CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>        Online Early    

Review on shape formation in epidermal pavement cells of the Arabidopsis leaf

Eveline Jacques A B , Jean-Pierre Verbelen A and Kris Vissenberg A C

A Department of Biology, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
B Present address: Department of Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
C Corresponding author. Email: kris.vissenberg@uantwerp.be

Functional Plant Biology - http://dx.doi.org/10.1071/FP13338
Submitted: 22 November 2013  Accepted: 22 April 2014   Published online: 10 June 2014


 
PDF (720 KB) $25
 Export Citation
 Print
  
Abstract

Epidermal pavement cells appear with a fascinating irregular wavy shape in the Arabidopsis thaliana leaf. This review addresses the questions of why this particular shape is produced during leaf development and how this is accomplished. To answer the first question most probably waviness offers some biomechanical benefits over other organisations. Different positions of lobe-formation are therefore explored and discussed. At the moment, however, no hard evidence that favours any one morphology is available. The latter question comprises the biomechanical accomplishment of shape and refers to the cell wall and cytoskeletal involvement herein. A current model for pavement cell development is discussed but remaining questions and pitfalls are put forward. Moreover, an overview of the genetic and biochemical regulatory pathways that are described up to date in the literature is presented.

Additional keywords: Arabidopsis thaliana, cell shape formation, cell wall, cytoskeleton, leaf development, pavement cell.


References

Baburaj EG, Starikov D, Evans J, Shafeev GA, Bensaoula A (2007) Enhancement of adhesive joint strength by laser surface modification. International Journal of Adhesion and Adhesives 27, 268–276.
CrossRef | CAS |

Bannigan A, Baskin TI (2005) Directional cell expansion – turning toward actin. Current Opinion in Plant Biology 8, 619–624.
CrossRef | CAS | PubMed |

Baskin TI, Beemster GT, Judy-March JE, Marga F (2004) Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiology 135, 2279–2290.
CrossRef | CAS | PubMed |

Basu D, El-Assal SED, Le J, Mallery EL, Szymanski DB (2004) Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131, 4345–4355.
CrossRef | CAS | PubMed |

Basu D, Le J, El-Assal SED, Huang S, Zhang C, Mallery EL, Koliantz G, Staiger CJ, Szymanski DB (2005) DISTORTED3/ SCAR2 is a putative Arabidopsis WAVE complex subunit that activates the ARP2/3 complex and is required for epidermal morphogenesis. The Plant Cell 17, 502–524.
CrossRef | PubMed |

Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB (2008) A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proceedings of the National Academy of Sciences of the United States of America 105, 4044–4049.
CrossRef | CAS | PubMed |

Brembu T, Winge P, Seem M, Bones AM (2004) NAPP and PIRP encode subunits of a putative Wave regulatory protein complex involved in plant morphogenesis. The Plant Cell 22, 1006–1018.

Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser M-T, Persson S (2012) POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. The Plant Cell 24, 163–177.
CrossRef | CAS | PubMed |

Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiology 146, 97–107.
CrossRef | CAS | PubMed |

Cosgrove DJ (2005) Growth of the plant cell wall. Nature Reviews. Molecular Cell Biology 6, 850–861.
CrossRef | CAS | PubMed |

Craddock C, Lavagi I, Yang Z (2012) New insights into Rho signaling from plant ROP/Rac GTPases. Trends in Cell Biology 22, 492–501.
CrossRef | CAS | PubMed |

Crowell EF, Gonneau M, Vernhettes S, Höfte H (2010) Regulation of anisotropic cell expansion in higher plants. Comptes Rendus Biologies 333, 320–324.
CrossRef | CAS | PubMed |

Cutler DF, Botha T, Stevenson DW (2008) The leaf. In ‘Plant anatomy: an applied approach’. pp. 70–121. (Blackwell Publishing: Hoboken, NJ)

Deeks MJ, Kaloriti D, Davies B, Malho R, Hussey PJ (2004) Arabidopsis NAP1 is essential for ARP2/3-dependent trichome morphogenesis. Current Biology 14, 1410–1414.
CrossRef | CAS | PubMed |

El-Assal SE, Le J, Basu D, Mallery EL, Szymanski DB (2004) Arabidopsis GNARLED encodes a NAP125 homologue that positively regulates ARP2/3. Current Biology 14, 1405–1409.
CrossRef | CAS |

Emons AM, Mulder BM (1998) The making of the architecture of the plant cell wall: how cells exploit geometry. Proceedings of the National Academy of Sciences of the United States of America 95, 7215–7219.
CrossRef | CAS | PubMed |

Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordial by the cell wall protein expansin. Science 276, 1415–1418.
CrossRef | CAS |

Frank MJ, Cartwright HN, Smith LG (2003) Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development 130, 753–762.
CrossRef | CAS | PubMed |

Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. The Plant Cell 14, 777–794.
CrossRef | CAS | PubMed |

Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120, 687–700.
CrossRef | CAS | PubMed |

Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signalling pathway controls cortical microtubule ordering and cell expansion. Current Biology 19, 1827–1832.
CrossRef | CAS | PubMed |

Glover BJ (2000) Differentiation in plant epidermal cells. Journal of Experimental Botany 51, 497–505.
CrossRef | CAS | PubMed |

Gómez LD, Baud S, Gilday A, Li Y, Graham A (2006) Delayed embryo development in the ARABIDOPSIS TREHALOSE-6-PHOSPHATE SYNTHASE 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. The Plant Journal 46, 69–84.
CrossRef | PubMed |

Guo H, Li L, Aluru M, Aluru S, Yin Y (2013) Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology 16, 545–553.
CrossRef | CAS | PubMed |

Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biology 11, 797–806.
CrossRef | CAS | PubMed |

Hectors K, Jacques E, Prinsen E, Guisez Y, Verbelen JP, Jansen MAK, Vissenberg K (2010) UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. Journal of Experimental Botany 61, 4339–4349.
CrossRef | CAS | PubMed |

Himmelspach R, Williamson RE, Wasteneys GO (2003) Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. The Plant Journal 36, 565–575.
CrossRef | CAS | PubMed |

Javelle M, Vernoud V, Rogowsky PM, Ingram GC (2011) Epidermis: the formation and functions of a fundamental plant tissue. New Phytologist 189, 17–39.
CrossRef | CAS | PubMed |

Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytoshrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes & Development 12, 2381–2391.
CrossRef | CAS |

Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO Journal 21, 1267–1279.
CrossRef | CAS | PubMed |

Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. The Plant Journal 36, 94–104.
CrossRef | CAS | PubMed |

Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005) CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. The Plant Journal 41, 710–721.
CrossRef | CAS | PubMed |

Kutschera U (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Annals of Botany 101, 615–621.
CrossRef | CAS | PubMed |

Le J, Mallery EL, Zhang C, Brankle S, Szymanski DB (2006) Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex that selectively stabilizes the Arp2/3 activator SCAR2. Current Biology 16, 895–901.
CrossRef | CAS | PubMed |

Lee GY, Cheung K, Chang W, Lee LP (2000) Mechanical interlocking with precisely controlled nano- and microscale geometries for implantable microdevices. In’ Proceedings of the 1st annual international IEEE-EMBS special topic conference in microtechnologies in medicine and biology’. Available at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=893727 [Verified 30 April 2014]

Li H, Xu T, Lin D, Wen M, Xie M, Duclercq J, Bielach A, Kim J, Reddy GV, Zuo J, Benkova E, Friml J, Guo H, Yang Z (2013) Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis. Cell Research 23, 290–299.
CrossRef | CAS | PubMed |

Maris A, Kaewthai N, Eklöf JM, Miller JG, Brumer H, Fry SC, Verbelen J-P, Vissenberg K (2011) Characterization of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis reveals specific enzymatic properties. Journal of Experimental Botany 62, 261–271.
CrossRef | CAS | PubMed |

Miedes E, Suslov D, Vandenbussche F, Kenobi K, Ivakov A, Van Der Straeten D, Lorences EP, Mellerowicz EJ, Verbelen JP, Vissenberg K (2013) Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. Journal of Experimental Botany 64, 2481–2497.
CrossRef | CAS | PubMed |

Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biology 10, e1001299
CrossRef | CAS | PubMed |

Nelissen H, Blarke JH, De Block M, De Block S, Vanderhaeghen R, Zielinski RE, Dyer T, Lust S, Inze D, Van Lijsebettens M (2003) DRL1, a homolog of the yeast TOT4/KTI12 protein, has a function in meristem activity and organ growth in plants. The Plant Cell 15, 639–654.
CrossRef | CAS | PubMed |

Niklas KJ (1999) A mechanical perspective on foliage leaf form and function. New Phytologist 143, 19–31.
CrossRef |

Nishitani K, Vissenberg K (2007) Roles of the XTH protein family in the expanding cell. In ‘The expanding cell. Plant cell monographs. Vol. 5’. (Eds JP Verbelen, K Vissenberg) pp.89–116. (Springer: Berlin)

Panteris E, Galatis B (2005) The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytologist 167, 721–732.
CrossRef | CAS | PubMed |

Panteris E, Apostolakos P, Galatis B (1993) Microtubules and morphogenesis in ordinary epidermal cells of Vigna sinensis leaves. Protoplasma 174, 91–100.
CrossRef |

Panteris E, Apostolakos P, Galatis B (1994) Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism. New Phytologist 127, 771–780.
CrossRef |

Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495.
CrossRef | CAS | PubMed |

Qiu JL, Jilk R, Marks MD, Szymanski DB (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. The Plant Cell 14, 101–118.
CrossRef | CAS | PubMed |

Smith LG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annual Review of Cell and Developmental Biology 21, 271–295.
CrossRef | CAS | PubMed |

Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306, 2206–2211.
CrossRef | CAS | PubMed |

Sugimoto K, Himmelspach R, Williamson RE, Wasteneys GO (2003) Mutation or drug-dependant microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. The Plant Cell 15, 1414–1429.
CrossRef | CAS | PubMed |

Sun Y, Fan X-Y, Cao D-M, Tang W, He K, Zhu J-Y, He J-X, Bai M-Y, Zhu S, Oh E, Patil S, Kim T-W, Ji H, Wong WH, Rhee SY, Wang Z-Y (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19, 765–777.
CrossRef | CAS | PubMed |

Suslov D, Verbelen J-P, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. Journal of Experimental Botany 60, 4175–4187.
CrossRef | CAS | PubMed |

Thompson DS (2005) How do cell walls regulate plant growth? Journal of Experimental Botany 56, 2275–2285.
CrossRef | CAS | PubMed |

Van Sandt V, Suslov D, Verbelen J-P, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Annals of Botany 100, 1467–1473.
CrossRef | CAS | PubMed |

Vissenberg K, Martinez-Vilchez IM, Verbelen J-P, Miller JG, Fry SC (2000) In vivo colocalisation of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. The Plant Cell 12, 1229–1237.
CrossRef | CAS | PubMed |

Vissenberg K, Fry SC, Verbelen J-P (2001) Root hair initiation is coupled to a highly localized increaze of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiology 127, 1125–1135.
CrossRef | CAS | PubMed |

Vissenberg K, Van Sandt V, Fry SC, Verbelen J-P (2003) Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichoblasts of all vascular plants from Selaginella to Zea mays. Journal of Experimental Botany 54, 335–344.
CrossRef | CAS | PubMed |

Wasteneys GO, Galway ME (2003) Remodelling the cytoskeleton for growth and form: an overview with some new views. Annual Review of Plant Biology 54, 691–722.
CrossRef | CAS | PubMed |

Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing plant cell walls. Journal of Microscopy 188, 51–61.
CrossRef | CAS | PubMed |

Watson RW (1942) The effect of cuticular hardening on the form of epidermal cells. New Phytologist 41, 223–229.
CrossRef |

Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411, 610–613.
CrossRef | CAS | PubMed |

Xu T, Wen M, Nagawa S, Fu Y, Chen J-G, Wu M-J, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and Rho GTPase-bound auxin signalling controls cellular interdigitation in Arabidopsis. Cell 143, 99–110.
CrossRef | CAS | PubMed |

Xu T, Nagawa S, Yang Z (2011) Uniform auxin triggers the Rho GTPase-dependent formation of interdigitation patterns in pavement cells. Small GTPases 2, 227–232.
CrossRef | PubMed |

Yanagisawa M, Zhang C, Szymanski DB (2013) ARP2/3-dependent growth in the plant kingdom: SCARs for life. Frontiers in Plant Science 4,
CrossRef | PubMed |

Zhang X, Dyachok J, Krishnukumar S, Smith LG, Oppenheimer DG (2005) IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein 2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. The Plant Cell 17, 2314–2326.
CrossRef | CAS | PubMed |

Zhang C, Eileen L, Schlueter J, Huang S, Fan Y, Brankle S, Staiger CJ, Szymanski DB (2008) Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. The Plant Cell 20, 995–1011.
CrossRef | CAS | PubMed |

Zhang C, Kotchoni SO, Samuels AL, Szymanski DB (2010) SPIKE1 signals originate from and assemble specialized domains of the endoplasmic reticulum. Current Biology 20, 2144–2149.
CrossRef | CAS | PubMed |

Zhang C, Halsey LE, Szymanski DB (2011) The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biology 11, 27
CrossRef | PubMed |

Zhang C, Mallery E, Reagan S, Boyko VP, Kotchni SO, Szymanski DB (2013a) The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. Plant Physiology 162, 689–706.
CrossRef | CAS | PubMed |

Zhang C, Mallery EL, Szymanski DB (2013b) ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Frontiers in Plant Science 4, 238
CrossRef | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014