Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW (Open Access)

Properties of the halophyte microbiome and their implications for plant salt tolerance

Silke Ruppel A B , Philipp Franken A and Katja Witzel A
+ Author Affiliations
- Author Affiliations

A Leibniz-Institute of Vegetable- and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.

B Corresponding author. Email: ruppel@igzev.de

This paper originates from a presentation at the COST WG2 MeetingPutting halophytes to workgenetics, biochemistry and physiologyHannover, Germany, 2831 August 2012.

Functional Plant Biology 40(9) 940-951 https://doi.org/10.1071/FP12355
Submitted: 23 November 2012  Accepted: 6 March 2013   Published: 9 April 2013

Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND

Abstract

Saline habitats cover a wide area of our planet and halophytes (plants growing naturally in saline soils) are increasingly used for human benefits. Beside their genetic and physiological adaptations to salt, complex ecological processes affect the salinity tolerance of halophytes. Hence, prokaryotes and fungi inhabiting roots and leaves can contribute significantly to plant performance. Members of the two prokaryotic domains Bacteria and Archaea, as well as of the fungal kingdom are known to be able to adapt to a range of changes in external osmolarity. Shifts in the microbial community composition with increasing soil salinity have been suggested and research in functional interactions between plants and micro-organisms contributing to salt stress tolerance is gaining interest. Among others, microbial biosynthesis of polymers, exopolysaccharides, phytohormones and phytohormones-degrading enzymes could be involved.

Additional keywords: Archaea, Bacteria, fungi, microbial community, microbial–plant interaction, PGPB, salt stress.


References

Abou-Elela SI, Kamel MM, Fawzy ME (2010) Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination 250, 1–5.
Biological treatment of saline wastewater using a salt-tolerant microorganism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqtr%2FP&md5=27c11237d681e2e370689a384c30b0b0CAS |

Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl– channels. Nature 427, 803–807.
Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFCis7o%3D&md5=f7cffb37a38cac33d92af01ff834e2eaCAS | 14985752PubMed |

Aguilera LE, Gutierrez JR, Moreno RJ (1998) Vesiculo arbuscular mycorrhizae associated with saltbushes Atriplex spp. (Chenopodiaceae) in the Chilean arid zone. Revista Chilena de Historia Natural 71, 291–302.

Al-Mailem D, Sorkhoh N, Marafie M, Al-Awadhi H, Eliyas M, Radwan S (2010) Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresource Technology 101, 5786–5792.
Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Sisbg%3D&md5=b2c5bccb62d86bdac6715d31cd8fb09eCAS | 20303746PubMed |

Aliasgharzadeh N, Rastin NS, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11, 119–122.
Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFWls78%3D&md5=9b47394ed83c667093f5ee80f81284efCAS |

Anburaj R, Nabeel MA, Sivakumar T, Kathiresan K (2012) The role of rhizobacteria in salinity effects on biochemical constituents of the halophyte Sesuvium portulacastrum. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 59, 115–119.
The role of rhizobacteria in salinity effects on biochemical constituents of the halophyte Sesuvium portulacastrum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1KrtLbO&md5=8d00da5b9314a20beae4bd5c95ac9b65CAS |

Andrade-Linares DR, Grosch R, Restrepo S, Krumbein A, Franken P (2011) Effects of dark septate endophytes on tomato plant performance. Mycorrhiza 21, 413–422.
Effects of dark septate endophytes on tomato plant performance.Crossref | GoogleScholarGoogle Scholar | 21184117PubMed |

Anton J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rossello-Mora R (2002) Salinibacter ruber gen. nov., sp nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. International Journal of Systematic and Evolutionary Microbiology 52, 485–491.

Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils 40, 157–162.
Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVChurc%3D&md5=95ed027abe8a0cf5c11cea3b3df6581dCAS |

Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant and Soil 230, 87–97.
Moisture retention properties of a mycorrhizal soil.Crossref | GoogleScholarGoogle Scholar |

Augé RM, Toler HD, Moore JL, Cho K, Saxton AM (2007) Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. Journal of Plant Physiology 164, 1289–1299.
Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo.Crossref | GoogleScholarGoogle Scholar | 17189660PubMed |

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annual Review of Plant Biology 57, 233–266.
The role of root exudates in rhizosphere interations with plants and other organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKhtr8%3D&md5=20e1fca4ab1fb03870d350786ee981dfCAS | 16669762PubMed |

Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel K-H, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist 180, 501–510.
Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKru73E&md5=ef12151c25e3cff5aea1ab8fd5a81f52CAS | 18681935PubMed |

Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Australian Journal of Crop Science 4, 378–383.

Bardavid RE, Oren A (2012) The amino acid composition of proteins from anaerobic halophilic bacteria of the order Halanaerobiales. Extremophiles 16, 567–572.
The amino acid composition of proteins from anaerobic halophilic bacteria of the order Halanaerobiales.Crossref | GoogleScholarGoogle Scholar |

Barrow JR, Aaltonen RE (2001) Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11, 199–205.
Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity.Crossref | GoogleScholarGoogle Scholar |

Barrow JR, Osuna-Avila P, Reyes-Vera I (2004) Fungal endophytes intrinsically associated with micropropagated plants regenerated from native Bouteloua eriopoda Torr. and Atriplex canescens (Pursh) Nutt. In Vitro Cellular & Developmental Biology. Plant 40, 608–612.
Fungal endophytes intrinsically associated with micropropagated plants regenerated from native Bouteloua eriopoda Torr. and Atriplex canescens (Pursh) Nutt.Crossref | GoogleScholarGoogle Scholar |

Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biology and Fertility of Soils 32, 265–272.
Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFyqtrc%3D&md5=033c29997ccaaaabec6eb1607e561baeCAS |

Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends in Plant Science 17, 478–486.
The rhizosphere microbiome and plant health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12rs70%3D&md5=0b509cdc9868e9b5274fd32bef56e6b3CAS | 22564542PubMed |

Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M (2009) Grass rhizosheaths: Associated bacterial communities and potential for nitrogen fixation. Western North American Naturalist 69, 105–114.
Grass rhizosheaths: Associated bacterial communities and potential for nitrogen fixation.Crossref | GoogleScholarGoogle Scholar |

Bian G, Zhang Y, Qin S, Xing K, Xie H, Jiang J (2011) Isolation and biodiversity of heavy metal tolerant endophytic bacteria from halotolerant plant species located in coastal shoal of Nantong. Acta Microbiologica Sinica 51, 1538–1547.

Bibi F, Chung EJ, Yoon HS, Song GC, Jeon CO, Chung YR (2011) Haloferula luteola sp nov., an endophytic bacterium isolated from the root of a halophyte, Rosa rugosa, and emended description of the genus Haloferula. International Journal of Systematic and Evolutionary Microbiology 61, 1837–1841.
Haloferula luteola sp nov., an endophytic bacterium isolated from the root of a halophyte, Rosa rugosa, and emended description of the genus Haloferula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Gmu7vL&md5=122a28729a78b99f5721196ecd508a8eCAS | 20817839PubMed |

Bibi F, Chung EJ, Khan A, Jeon CO, Chung YR (2012) Rhizobium halophytocola sp nov., isolated from the root of a coastal dune plant. International Journal of Systematic and Evolutionary Microbiology 62, 1997–2003.
Rhizobium halophytocola sp nov., isolated from the root of a coastal dune plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKrs73I&md5=0cfc4ae8439fe83de117388d46375eb5CAS | 22021574PubMed |

Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Advances in Microbial Physiology 33, 145–212.
Physiology of osmotolerance in fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1CktL8%3D&md5=96771dcd7c73d732a09f7af9b1377a28CAS | 1636508PubMed |

Borde M, Dudhane M, Jite P (2011) Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Protection 30, 265–271.
Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvV2qsL8%3D&md5=01196037b0a9cdd146cfad631d1a7515CAS |

Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, de Lajudie P, Galiana A (2012) Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiology Ecology 80, 534–547.
Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVKju7g%3D&md5=f4a69c17b65dcbfccdd67c25290c6239CAS | 22283876PubMed |

Buwalda JG, Stribley DP, Tinker PB (1983) Increased uptake of bromide and chloride by plants infected with vesicular-arbuscular mycorrhizas. New Phytologist 93, 217–225.
Increased uptake of bromide and chloride by plants infected with vesicular-arbuscular mycorrhizas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhslKnu7g%3D&md5=914e5128f63837e41dccbc957ce08067CAS |

Caravaca F, Aiguacil MM, Torres P, Roldan A (2005) Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124, 375–382.
Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKmtbbM&md5=2464ff67f5f809b27573038a6bc25c06CAS |

Ceylan S, Yilan G, Akbulut BS, Poli A, Kazan D (2012) Interplay of adaptive capabilities of Halomonas sp AAD12 under salt stress. Journal of Bioscience and Bioengineering 114, 45–52.
Interplay of adaptive capabilities of Halomonas sp AAD12 under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlyltL7J&md5=c842d1bbcfad61b3c8804de5763b047aCAS | 22575437PubMed |

Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. Journal of Bacteriology 182, 3593–3596.
Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFajsrc%3D&md5=ad29c461c5c478f53f4a13b8c5be50f8CAS | 10852895PubMed |

Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. In ‘Annual Review of Microbiology. Vol. 61’. pp. 401–422. (Annual Reviews: Palo Alto, CA)

del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Functional Plant Biology 39, 82–90.
Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVWmsw%3D%3D&md5=528332df3e1671c4b49eaaad347eeb12CAS |

Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment 32, 1682–1694.
Plant-rhizobacteria interactions alleviate abiotic stress conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKrsrvI&md5=05882d36e703a4c6a0253cec0cdc076dCAS |

Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. Journal of Experimental Botany 63, 3415–3428.
Microbial amelioration of crop salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVSitLg%3D&md5=d72f8ecff9957b6234d90c204c0fb5a8CAS | 22403432PubMed |

Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Annals of Applied Biology 157, 361–379.
Rhizobacterial mediation of plant hormone status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFelsrvL&md5=af2305d7a6690c804fe96f31c36b02d2CAS |

Doornbos RF, van Loon LC, Bakker P (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development 32, 227–243.
Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review.Crossref | GoogleScholarGoogle Scholar |

El-Tarabily KA, Youssef T (2010) Enhancement of morphological, anatomical and physiological characteristics of seedlings of the mangrove Avicennia marina inoculated with a native phosphate-solubilizing isolate of Oceanobacillus picturae under greenhouse conditions. Plant and Soil 332, 147–162.
Enhancement of morphological, anatomical and physiological characteristics of seedlings of the mangrove Avicennia marina inoculated with a native phosphate-solubilizing isolate of Oceanobacillus picturae under greenhouse conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGgs78%3D&md5=db500bc494a2380ab23a2cd190cd7a75CAS |

El-Tarabily KA, Youssef T (2011) Improved growth performance of the mangrove Avicennia marina seedlings using a 1-aminocyclopropane-1-carboxylic acid deaminase-producing isolate of Pseudoalteromonas maricaloris. Plant Growth Regulation 65, 473–483.
Improved growth performance of the mangrove Avicennia marina seedlings using a 1-aminocyclopropane-1-carboxylic acid deaminase-producing isolate of Pseudoalteromonas maricaloris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqtb%2FO&md5=c12cfcfe0684ba2c27acf82e340edb9aCAS |

English JP, Colmer TD (2011) Salinity and waterlogging tolerances in three stem-succulent halophytes (Tecticornia species) from the margins of ephemeral salt lakes. Plant and Soil 348, 379–396.
Salinity and waterlogging tolerances in three stem-succulent halophytes (Tecticornia species) from the margins of ephemeral salt lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Gnt7rO&md5=ea9302da98eb9a46cf34793ee92ed653CAS |

Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany 104, 1263–1280.
Arbuscular mycorrhizal fungi in alleviation of salt stress: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKnsLjK&md5=4e0f51c6efaf79a134e13b5a2667c81aCAS | 19815570PubMed |

Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant and Soil 321, 279–303.
Molecular communication in the rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1enurc%3D&md5=d13ce9aa569de71742977156dafdae99CAS |

Flowers TJ (2004) Improving crop salt tolerance. Journal of Experimental Botany 55, 307–319.
Improving crop salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1egtQ%3D%3D&md5=ba62fd0b22f1d3b5393d8ae4f78ee465CAS | 14718494PubMed |

Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179, 945–963.
Salinity tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqur%2FE&md5=06dcabcbf1411c34a35d7aed78f04afbCAS | 18565144PubMed |

Füzy A, Bíro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. Journal of Plant Physiology 165, 1181–1192.
Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar | 18155803PubMed |

Ghanem ME, Han RM, Classen B, Quetin-Leclerq J, Mahy G, Ruan CJ, Qin P, Perez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. Journal of Plant Physiology 167, 382–392.
Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSks7w%3D&md5=b2b4216a4944678e2b05aa120abcc48fCAS |

Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis Biology and Fertility of Soils 38, 170–175.
Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis Crossref | GoogleScholarGoogle Scholar |

Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology 54, 753–760.
Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1amtLbE&md5=689136374665c3a6ff893a1b3081fb43CAS | 17372663PubMed |

Gontia I, Kavita K, Schmid M, Hartmann A, Jha B (2011) Brachybacterium saurashtrense sp nov., a halotolerant root-associated bacterium with plant growth-promoting potential. International Journal of Systematic and Evolutionary Microbiology 61, 2799–2804.
Brachybacterium saurashtrense sp nov., a halotolerant root-associated bacterium with plant growth-promoting potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslyjsL8%3D&md5=0b744de9d37c58fb333f84b88246ca0cCAS | 21216918PubMed |

Gostinčar C, Turk M, Plemenitaš A, Gunde-Cimerman N (2009) The expressions of Δ9-, Δ12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Research 9, 247–256.
The expressions of Δ9-, Δ12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent.Crossref | GoogleScholarGoogle Scholar | 19220869PubMed |

Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitas A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiology Ecology 32, 235–240.

Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiology Reviews 35, 87–123.
Molecular biology of cyanobacterial salt acclimation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Snsg%3D%3D&md5=01bafd36763d04613d15922782531905CAS | 20618868PubMed |

Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Diversity 54, 1–10.
Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review.Crossref | GoogleScholarGoogle Scholar |

Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16, 463–471.
Properties of bacterial endophytes and their proposed role in plant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SmsrzM&md5=5a6d0b540f135ceaf9e60dfad7ca644fCAS | 18789693PubMed |

Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68, 101–110.
Jasmonates in arbuscular mycorrhizal interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFChug%3D%3D&md5=daab11b868d3e6e57e4b13c73bf8ce05CAS | 17097695PubMed |

Herrera-Medina MJ, Steinkellner S, Vierheilig H, Bote JAO, Garrido JMG (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytologist 175, 554–564.
Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFSqsbk%3D&md5=9ec1a3d5e4f77a665ee1e57fc562718eCAS | 17635230PubMed |

Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10, 175–183.
Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFyqtg%3D%3D&md5=e82ea09672673de5aff7b2c29d1d2b11CAS |

Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant and Soil 356, 265–277.
The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVWlu7g%3D&md5=4ea8a012a5fa5bd132a2f2a8d5b8f8bdCAS |

Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the SinorhizobiumMedicago model. Nature Reviews. Microbiology 5, 619–633.
How rhizobial symbionts invade plants: the SinorhizobiumMedicago model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns12htbc%3D&md5=feb84cc8d622cca5d9a2a6f4b76165eaCAS | 17632573PubMed |

Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiologia Plantarum 96, 738–744.
Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xisleqt78%3D&md5=9740371d927c787b68ceee3581f6e42bCAS |

Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist 140, 295–310.
Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi.Crossref | GoogleScholarGoogle Scholar |

Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology 38, 651–664.
Mycorrhiza-induced resistance and priming of plant defenses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptl2lu7g%3D&md5=45a7b61cfddcf924fab9341541d872f2CAS | 22623151PubMed |

Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4, 45–57.
Vesicular-arbuscular mycorrhizas and soil salinity.Crossref | GoogleScholarGoogle Scholar |

Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16, 371–379.
Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vit1Oltg%3D%3D&md5=906be3c26527b9290f25c6f096fe16d3CAS | 16525784PubMed |

Juraeva D, George E, Davranov K, Ruppel S (2006) Detection and quantification of the nifH gene in shoot and root of cucumber plants. Canadian Journal of Microbiology 52, 731–739.
Detection and quantification of the nifH gene in shoot and root of cucumber plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKnsb3N&md5=7af55870a607d98a218185fd393beeafCAS | 16917531PubMed |

Kogej T, Ramos J, Plemenitas A, Gunde-Cimerman N (2005) Halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Applied and Environmental Microbiology 71, 6600–6605.
Halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ektbbI&md5=cf77c70e748966e34a95f737b0e43bcfCAS | 16269687PubMed |

Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153, 4261–4273.
Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Q%3D&md5=5f3c220d29201e13979857d6f9c08ee0CAS | 18048939PubMed |

Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biology 3, research0008–research0008.9.
Selection in the evolution of gene duplications.Crossref | GoogleScholarGoogle Scholar | 11864370PubMed |

Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12, 199–211.
The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1WisL0%3D&md5=afa544c3c20b835517c664d3b8c8ad8cCAS | 12189475PubMed |

Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriological Reviews 38, 272–290.

Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae 127, 228–233.
Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress.Crossref | GoogleScholarGoogle Scholar |

Lenassi M, Zajc J, Gostincar C, Gorjan A, Gunde-Cimerman N, Plemenitas A (2011) Adaptation of the glycerol-3-phosphate dehydrogenase GPD1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga. Fungal Biology 115, 959–970.
Adaptation of the glycerol-3-phosphate dehydrogenase GPD1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajtLrP&md5=16e1d9b825778727432edd5aee4a0761CAS | 21944208PubMed |

Li JX, Steen H, Gygi SP (2003) Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents – the yeast salinity stress response. Molecular & Cellular Proteomics 2, 1198–1204.
Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents – the yeast salinity stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFGgu7o%3D&md5=f6f8718112067b47286636a0c0f3b34eCAS |

Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. In ‘Annual Review of Microbiology. Vol. 63.’ pp. 541–556. (Annual Reviews: Palo Alto, CA)

Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosystems 145, 88–97.
Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation.Crossref | GoogleScholarGoogle Scholar |

Munns R (2005) Genes and salt tolerance: bringing them together. New Phytologist 167, 645–663.
Genes and salt tolerance: bringing them together.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGisbfP&md5=a2d23c6d5faa06931cb8a05ae3e289bcCAS | 16101905PubMed |

Nabeel MA, Kathiresan K, Rajendran N, Ohnishi H, Hamaoka H, Omori K (2010) Contribution by microbes to the foodweb of a mangrove biotope: the approach of carbon and nitrogen stable isotopes. African Journal of Marine Science 32, 65–70.
Contribution by microbes to the foodweb of a mangrove biotope: the approach of carbon and nitrogen stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. Journal of Plant Growth Regulation 29, 6–22.
Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWltLo%3D&md5=dfbbd709e0b980b2501abb0aa9aa6d2cCAS |

Naz I, Bano A, Tamoor Ul H (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. African Journal of Biotechnology 8, 5762–5768.

Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytologist 106, 745–751.
The distribution of mycorrhizas among families of vascular plants.Crossref | GoogleScholarGoogle Scholar |

Niemetz R, Karcher U, Kandler O, Tindall BJ, Konig H (1997) The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. European Journal of Biochemistry 249, 905–911.
The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntl2hsbY%3D&md5=d9d12bc33055564414ea82e147b70c94CAS | 9395342PubMed |

Nissenbaum A (1975) The microbiology and biogeochemistry of the Dead Sea. Microbial Ecology 2, 139–161.
The microbiology and biogeochemistry of the Dead Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1KmsLc%3D&md5=e6076b1fba065ee29432f7c63861ed8cCAS |

Oren A (2002) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology 39, 1–7.
Molecular ecology of extremely halophilic Archaea and Bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslWitr0%3D&md5=37642b9f5e2fec9c5f881e2b556509adCAS | 19709178PubMed |

Oren A (2006) The order Halobacteriales. In ‘The prokaryotes. Vol. 3.’ (3rd edn) (Eds M Dworkin, S Falkow, E Rosenberg, K-H Schleifer, E Stackebrandt) pp. 113–164. (Springer: Singapore)

Parmar JH, Bhartiya S, Venkatesh KV (2011) Characterization of the adaptive response and growth upon hyperosmotic shock in Saccharomyces cerevisiae. Molecular BioSystems 7, 1138–1148.
Characterization of the adaptive response and growth upon hyperosmotic shock in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGhtrc%3D&md5=1b009fbee34f0e472761c0efa7297fccCAS | 21234493PubMed |

Piccoli P, Travaglia C, Cohen A, Sosa L, Cornejo P, Masuelli R, Bottini R (2011) An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A(1) and A(3) and jasmonic acid in chemically-defined culture medium. Plant Growth Regulation 64, 207–210.
An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A(1) and A(3) and jasmonic acid in chemically-defined culture medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVSktL8%3D&md5=08699017d6b3fdde24c8dce5f91dfb62CAS |

Plemenitaś A, Vaupotić T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Studies in Mycology 61, 67–75.
Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance.Crossref | GoogleScholarGoogle Scholar | 19287528PubMed |

Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55, 1743–1750.
Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntValt7s%3D&md5=35d293f469e0c354d54be0d021b72666CAS | 15208335PubMed |

Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development 32, 181–200.
Salinity stress alleviation using arbuscular mycorrhizal fungi. A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSitLk%3D&md5=bc20cf28a96c86f52c9f21aa8e126535CAS |

Qiang X, Weiss M, Kogel KH, Schafer P (2012) Piriformospora indica a mutualistic basidiomycete with an exceptionally large plant host range. Molecular Plant Pathology 13, 508–518.
Piriformospora indica a mutualistic basidiomycete with an exceptionally large plant host range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVant7nP&md5=80d00e29e5568373e197fd087fef704fCAS | 22111580PubMed |

Reed RH, Warr SRC, Richardson DL, Moore DJ, Stewart WDP (1985) Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiology Letters 28, 225–229.
Multiphasic osmotic adjustment in a euryhaline cyanobacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltF2rsbY%3D&md5=a60e738f16f9d0a6ffda844c8d19d00fCAS |

Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology & Biochemistry 42, 1189–1191.
Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVeiu7k%3D&md5=1e1b7254bd7f8346f4bfa1ec45f947f8CAS |

Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions 19, 827–837.
Bacterial endophytes and their interactions with hosts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslOqsr0%3D&md5=1bcd3fb6ff644731e9c0eef7ee88ef95CAS | 16903349PubMed |

Rueda-Puente E, Castellanos-Cervantes T, Diaz de Leon-Alvarez J, Preciado-Rangel P, Almaguer-Vargas G (2010) Bacterial community of rhizosphere associated to the annual halophyte Salicornia bigelovii (Torr.). Terra Latinoamericana 28, 345–353.

Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10, 137–143.
Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVOnsbg%3D&md5=8141da4190e9da1672284538600a703aCAS |

Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany 63, 4033–4044.
Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSlsLnM&md5=ea27eb4288e2704c0e11f64210f30efaCAS | 22553287PubMed |

Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12, 169–174.
Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India.Crossref | GoogleScholarGoogle Scholar | 12189470PubMed |

Sgroy V, Cassan F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology 85, 371–381.
Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKhtrnP&md5=8114ee99e1024d755df29071bc0c40acCAS | 19655138PubMed |

Shi W, Takano T, Liu S (2012) Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World Journal of Microbiology & Biotechnology 28, 2147–2157.
Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil.Crossref | GoogleScholarGoogle Scholar |

Shin D-S, Park MS, Jung S, Lee MS, Lev KH, Bae KS, Kim SB (2007) Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. Journal of Microbiology and Biotechnology 17, 1361–1368.

Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. Journal of Microbiology and Biotechnology 20, 1577–1584.
Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVChsb0%3D&md5=69327d698f279ab8de5701c086d6476fCAS | 21124065PubMed |

Sonjak S, Udovic M, Wraber T, Likar M, Regvar M (2009) Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Secovlje salterns. Soil Biology & Biochemistry 41, 1847–1856.
Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Secovlje salterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVenu7%2FP&md5=85d7d32ceb80db80b05d85cf5769682eCAS |

Steber J, Schleifer KH (1975) Halococcus morrhuae sulfated heteropolysaccharide as structural component of bacterial cell wall Archives of Microbiology 105, 173–177.
Halococcus morrhuae sulfated heteropolysaccharide as structural component of bacterial cell wallCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XjvF2msw%3D%3D&md5=9c2cfbb4bb4618432219aa8d05ff88a1CAS | 1200739PubMed |

Sundaram R, Inbaneson SJ, Muthu U, Priya SR, Andy R, Banerjee MB (2011a) Diversity of endophytic actinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. Journal of Pharmacy Research 4, 294–296.

Sundaram R, Inbaneson SJ, Muthu U, Ramakrishnan K, Andy R, Banerjee MB, Jayaprakasham R (2011b) Antibacterial activity of heterotrophic endophytes from Karangkadu mangrove ecosystem, India. Journal of Pharmacy Research 4, 195–198.

Teng S, Liu Y, Zhao L (2010) Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa. Weishengwu Xuebao 50, 1503–1509.

Thrall PH, Broadhurst LM, Hoque MS, Bagnall DJ (2009) Diversity and salt tolerance of native Acacia rhizobia isolated from saline and non-saline soils. Austral Ecology 34, 950–963.
Diversity and salt tolerance of native Acacia rhizobia isolated from saline and non-saline soils.Crossref | GoogleScholarGoogle Scholar |

Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biology and Fertility of Soils 47, 907–916.
Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCmtbbJ&md5=e616f427d85b666e4497b565b2f33d10CAS |

Turk M, Mejanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitas A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8, 53–61.
Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1ertA%3D%3D&md5=f041e2c0a08738369312453839773a62CAS | 15064990PubMed |

Upadhyay S, Singh J, Singh D (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21, 214–222.
Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVyrsL0%3D&md5=9cfb1c5b5ec06005d4bb7ed0118f1cc1CAS |

van de Vossenberg JLCM, Driessen AJM, Konings WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2, 163–170.
The essence of being extremophilic: the role of the unique archaeal membrane lipids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVOqtrc%3D&md5=944a4d5b99ccfef80e21e2a97250d1e5CAS |

van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36, 453–483.
Systemic resistance induced by rhizosphere bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlaltLo%3D&md5=4bbed2849d26d40d3388148e203845a5CAS | 15012509PubMed |

Vaupotic T, Plemenitas A (2007) Differential gene expression and HogI interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8, 280
Differential gene expression and HogI interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii.Crossref | GoogleScholarGoogle Scholar | 17705830PubMed |

Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. nov. sp. nov., a new root-colonizing fungus. Mycologia 90, 896–903.
Piriformospora indica, gen. nov. sp. nov., a new root-colonizing fungus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFGntLk%3D&md5=ba844a645995ee61b3d01ae4e64ab8f1CAS |

Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255, 571–586.
Plant growth promoting rhizobacteria as biofertilizers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Ojsr0%3D&md5=b8236efc70c9661453e1e21da8436942CAS |

Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T (2002) Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proceedings of the National Academy of Sciences of the United States of America 99, 4109–4114.
Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Kks78%3D&md5=87864016ce575865a65540edae3ea32aCAS | 11891307PubMed |

Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America 102, 13 386–13 391.
The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygsbnJ&md5=ca8ebe026aacab08dbf42f8d90875ad2CAS |

Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14, 133–137.
Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta.Crossref | GoogleScholarGoogle Scholar | 12827474PubMed |

Weiß M, Sykorova Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS ONE 6, e16 793
Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes.Crossref | GoogleScholarGoogle Scholar |

Witzel K, Gwinn-Giglio M, Nadendla S, Shefchek K, Ruppel S (2012) Genome sequence of Enterobacter radicincitans DSM16656T, a plant growth-promoting endophyte. Journal of Bacteriology 194, 5469
Genome sequence of Enterobacter radicincitans DSM16656T, a plant growth-promoting endophyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWlu7%2FP&md5=8c42fe381c0e8e6ac733919db8ab8723CAS | 22965092PubMed |

Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant, Soil and Environment 56, 470–475.

Wutipraditkul N, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Nakamura T, Shikata M, Takabe T (2005) Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Applied and Environmental Microbiology 71, 4176–4184.
Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslGitr4%3D&md5=6b4bcd101b5b79f556f05df8ba4e08d3CAS | 16085800PubMed |

Yang YH, Chen YN, Li WH (2008) Arbuscular mycorrhizal fungi infection in desert riparian forest and its environmental implications: a case study in the lower reach of Tarim River. Progress in Natural Science 18, 983–991.
Arbuscular mycorrhizal fungi infection in desert riparian forest and its environmental implications: a case study in the lower reach of Tarim River.Crossref | GoogleScholarGoogle Scholar |

Yasmin H, Bano A (2011) Isolation and characterisation of phosphate solubilizing bacteria from rhizosphere soil of weeds of Khewra salt range and attock. Pakistan Journal of Botany 43, 1663–1668.

Yoshimura H, Kotake T, Aohara T, Tsumuraya Y, Ikeuchi M, Ohmori M (2012) The role of extracellular polysaccharides produced by the terrestrial cyanobacterium Nostoc sp. strain HK-01 in NaCl tolerance. Journal of Applied Phycology 24, 237–243.
The role of extracellular polysaccharides produced by the terrestrial cyanobacterium Nostoc sp. strain HK-01 in NaCl tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Wms78%3D&md5=d7de11b333aa9d650b69db92071aed25CAS |

Zhong NQ, Han LB, Wu XM, Wang LL, Wang F, Ma YH, Xia GX (2012) Ectopic expression of a bacterium NhaD-type Na+/H+ antiporter leads to increased tolerance to combined salt/alkali stresses. Journal of Integrative Plant Biology 54, 412–421.
Ectopic expression of a bacterium NhaD-type Na+/H+ antiporter leads to increased tolerance to combined salt/alkali stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wksb7O&md5=cda376b9e42e5fb0250dede889d048deCAS | 22583823PubMed |

Zhou M, Chen W, Chen H, Wei G (2012) Draft genome sequence of Mesorhizobium alhagi CCNWXJ12–2(Tau), a novel salt-resistant species isolated from the desert of north-western China. Journal of Bacteriology 194, 1261–1262.
Draft genome sequence of Mesorhizobium alhagi CCNWXJ12–2(Tau), a novel salt-resistant species isolated from the desert of north-western China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtV2it7o%3D&md5=9b533996c9fa7b3d54c2536da06e4468CAS | 22328758PubMed |

Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition 31, 497–513.
Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislWju7g%3D&md5=5355f3fdb8c14d42cc9718b796f94f32CAS |