inwhichbird groupsAIVofEurasianorigin could
enter Australia and how it would subsequently spread within
the Australian avifauna. Aquatic birds, such as waterfowl
(Anseriformes) and shorebirds (Charadriiformes), are thought to
be the natural reservoir for LPAI, primarily because AIVs are
susceptible to desiccationbut persistwell in aquatic environments
(Stallknecht et al. 1990; Ito et al. 1995). Australia sits at the
southern end of the East Asian–Australasian Flyway but only 35

or so species of shorebird and seven species of landbird, from an
avifauna numbering more than 700 species, are regular long-
distance migrants between Eurasia and Australia (Palaearctic
migrants) (Dingle 2004). Some of these migrants spend part of
the year in areas of South-east Asia where HPAI H5N1 has
become endemic (Tracey et al. 2004). Although the possibility
remains that migratory shorebirds are a vector for AIVs to
Australia, the evidence to date suggests the frequency of such
ingress is very low (see Haynes et al. 2009).

Of the many Palaearctic anseriforms, only the Northern
Shoveler (Anas clypeata), Northern Pintail (Anas acuta) and
Garganey (Anas querquedula) occur but they are either vagrants
or uncommon, irregular migrants to the Australo-Papuan
region (Beehler et al. 1986;Marchant andHiggins1990;Simpson
and Day 2010). The vast floodplains and coastal swamps of
southern New Guinea are a focal point for Palaearctic migrants
that make it to the region (Bishop 2006), as well as large numbers
of Australo-Papuan waterfowl (Halse et al. 1996), providing the
opportunity for transmission between Palaearctic and Australo-
Papuan species. In this context, common tropical species such as
WanderingWhistling-Duck (Dendrocygna arcuata) andMagpie
Goose (Anseranas semipalmata) may act as a bridge between
hemispheres for emerging infectious diseaseswhen theymixwith
temperate species for which the tropics are extralimital (see
McCallum et al. 2008). However, there is no evidence yet to
suggest that interspecific contact is a mode of transmission for
dispersal of AIVs through the archipelagos to Australia’s north.
Analyses of migration tracks of waterfowl, in combination with
data from experimentally inoculated birds in laboratory condi-
tions and the period for which they remain asymptomatic, sug-
gests that intercontinental dispersal of HPAI H5N1 is dependent
on successive infections of individual birds along the migration
path (Gaidet et al. 2010). Moreover, it was estimated that the
period for which an infected individual could disperse HPAI
H5N1more than 500 kmwas on average only 5–15 days per year.
Although the potential to disperse HPAI H5N1 long distances
remains if infection coincides with the migration period, more
likely is the relay infection of LPAI viruses that circulate at high
prevalence in migratory waterfowl (Gaidet et al. 2010). Thus,
there is a critical lack of understanding of the interplay between
the ecology of AIVs and the movement ecology of their avian
hosts.

What role do resident birds play in the ecology
and epidemiology of AIVs in Australia?

Initially, AIV research in Australia concentrated on endemic
strains of AIVs (Sims and Turner 2008). With the advent of
HPAI H5N1 outbreaks in Asia, the focus of research shifted
primarily to monitoring H5 prevalence among wild birds, and
refining our knowledge of the itineraries of birds migrating
between Asia and Australia (Tracey et al. 2004; McCallum
et al. 2008; Haynes et al. 2009). However, LPAI viruses of
certain haemagglutinin (HA) subtypes may switch to an HPAI
phenotype (Box 1) and within-continental strains may therefore
also be a source of new HPAI strains, as illustrated by the 1976
outbreaks in poultry (Sims and Turner 2008). As such, under-
standing transmission and maintenance of AIVs among wild
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birds and between wild birds and poultry within Australia
deserves scientific scrutiny (Box 2).

Viral prevalence inAustralianhost species appears tobe low in
comparison tofindings from related species inNorthAmerica and
Europe (Sims and Turner 2008). However, the available data for
the Australian continent is spatially, temporally and phylogenet-
ically patchy. Given this heterogeneity, and the modest number
of samples taken within any location, time period or species
(Haynes et al. 2009) it is extremely difficult to conclude that
prevalence is in fact lower than that seen in Eurasia and North
America. Further, the estimates of prevalence in North America
and Europe may be upwardly biased owing to sampling being
conducted at specific times and locations and in particular
species and individuals in order to maximise the number of
positive samples (Spackman 2009; Hoye et al. 2010b).

Sampling in Australia (and worldwide) has targeted Anser-
iformes and Charadriiformes (Senne 2003; Arzey 2004a, 2004b,
2005; Bunn 2004; Tracey et al. 2004; Turner 2004; East et al.
2008a, 2008b; McCallum et al. 2008; Sims and Turner 2008;

Hamilton et al. 2009), despite LPAI viruses having been found to
infect more than 100 host species, in 26 families, including many
whose primary habitat is not aquatic (Olsen et al. 2006). Indeed,
the question yet to be addressed is which species are reservoirs or
temporary hosts for these viruses in Australia. Research into
patterns of occurrence of antibodies toAIVsmayprovide away to
resolve this issue (see below).

Any species or avian group that have either high levels of viral
prevalence, long infectious periodsor behaviour that induceshigh
inter specific and intraspecific rates of contact may be candidates
for the maintenance of AIVs (Nishiura et al. 2009). Contact rates
are highly dependent on density and, therefore, birds that regu-
larly congregate in large numbers, such asmanywaterbirds, are of
considerable interest in our efforts to understand the ecology of
AIVs in birds. InAustralia there are also species outside of the oft-
tested Anseriformes and Charadriiformes orders that congregate
in large numbers, including some parrots (e.g. Budgerigar
(Melopsittacus undulatus) and Little Corella (Cacatua sangui-
nea)) and Australian Pelicans (Pelecanus conspicillatus) that

Box 2. Australian drought cycles, waterfowl population dynamics, and HPAI outbreaks in poultry

Climatic conditions in Australia are characterised by periods of intense rainfall followed by periods of intense drought. During the wet, waterfowl numbers
increase with many serologically naïve juveniles entering the population. During the subsequent period of drought, bird densities increase on the few
remaining wetlands (Kingsford and Norman 2002; Chambers and Loyn 2006; Kingsford et al. 2010; Norman and Chambers 2010). We hypothesise that
it is during this period of increasing densities of serologically naïve birds that AIV prevalence increases dramatically within wild populations and provide
the source of infection in domestic poultry flocks. Australia has experienced five outbreaks of HPAI in poultry since 1976 all of which were caused by
H7 viruses (Selleck et al. 2003; Hamilton et al. 2009), for which the ancestral reservoir is hypothesised to reside within Australia (Bulach et al. 2010).
Following the introduction of LPAI viruses (H7 or H5) into poultry flocks via wild birds, conditions in poultry farms then provide ideal conditions for
development of HPAI strains (Alexander 2007a). In at least two of the five outbreaks, direct contact with Australian wild waterfowl was implicated as
the source of the outbreak (Selleck et al. 2003; Hamilton et al. 2009). Besides direct contact betweenwaterfowl and poultry, intermediate avian hosts from
a wide range of bird species that have high contact rates with both freshwater habitats and poultry may play a role in the transmission of these viruses
between waterfowl and poultry (Olsen et al. 2006; Gronesova et al. 2008; Peterson et al. 2008; Hoye et al. 2010b).

A highly evocative correlation (Fig. 2) exists between outbreaks of HPAI in poultry in south-eastern Australia and rainfall (average monthly rainfall over the
preceding 12 months) across the Murray–Darling Basin and strongly suggests outbreaks occur during periods of drought (when one expects waterfowl to
concentrate on remaining wetlands) following a wet period (in which populations have grown and many birds may be immunologically naïve).
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Fig. 2. Average monthly rainfall over the preceding 12 months across the Murray–Darling Basin and
occurrence of avian influenza outbreaks in poultry.
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congregate in the arid interior to breed following major rainfall
events (Kingsford andNorman2002;Reid 2009), aswell asmany
pelagic seabirds that are colonial in behaviour and have also been
found to be hosts of influenza viruses (Laver and Webster 1972;
Downie and Laver 1973; Downie et al. 1977).

Many Australian species differ from related species at north-
ern temperate latitudes in the nature and extent of their annual
movements. Nonetheless, some species could be considered
ecologically equivalent with respect to habitat requirements,
feeding ecology, social behaviour and dispersal distances (e.g.
waterfowl: Briggs 1992; Kingsford et al. 2010). Even if some
species are not strictly LPAI reservoir hosts, they may be tem-
porary hosts and may also transmit any introduced HPAI strains
(Mackenzie et al. 1984). Thus the transmission and maintenance
of AIVs within the Australian avian community, including the
rate of contact (and viral exchange) between species deserves
further study.

In light of the differences found among northern temperate
duck species (Box 1), the susceptibility of a range of Australian
species to HPAI H5N1 also requires investigation. It is of
particular interest to ascertain whether some wild birds are
resistant to the effects of the viruses and, if so, why, as recom-
mended by Sims (2006). To date only one such study exists, in
Emus (Dromaius novaehollandiae), which, unlike many water-
fowl, showed no marked clinical signs upon infection with a
HPAI (Heckert et al. 1999).

What are the temporal and spatial dynamics of infection?

An added complication to the assessment of AIV diversity, and
the role of intercontinental migrants, nomads and residents in the
dispersal and maintenance of these viruses, is seasonality of
infection. Seasonal changes in the prevalence of infection are
a common phenomenon among infectious diseases, both in
humans and wildlife (Altizer et al. 2006). Several studies in
northern temperate biomes have suggested that the frequency of
AIV infections in wild birds may also exhibit seasonal fluctua-
tions, with a yearly peak in late summer and early autumn,
followed by low prevalence during the winter period (Hinshaw
et al. 1980; Krauss et al. 2004; Munster et al. 2007; Wallensten
et al. 2007).

Three mechanisms have been postulated to drive seasonal
variation in infection as seen in North America and western
Europe. First, an increased number of infected individuals may,
in part, be a result of the pulsed enteringof immunologically naïve
young into the population at the end of summer (Hinshaw et al.
1985). Second, the intensity of population congregations of
migratory birds often reaches its annual peak during migration
or shortly after arrival on the wintering grounds, most notably in
waterbirds. Finally, events within the annual cycle of birds may
alter the susceptibility of individual hosts, such as changes in
immune defences resulting from energetic trade-offs with moult,
breeding or long-distance migration (Hasselquist 2007; Buehler
et al. 2008; Martin II et al. 2008). Marked differences in viral
prevalence have also been found between years (e.g. Krauss et al.
2004). These patterns are little understood, but a periodic vari-
ation in immunity has been implicated (Hinshaw et al. 1985).

However, such generalisations are based on a small number of
species (migratory dabbling ducks, Anatinae), sampled predom-

inantly in autumn at specific locations. The behaviour of many
Australian species, including species already known to experi-
ence infection with AIV, is spatially and temporally more diverse
than the seasonally drivenmigration patterns seen in other parts of
the world (Kingsford and Norman 2002) where the majority of
AIV research has been conducted. As noted by the Food and
Agriculture Organisation (FAO 2007) ‘northern hemisphere
stereotypes regarding migration in waterfowl and many other
water bird species do not [necessarily] apply to southern hemi-
sphere species. SouthAfrican andAustralianwaterfowl tend to be
nomadic, their movements dictated by available food supplies
and rainfall, rather than truly migratory’. Yet, although the
realised patterns of movement and migration are markedly dif-
ferent, the feeding and breeding biology of many Australian
species are remarkably similar to that of their northern temperate
counterparts (Briggs 1992). Some species are closely related to
northern counterparts, such as the Pacific Black Duck (Anas
superciliosa) and Northern Mallard (Anas platyrhynchos), and
are likely to differ little in their susceptibility and transmission of
AIVs. Current interpretation of infection dynamics inAustralia is
also hampered by a restricted spatial coverage of sampling owing
to the large areas used by nomadic species that move across the
whole continent in response to resource availability (Tracey
2010). There are also sampling problems with temporal coverage
because movements of the most susceptible species are not as
seasonally predictable as in other biomes. Further, in light of the
somewhat sporadic (opportunistic) nature of most Australian
surveillance to date, and because virus tends to be shed for only
a matter of days, we cannot disregard the possibility that peak
infection events have not been sampled.

Since sampling large numbers of wild birds is logistically
challenging in a dynamic, event-driven system, as a first step,
Sims (2006) called for longitudinal studies of viral prevalence in
an Australian setting, where prevalence is systematically mea-
sured at regular intervals. This approach offers an opportunity to
dissect seasonal and biological drivers of infection dynamics. It
would ascertain whether infection follows seasonal cycles
or behavioural cycles such as congregation and introduction of
naïve individuals.

The specific environmental conditions in which birds reside
may also play an important role in their exposure to infection and
their ability to maintain infection within the population. For
instance, open marine environments and the Arctic tundra have
been hypothesised to be characterised by a particularly low
density and diversity of pathogens (Piersma 1997; Mendes
et al. 2005). Given that environmental transmission in aquatic
environments is considered critical to the maintenance of infec-
tion within the wild bird population (Breban et al. 2009; Rohani
et al. 2009), species inhabiting aquatic habitats have received
most interest. In Australia, many such habitats are ephemeral
(Roshier et al. 2001) and concentrations of waterbirds temporary
(Kingsford et al. 2010). Drought–rainfall cycles in Australia are
non-seasonal, running over several years and result in major
fluctuations in aquatic bird population dynamics and densities
beyond what we see in seasonal environments (Box 2).

Although there are several hypotheses as to why viral prev-
alence may vary over time and space (as above), firm data on
temporal and spatial variation are currently lacking, notably
outside North America and Europe. Therefore, in addition to
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establishing the spatial and temporal extent of variation in AIV
prevalence in Australia, there is also the prospect that the con-
trasting environmental and ecological conditions in Australia
could be a model system to help unravel the underlying mechan-
isms responsible for these patterns globally.

Does infection occur at random or only
in certain individuals?

The risk of infection may not only vary spatially and temporally,
but also between individuals. Contact rates and infection risks
also depend on the susceptibility and the behaviour of individual
birds, which may vary. It is well established that different
personalities with concomitant behavioural characteristics exist
in birds (Drent et al. 2003), which might have an effect on their
sociality and contact rates. Condition and immune function may
also vary across individuals (e.g. Ots et al. 1998; Forsman et al.
2008). In particular, prior exposure to an HA-homologous virus
of LPAI phenotype has been shown to be sufficient to reduce
clinical symptoms and viral shedding (Fereidouni et al. 2009).
Even prior infection with anHA-heterologous virus may result in
partially reduced symptoms and viral shedding (Fereidouni et al.
2009; Jourdain et al. 2010). Therefore, infection history may
importantly determine an individual’s susceptibility to HPAI
viruses. Whereas it is unlikely for migratory birds clinically
affected by HPAI viruses to disperse HPAI over large distances
(e.g. from Asia to Australia), the phenomenon of partial cross-
protective immunity increases the potential for migrants to
disperse HPAI over large distances. To date, most infection
experiments have been conducted with seronegative birds; the
studies by Fereidouni et al. (2009) and Jourdain et al. (2010)
highlight the importance of including infection history in the
design of experiments.

What effect might infection have on transmission-relevant
behaviour by hosts?

Transmission-relevant behaviour may be different between
infected and non-infected birds, either as a result of the infection
or because underlying differences may make some individuals
more susceptible to infection in the first place. Infection with
HPAI viruses can induce severe clinical signs that may have a
considerable effect on the rate of transmission of the infections.
Also LPAI infections lacking clinical signs may nevertheless
have an effect on the behaviour of free-living birds and, thus,
transmission rate (van Gils et al. 2007; Latorre-Margalef et al.
2009). Further, the number of secondary infections caused by one
infected individual (related to the amount of virus being shed and
the duration of infection) may differ between individuals owing
to variation in condition, immune function, infection history
and age, although this has received little empirical attention
(Sims 2006; Costa et al. 2010; see above). Most contemporary
epidemiological models assume a single transmission coefficient
and, as such, assume uniform contact rates, susceptibility and
infectiousness across all individuals in a population, but it is
increasingly realised that this may be a too coarse an approxi-
mation (McCallum et al. 2001; Beldomenico and Begon 2010).
It is of considerable importance that more empirical data on
individual variations in transmission become available to develop
parameters for more sophisticated epidemiological models.

How are influenza viruses transmitted among wild birds,
and between wild birds and poultry?

We are still in the very early stages of understanding the epide-
miology of AIVs amongwild birds (e.g. Nishiura et al. 2009) and
currently rely onmany assumptions regarding themechanisms of
transmission and the AIV-specific immunobiology of the species
involved. Even basic knowledge, such as contact-rates between
conspecifics and heterospecifics and the mechanisms of trans-
mission (see Box 1) are lacking. How long previously infected
birds remain immune from re-infection by homologous and
heterologousAIV subtypes is likewise poorly known (Fereidouni
et al. 2010).

Globally, few studies have examined the extent to which links
exist between the circulation of LPAI viruses in wild bird and
poultry. Even the temporal and spatial overlap of strains isolated
from poultry and wild birds has received little attention
(e.g. Halvorson et al. 1985; Hinshaw et al. 1986). Because of
the lack of knowledge on exchange rates of viruses between
wildlife and poultry, the fear of such exchange is great. Given the
economic consequences and risks to public health associated
with AIV outbreaks in poultry, the quest for an understanding of
the environmental drivers (Box 2) for these outbreaks is ongoing.
Currently, risk assessment relies on geographical information
systems (GIS) based analyses, combining bird-banding and avian
count-data with the distribution of poultry farms (Cumming et al.
2008; East et al. 2008a, 2008b). Although these analyses identify
the potential for wildlife–poultry contacts, they do not take into
account actual contact rates and pathways for infection. To our
knowledge, no study has measured these, nor examined them in
the context of the spatial and temporal dynamics of wild bird
movements.

Challenges to the investigation of AIVs in Australian
wild birds

Five years after Sims drafted his agenda for Australia’s influenza
research (Sims 2006), and despite strong political impetus for
understanding AIVs in Australian wild birds, we are still just
scratching the surface.Many gaps remain in our understanding of
AIV epidemiology globally and the gaps are notablywider in this
part of theworld. Since theoutbreakofHPAIH5N1 inAsia,many
birds have been screened in Australia but these have mainly
served to confirm earlier findings implying waterfowl and shore-
birds being themain carriers of AIVs and prevalence levels being
low. Furthermore, the insight into the movements of some target
species has notably increased with the development of satellite
tracking technologies and advances in inferring migratory con-
nectivity using molecular markers. But these movement studies
mostly lack concomitant data on viral or antibody dynamics. In
addition, many potential AIV host species may have been over-
looked. There is an irrefutable need for directed ornithological
and virological studies in light of specific scientific questions, and
for interdisciplinary collaboration, so that advances in our un-
derstanding of avian movements feed into studies of host-range,
contacts and infection dynamics and vice versa.

One of the greatest limitations to the study of LPAI viruses in
wild birds is the short period during which an individual may be
infected. Thus large numbers of birdsmust be sampled in order to
find evidence of infection in most populations. Because there are
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often difficulties in obtaining such large quantities of birds one
alternative is to use methods that expand the period of time in
which infection can be detected, that is to investigate individual
infection history, as indicated by antibodies to AIVs. Certain
antibodiesmay be detected for several months after infection (see
Box 1). Prevalence levels of antibodies are thus considerably
higher than prevalence levels of virus and investigation of
seroprevalence is potentially an effective means to screen for
potential host species (Hoye et al. 2010b). Beyond the identifi-
cation of host species, analysis of seroprevalence, combinedwith
information on contemporary infection (sampling virus directly)
can shed considerable light on the temporal dynamics of infection
(Hoye et al. 2010a). Laboratory kits for this type of work have
been developed for poultry and some species of waterfowl.
Because not all species of bird may develop identical antibodies
to AIVs, these kits need further laboratory and field validation to
be useful for the study of a wider range of birds (Brown et al.
2010).

Given the low density of researchers, the remoteness of most
locationswhere large numbers of birds reside, the erratic temporal
dynamics in the movements of some target (waterbird) species
and the short period of time during which infected birds shed
virions, it is extremely difficult to obtain a holistic view of the
composition of the viral community within Australia. Establish-
ing a continent-wide early warning system for potentially haz-
ardousAIV typeswithinAustralia also seems impossible.Amore
effective approach to further our understanding of AIV dynamics
within Australia and potential threats to wildlife, poultry and
humans alike, is highly focussed, hypothesis-driven research
targeted at unravelling AIV host–pathogen and host–host inter-
actions. For example, rather than sampling migrant and resident
species everywhere they occur, one could sample before and after
different groups come into contact with one another to determine
sources and sinks of LPAI viruses (Langstaff et al. 2009).
Preferably, future research should also be complementary to
research done elsewhere, focussing on specific pathways and
mechanisms for the maintenance of AIV infections and their
relationships to specific environmental and ecological conditions
prevailing in Australia.

Such studies are not only of immediate importance in under-
standing the ecology and epidemiology of AIVs and other
zoonotic diseases for agricultural and human health. Progress in
this field of research also contributes to building our fundamental
understanding of wildlife disease ecology in general. Many
pathogenic microorganisms are carried by birds that, by their
nature, may disperse these pathogens over wide areas (Hubalek
2004). In order to evaluate the risks involved, and ultimately
develop mitigation strategies, there is great need for enhanced
knowledge on the interactive ecology of birds and bird-mediated
pathogens. Resolving the many gaps in our knowledge identified
above is also of great interest from a fundamental evolutionary
ecological perspective since diseases are considered to play a key
role in the evolution of life histories of organisms, potentially
having great effects on their fitness.
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