Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
EVOLUTIONARY REVIEW

Gene families and evolution of trehalose metabolism in plants

John E. Lunn
+ Author Affiliations
- Author Affiliations

A Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14424 Potsdam, Germany. Email: lunn@mpimp-golm.mpg.de

B This paper originates from a presentation at the 8th International Congress of Plant Molecular Biology, Adelaide, Australia, August 2006.

Functional Plant Biology 34(6) 550-563 https://doi.org/10.1071/FP06315
Submitted: 29 November 2006  Accepted: 11 January 2007   Published: 1 June 2007

Abstract

The genomes of Arabidopsis thaliana L., rice (Oryza sativa L.) and poplar (Populus trichocarpa Torr. & A.Gray) contain large families of genes encoding trehalose-phosphate synthase (TPS) and trehalose-phosphatase (TPP). The class I subfamily of TPS genes encodes catalytically active TPS enzymes, and is represented by only one or two genes in most species. A. thaliana is atypical in having four class I TPS genes, three of which (AtTPS2–4) encode unusual short isoforms of TPS that appear to be found only in members of the Brassicaceae family. The class II TPS genes encode TPS-like proteins with a C-terminal TPP-like domain, but there is no experimental evidence that they have any enzymatic activity and their function is unknown. Both classes of TPS gene are represented in the genomes of chlorophyte algae (Ostreococcus species) and non-flowering plants [Physcomitrella patens (Hedw.) Bruch & Schimp.(B.S.G.) and Selaginella moellendorffii (Hieron. in Engl. & Prantl.)]. This survey shows that the gene families encoding the enzymes of trehalose metabolism are very ancient, pre-dating the divergence of the streptophyte and chlorophyte lineages. It also provides a frame of reference for future studies to elucidate the function of trehalose metabolism in plants.

Additional keywords: trehalose-phosphate synthase, trehalose-phosphatase, trehalase.


References


Aeschbacher RA, Müller J, Boller T, Wiemken A (1999) Purification of the Trehalase MTRE1 from soybean nodules and cloning of its cDNA. GMTRE1 is expressed at a low level in multiple tissues. Plant Physiology 119, 489–496.
Crossref | GoogleScholarGoogle Scholar | PubMed | [Verified 18 February 2007]

Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H , et al. (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proceedings of the National Academy of Sciences USA 100, 8007–8012.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T , et al. (2006) The rice annotation project database (RAP-DB): hub for Oryza sativa spp. japonica genome information. Nucleic Acids Research 34, D741–D744.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Osuna D, Usadel B, Morcuende R, Gibon Y, Blasing OE, Hohne M , et al. (2007) Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. The Plant Journal 49, 463–491.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357–358.
PubMed |
open url image1

Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. Journal of Plant Physiology 152, 525–532. open url image1

Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Molecular Biology 58, 751–762.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Price J, Laxmi A, St. Martin SK, Jang J-C (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. The Plant Cell 16, 2128–2150.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rana D, van den Booqaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of microstructure of genome segments in Brassica napus and its diploid relatives. The Plant Journal 40, 725–733.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rao NR, Kumaran D, Seetharaman J, Bonanno JB, Burley SK, Swaminathan S (2006) Crystal structure of trehalose-6-phosphate phosphatase-related protein: Biochemical and biological implications. Protein Science 15, 1735–1744.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Research 6, 902–913.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reignault P, Cogan A, Muchembled J, Lounes-Hadj Sahraoui A, Durand R, Sancholle M (2001) Trehalose induces resistance to powdery mildew in wheat. New Phytologist 149, 519–529.
Crossref | GoogleScholarGoogle Scholar | open url image1

Romero C, Bellës JM, Vayá JL, Serrano R, Culiáñez-Maciá FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201, 293–297.
Crossref |
open url image1

Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441, 227–230.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA 100, 6849–6854.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schmid M, Davison TS, Henz SR, Pape UJ, Bemar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nature Genetics 37, 501–506.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Secks ME, Richardson MD, West CP, Marlatt ML, Murphy JB (1999) Role of trehalose in desiccation tolerance of endophyte-infected tall fescue. Arkansas Agricultural Experimental Station Research Series 475, 134–140. open url image1

The Arabidopsis Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tunnacliffe A, Lapinski J (2003) Resurrecting van Leewenhoek’s rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philosophical Transactions of the Royal Society of London Series B 358, 1755–1771.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U , et al. (2006) The genome of black cottonwood Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604.
Crossref | PubMed |
open url image1

Vogel G, Aeschbacher RA, Müller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. The Plant Journal 13, 673–683.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boller T, Wiemken A, Aeschbacher RA, Wingler A (2001) Trehalose metabolism of Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. Journal of Experimental Botany 52, 1817–1826.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wera S, de Schrijver E, Geyskens I, Nwaka S, Thevelein JM (1999) Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochemical Journal 343, 621–626.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Xie Z-P, Staehelin C, Broughton WJ, Wiemken A, Boller T, Müller J (2003) Accumulation of soluble carbohydrates, trehalase and sucrose synthase in effective (Fix+) and ineffective (Fix–) nodules of soybean cultivars that differentially nodulate with Bradyrhizobium japonicum. Functional Plant Biology 30, 965–971.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zentella R, Mascorro-Gallardo JO, van Dijck P, Folch-Mallol J, Bonini B , et al. (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiology 119, 1473–1482.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7, 203–214.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1