Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Salt stress, signalling and redox control in seeds

Ilse Kranner A C and Charlotte E. Seal B
+ Author Affiliations
- Author Affiliations

A Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.

B Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK.

C Corresponding author. Email: ilse.kranner@uibk.ac.at

This paper originates from a presentation at the COST WG2 Meeting ‘Putting halophytes to work – genetics, biochemistry and physiology’ Hannover, Germany, 28–31 August 2012.

Functional Plant Biology 40(9) 848-859 https://doi.org/10.1071/FP13017
Submitted: 18 January 2013  Accepted: 13 March 2013   Published: 23 April 2013

Abstract

Abiotic stresses, including salt stress, can impair electron transport chains, thereby increasing the production of reactive oxygen species (ROS). An excess of ROS can damage macromolecular and cellular structure, but ROS are also key components of signalling networks, through which they regulate developmental processes. Surprisingly little is known about the effects of salt stress upon seeds given their pivotal role in plant reproduction and dispersal. This review provides information on tolerance mechanisms and redox control in relation to seed metabolism and performance. First, the effects of salt stress throughout the seed life cycle are discussed, comprising salt effects on the mother plant and its implications on seed development, salt uptake upon seed imbibition and effects on seed germination. Then, responses to elevated salt concentrations are discussed according to a recently proposed triphasic seed stress model comprising the phases alarm, resistance and exhaustion. Implications of redox control in seeds on the physiological, biochemical and molecular level are considered and the review concludes with a perspective on future research in relation to salt stress and seed biology.

Additional keywords: antioxidants, glycophyte, halophyte, reactive oxygen species, salt, seed, sea water, signalling, sodium, stress.


References

Abdullah Z, Khan MA, Flowers TJ (2001) Causes of sterility in seed set of rice under salinity stress. Journal Agronomy & Crop Science 187, 25–32.
Causes of sterility in seed set of rice under salinity stress.Crossref | GoogleScholarGoogle Scholar |

Afzal I, Basra SMA, Hameed A, Farooq M (2006) Physiological enhancements for alleviation of salt stress in wheat. Pakistan Journal of Botany 38, 1649–1659.

Agarwal S, Pandey V (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum 48, 555–560.
Antioxidant enzyme responses to NaCl stress in Cassia angustifolia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Wnt7g%3D&md5=1eb2069d5151c864bb736a833d60701fCAS |

Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum 53, 243–248.
Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2ktLg%3D&md5=0aa0eaacacdc08ca81267bcffb7468e1CAS |

Al-Karaki GN (2001) Germination, sodium and potassium concentrations of barley seeds as influenced by salinity. Journal of Plant Nutrition 24, 511–522.
Germination, sodium and potassium concentrations of barley seeds as influenced by salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlOlsL0%3D&md5=07125723fa03964b752cfe118bb8f7d0CAS |

Alhdad GM, Seal CE, Al-Azzawi MJ, Flowers TJ (2013) The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environmental and Experimental Botany 87, 120–125.
The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1KqtL0%3D&md5=5e935ae37e77cb22b60575c425f66ea2CAS |

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.
Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisL0%3D&md5=bb62c10883f0f45b9778cbbe05a12a70CAS | 15377225PubMed |

Babajani G, Effendy J, Plant AL (2009) Sl-SRO(l)under-bar1 increases salt tolerance and is a member of the radical-induced cell death 1-similar to RCD1 gene family of tomato. Plant Science 176, 214–222.
Sl-SRO(l)under-bar1 increases salt tolerance and is a member of the radical-induced cell death 1-similar to RCD1 gene family of tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFagtbrF&md5=a7b304423d63e672b83f597de3b695efCAS |

Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331, 806–814.
From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Shtr7J&md5=400d9c1bfe6b3325ac57af58a1a0ac3cCAS | 18926495PubMed |

Begcy K, Mariano ED, Mattiello L, Nunes AV, Mazzafera P, Maia IG, Menossi M (2011) An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS ONE 6, e23776
An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WrtrfO&md5=7d43f533d1fe29d9275fdd77b9cf3a92CAS | 21912606PubMed |

Berrie AMM, Drennan DSH (1971) The effect of hydration–dehydration on seed germination. New Phytologist 70, 135–142.
The effect of hydration–dehydration on seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXhtVygtro%3D&md5=a1a706dfb404da377159be70cfa4b18aCAS |

Bewley JD (1997) Seed germination and dormancy. The Plant Cell 9, 1055–1066.
Seed germination and dormancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1ShtLs%3D&md5=8f2724fb8821db8cfe0e41b9bc516a35CAS | 12237375PubMed |

Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany 91, 179–194.
Antioxidants, oxidative damage and oxygen deprivation stress: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVCksbw%3D&md5=7eb817ec347d1442f49f210c3a527914CAS | 12509339PubMed |

Borisjuk L, Rolletschek H (2009) The oxygen status of the developing seed. New Phytologist 182, 17–30.
The oxygen status of the developing seed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKhtb4%3D&md5=55531a06f0701a9c0d04728ce12342c4CAS | 19207684PubMed |

Boscaiu M, Estrelles E, Soriano P, Vicente O (2005) Effects of salt stress on the reproductive biology of the halophyte Plantago crassifolia. Biologia Plantarum 49, 141–143.
Effects of salt stress on the reproductive biology of the halophyte Plantago crassifolia.Crossref | GoogleScholarGoogle Scholar |

Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiology 94, 840–849.
A water relations analysis of seed germination rates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnhvF2gtA%3D%3D&md5=9af16e832ba4d95acc473c29697fe2e8CAS | 16667786PubMed |

Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, Li C (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiology 150, 463–481.
The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFahsb4%3D&md5=3336c876631c7cf73385b0ff6b77d056CAS | 19286935PubMed |

Chan Z, Grumet R, Loescher W (2011) Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. Journal of Experimental Botany 62, 4787–4803.
Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejs77N&md5=4bb29fc0d1f95ef774afeeea3d8216deCAS | 21821598PubMed |

Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology 158, 340–351.
Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFSntro%3D&md5=1273d7c969b7133cf58dfa0c9d89ad81CAS | 22095046PubMed |

Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regulation 62, 241–255.
Desiccation tolerant plants as model systems to study redox regulation of protein thiols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlygs7%2FL&md5=08146fea45cace2ac1f9078d8f989833CAS |

Dash M, Panda SK (2001) Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds. Biologia Plantarum 44, 587–589.
Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1KjtrY%3D&md5=e20fafd726cdab696cfd659818915bb7CAS |

De Gara L, de Pinto MC, Moliterni VM, D’Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. Journal of Experimental Botany 54, 249–258.
Redox regulation and storage processes during maturation in kernels of Triticum durum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlOiurY%3D&md5=96c7a91da02261e73493e6d5b82d1d84CAS | 12493852PubMed |

De Gara L, Locato V, Dipierro S, de Pinto MC (2010) Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Respiratory Physiology & Neurobiology 173, S13–S19.
Redox homeostasis in plants. The challenge of living with endogenous oxygen production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVOis70%3D&md5=de63cc2b22ad785bb119b08cba6b1c69CAS |

Debez A, Hamed KB, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant and Soil 262, 179–189.
Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlGnsrg%3D&md5=d68e27d78607a3657c084511b3dcd433CAS |

DeRose-Wilson L, Gaut BS (2011) Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS ONE 6, e22832
Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGhtL3L&md5=1679eb72fe54fd6a6ee2242d68460ea5CAS | 21857956PubMed |

Divi UK, Rahmn T, Krishna P (2010) Brassinosteriod-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology 10, 151
Brassinosteriod-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways.Crossref | GoogleScholarGoogle Scholar | 20642851PubMed |

El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signaling & Behavior 3, 175–182.
Oxidative signaling in seed germination and dormancy.Crossref | GoogleScholarGoogle Scholar |

Elsey-Quirk T, Middelton BA, Proffitt CE (2009) Seed floatation and germination of salt marsh plants: the effects of stratification, salinity and/or inundation regime. Aquatic Biology 91, 40–46.

Farnsworth E (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annual Review of Ecology and Systematics 31, 107–138.
The ecology and physiology of viviparous and recalcitrant seeds.Crossref | GoogleScholarGoogle Scholar |

Fernández-Trijueque J, de Dios Barajas-Lopez J, Chueca A, Cazalis R, Sahrawy M, Serrato AJ (2012) Plastid thioredoxins f and m are related to the developing and salinity response of post-germinating seeds of Pisum sativum. Plant Science 188–189, 82–88.
Plastid thioredoxins f and m are related to the developing and salinity response of post-germinating seeds of Pisum sativum.Crossref | GoogleScholarGoogle Scholar | 22525247PubMed |

Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytologist 171, 501–523.
Seed dormancy and the control of germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVertbw%3D&md5=cbd63b1493ab485ed0bb64f1cbbbaa66CAS | 16866955PubMed |

Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179, 945–963.
Salinity tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqur%2FE&md5=06dcabcbf1411c34a35d7aed78f04afbCAS | 18565144PubMed |

Foyer C, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17, 1866–1875.
Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1yjt7o%3D&md5=ebd9b5080e2dbd4282f86e3e72a9e3f0CAS | 15987996PubMed |

Gu D, Liu X, Wang M, Zheng J, Hou W, Wang G, Wang J (2008) Overexpression of ZmOPR1 in Arabidopsis enhanced the tolerance to osmotic and salt stress during seed germination. Plant Science 174, 124–130.
Overexpression of ZmOPR1 in Arabidopsis enhanced the tolerance to osmotic and salt stress during seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlentA%3D%3D&md5=23be97b84d8a1edf03601d7d604662acCAS |

Guo YQ, Tian ZY, Qin GY, Yan DL, Zhang J, Zhou WZ, Qin P (2009) Gene expression of halophyte Kosteletzkya virginica seedlings under salt stress at early stage. Genetica 137, 189–199.
Gene expression of halophyte Kosteletzkya virginica seedlings under salt stress at early stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Whur7F&md5=2fd18e886c7726c89b927c4525a235ceCAS | 19588254PubMed |

Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology 141, 312–322.
Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aksLg%3D&md5=c7c73fe120b05fc5983ad111d49b414cCAS | 16760481PubMed |

Hameed A, Ahmed MZ, Gulzar S, Khan MA (2009) Effect of disinfectants in improving seed germination of Suaeda fruticosa under saline conditions. Pakistan Journal of Botany 41, 2639–2644.

Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiology 126, 1266–1274.
Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFemsbk%3D&md5=716e04fc2b2d4ae993a61c05507f1f15CAS | 11457977PubMed |

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology 51, 463–499.
Plant cellular and molecular responses to high salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVymt7s%3D&md5=c67a7b95a8761aa0d533df99ebe4cd38CAS |

Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. The Plant Journal 12, 133–142.
Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFCrtL8%3D&md5=6f981f2c0833addccc6052719be13c0aCAS | 9263456PubMed |

Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology 165, 813–824.
Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaltLs%3D&md5=90bda04bb689cd5f05fb781c557cddeaCAS | 17920727PubMed |

Huh G-H, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. The Plant Journal 29, 649–659.
Salt causes ion disequilibrium-induced programmed cell death in yeast and plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislOhtr8%3D&md5=d3ded0ef5aca132095a91cffd8a069caCAS | 11874577PubMed |

Ismail AM, Ella ES, Vergara G, Mackill DJ (2008) Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Annals of Botany 103, 197–209.
Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa).Crossref | GoogleScholarGoogle Scholar | 19001425PubMed |

Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. Journal Agronomy & Crop Science 198, 38–45.
Improving the performance of wheat by seed priming under saline conditions.Crossref | GoogleScholarGoogle Scholar |

Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Molecular Biology Reports 38, 4823–4832.
Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2htLbL&md5=1b2ff249592bacf8a7b67248986c9605CAS | 21136169PubMed |

Jung J-H, Park C-M (2011) Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signaling & Behavior 6, 1198–1200.
Auxin modulation of salt stress signaling in Arabidopsis seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSmt7w%3D&md5=4032d63385c25ce6c0834277cf0951a0CAS |

Katsuhara M (1997) Apoptosis-like cell death in barley roots under salt stress. Plant & Cell Physiology 38, 1091–1093.
Apoptosis-like cell death in barley roots under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlykurg%3D&md5=acaecca0d24f27145da8b9e0b382484aCAS |

Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant & Cell Physiology 37, 169–173.
Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVGju7c%3D&md5=d45659162c295f24b0c540dd5a71fbf6CAS |

Kaya MD, Okçu G, Atak M, Cikili Y, Kolsarıc O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy 24, 291–295.
Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1KitLc%3D&md5=0b33bfcb12e3cc20e501ab4fb4cfd620CAS |

Keiffer CH, Ungar IA (1997) The effect of extended exposure to hypersaline conditions on the germination of five inland halophyte species. American Journal of Botany 84, 104–111.
The effect of extended exposure to hypersaline conditions on the germination of five inland halophyte species.Crossref | GoogleScholarGoogle Scholar |

Keshavkant S, Padhan J, Parkhey S, Naithani SC (2012) Physiological and antioxidant responses of germinating Cicer arietinum seeds to salt stress. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 59, 206–211.
Physiological and antioxidant responses of germinating Cicer arietinum seeds to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xisl2mtbg%3D&md5=0c5aa58cf00f750bd7197c262d62339bCAS |

Khan MA, Gul B (2006) Halophyte seed germination. In ‘Ecophysiology of high salinity tolerant plants’. (Eds MA Khan, DJ Weber) pp. 11–30. (Springer: Dordrecht, The Netherlands)

Khan MA, Weber DJ, Hess WM (1985) Elemental distribution in seeds of the halophytes Salicornia pacifica var. utahensis and Atriplex canescens. American Journal of Botany 72, 1672–1675.
Elemental distribution in seeds of the halophytes Salicornia pacifica var. utahensis and Atriplex canescens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVGmsb0%3D&md5=5c1e22bff6168eb2a5209dd6b3985817CAS |

Khan MA, Ungar IA, Gul B (1998) Action of compatible osmotica and growth regulators in alleviating the effects of salinity on the germination of dimorphic seeds of Arthrocnemum indicum L. International Journal of Plant Sciences 159, 313–317.
Action of compatible osmotica and growth regulators in alleviating the effects of salinity on the germination of dimorphic seeds of Arthrocnemum indicum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlWqu7c%3D&md5=22324a59226b33179d393cabcff9783bCAS |

Kim YO, Pan S, Jung C-H, Kang H (2007) A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant & Cell Physiology 48, 1170–1181.
A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlsrvI&md5=4ae146a75005fd3a71b5eb0b11ea12bcCAS |

Kim S-G, Park C-M (2008) Gibberellic acid-mediated salt signaling in seed germination. Plant Signaling & Behavior 3, 877–879.
Gibberellic acid-mediated salt signaling in seed germination.Crossref | GoogleScholarGoogle Scholar |

Kopyra M, Gwozdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry 41, 1011–1017.
Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlyluro%3D&md5=8121a41839d671d98a4917f702d7b9edCAS |

Kranner I, Birtić S (2005) A modulating role for antioxidants in desiccation tolerance. Integrative and Comparative Biology 45, 734–740.
A modulating role for antioxidants in desiccation tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlSktQ%3D%3D&md5=090eb33cd1a021c419b6718f496af7c2CAS | 21676824PubMed |

Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytologist 188, 655–673.
What is stress? Concepts, definitions and applications in seed science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKnur%2FK&md5=f6772287018a8410e34e31afe93e1fffCAS | 20854396PubMed |

Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry 45, 244–249.
Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslCiu70%3D&md5=f869c0e7a0889e3ab2697f6b416a33f6CAS | 17408958PubMed |

Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. Journal of Plant Research 118, 207–214.
The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt12qsL8%3D&md5=a98aac0206daa7be3f8cd9e669e4d737CAS | 15937723PubMed |

Li JY, Jiang AL, Zhang W (2007) Salt stress-induced programmed cell death in rice root tip cells. Journal of Integrative Plant Biology 49, 481–486.
Salt stress-induced programmed cell death in rice root tip cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFOhtrw%3D&md5=cae924baed13ded8d6a982c9142b03d2CAS |

Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell & Environment 34, 738–751.
The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVGks7s%3D&md5=b4b829baf7ad3935f1d85736bb2f53feCAS |

Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. Journal of Plant Physiology 166, 385–394.
Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1CntLc%3D&md5=fe65f14d8d84d1862123faf7c3164709CAS | 18929429PubMed |

Mallik S, Nayak M, Sahu BB, Panigrahi AK, Shaw BP (2011) Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biologia Plantarum 55, 191–195.
Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSmsrs%3D&md5=ff175443c6f6b759cbcf81d498be003aCAS |

Meot-Duros L, Magne C (2008) Effect of salinity and chemical factors on seed germination in the halophyte Crithmum maritimum L. Plant and Soil 313, 83–87.
Effect of salinity and chemical factors on seed germination in the halophyte Crithmum maritimum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyjsLbK&md5=9794cd00a6ee2a61866403d2dce95d6cCAS |

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.
Reactive oxygen gene network of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotF2msrg%3D&md5=f784349d5767e5607415f067ce056dcbCAS | 15465684PubMed |

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends in Plant Science 16, 300–309.
ROS signaling: the new wave?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyrs7w%3D&md5=cf6bc0a79abd78bd76262c61a60530c6CAS | 21482172PubMed |

Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58, 459–481.
Oxidative modifications to cellular components in plants.Crossref | GoogleScholarGoogle Scholar | 17288534PubMed |

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=0ce1f7aad22c73fffb329d4603f0e836CAS | 18444910PubMed |

Ngara R, Ndimba R, Borch-Jensen J, Jensen ON, Ndimba B (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. Journal of Proteomics 75, 4139–4150.
Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFCisLg%3D&md5=19f4937f5a1950c0cb66e19cdadab039CAS | 22652490PubMed |

Ozdener Y, Kutbay HG (2008) Effect of salinity and temperature on the germination of Spergularia marina seeds and ameliorating effect of ascorbic and salicylic acids. Journal of Environmental Biology 29, 959–964.

Parida AK, Jha B (2010) Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata. Journal of Plant Growth Regulation 29, 137–148.
Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlKht78%3D&md5=40cf948e89bd4993f8d678678c7a9830CAS |

Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G (2011) OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. The Plant Journal 65, 194–205.
OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsl2mtrw%3D&md5=fd12a436b6f0b7c97f4018e5638d5ce6CAS | 21223385PubMed |

Qi YC, Liu WQ, Qiu LY, Zhang SM, Ma L, Zhang H (2010) Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 57, 233–240.
Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVeit7c%3D&md5=d449102a8ca3e7045ac1e44b29abaca8CAS |

Qu X, Baskin JM, Wang L, Huang Z (2008) Effects of cold stratification, temperature, light and salinity on seed germination and radicle growth of the desert halophyte shrub, Kalidium capsicum (Chenopodiaceae). Plant Growth Regulation 54, 241–248.
Effects of cold stratification, temperature, light and salinity on seed germination and radicle growth of the desert halophyte shrub, Kalidium capsicum (Chenopodiaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitl2js7Y%3D&md5=714600168075f63d1b36d251a3df6396CAS |

Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. The Plant Cell 23, 2010–2032.
Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeis77F&md5=ed816e60c0caa51908c3ab2d89f717beCAS | 21642548PubMed |

Redondo-Gomez S, Mateos-Naranjo E, Cambrollé J, Luque T, Figueroa ME, Davy AJ (2008) Carry-over differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens. Annals of Botany 102, 103–112.
Carry-over differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.Crossref | GoogleScholarGoogle Scholar | 18463109PubMed |

Roach T, Kranner I (2011) Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings. Journal of Plant Physiology 168, 1870–1873.
Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFGhsrY%3D&md5=5fc8a11e0b59527f74b49d994bb2b108CAS | 21752488PubMed |

Rodrigues SM, Andrade MO, Soares Gomes AP, DaMatta FM, Baracat-Pereira MC, Fontes EPB (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. Journal of Experimental Botany 57, 1909–1918.
Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVaqt7c%3D&md5=51a1242e9c25c0a309f248bd19ac6113CAS | 16595581PubMed |

Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata BARK. Environmental and Experimental Botany 77, 63–76.
Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata BARK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Onurc%3D&md5=13f15ff71e1c93d1f90880720d01dbc8CAS |

Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138, 32
A syndrome produced by diverse nocuous agents.Crossref | GoogleScholarGoogle Scholar |

Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl–induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiology 141, 1653–1665.
Extracellular Ca2+ ameliorates NaClinduced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKitbo%3D&md5=9cf8fa017b3c4ebb820d7488c42c9af4CAS | 16798942PubMed |

Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248, 447–455.
Role of nitric oxide in tolerance of plants to abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFCqur4%3D&md5=7b9620dc4624deefacb6fd570c909ac2CAS | 20827494PubMed |

Sivritepe N, Sivritepe HO, Eris A (2003) The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia Horticulturae 97, 229–237.
The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Ggs7g%3D&md5=4795d75b44a596de572277c0ea3c2268CAS |

Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences 19, 267–290.
Ascorbic acid in plants: biosynthesis and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVCjs74%3D&md5=e0118afe8d6bdd839b95d6c0e82ddd47CAS |

Sohn YG, Lee BH, Kang KY, Lee JJ (2005) Effects of NaCl stress on germination, antioxidant responses, and proline content in two rice cultivars. Journal of Plant Biology 48, 201–208.
Effects of NaCl stress on germination, antioxidant responses, and proline content in two rice cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1yltr0%3D&md5=30f5ebb74f5b195278ecc765ff87a16fCAS |

Song J, Feng G, Tian C, Zhang F (2005) Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage. Annals of Botany 96, 399–405.
Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltr3J&md5=a2cd138b34d855126efe341a2dfbe772CAS | 16002418PubMed |

Song J, Fan H, Zhao Y, Jia Y, Du X, Wang B (2008) Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquatic Botany 88, 331–337.
Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtl2hsr0%3D&md5=06d36224be136a318ee1c38cb8eabfc2CAS |

Srivastava AK, Ramaswamy NK, Suprasanna P, D’Souza SF (2010a) Genome-wide analysis of thiourea-modulated salinity stress-responsive transcripts in seeds of Brassica juncea: identification of signalling and effector components of stress tolerance. Annals of Botany 106, 663–674.
Genome-wide analysis of thiourea-modulated salinity stress-responsive transcripts in seeds of Brassica juncea: identification of signalling and effector components of stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCltL%2FP&md5=f4e3faa3f280e8f19d8650a3bbfa7f38CAS | 20736293PubMed |

Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010b) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiologiae Plantarum 32, 1135–1144.
Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.).Crossref | GoogleScholarGoogle Scholar |

Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen THH, Murata N (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycinebetaine. The Plant Journal 36, 165–176.
Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycinebetaine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1OgtLw%3D&md5=1b651b9d655e7486a328a214d732fc7dCAS | 14535882PubMed |

Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal 27, 407–415.
At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVansr0%3D&md5=2c7b080a52623876691a7102153bf1a6CAS | 11576425PubMed |

Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010) Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Reports 29, 917–926.
Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslals78%3D&md5=b2c86e7d466da3b4d2638031dee71f81CAS | 20524119PubMed |

Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends in Plant Science 15, 89–97.
Proline: a multifunctional amino acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1yit7s%3D&md5=6ef05c7dd8725df8b7e99ff345554897CAS | 20036181PubMed |

Székely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. The Plant Journal 53, 11–28.
Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis.Crossref | GoogleScholarGoogle Scholar | 17971042PubMed |

Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology 135, 1697–1709.
Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqsb4%3D&md5=81e14fe696b5095bfb65704fa073072dCAS | 15247402PubMed |

Tessier M, Gloaguen JC, Lefeuvre JC (2000) Factors affecting the population dynamics of Suaeda maritima at initial stages of development. Plant Ecology 147, 193–203.
Factors affecting the population dynamics of Suaeda maritima at initial stages of development.Crossref | GoogleScholarGoogle Scholar |

Ungar IA (1978) Halophyte seed germination. Botanical Review 44, 233–264.
Halophyte seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtVSjt74%3D&md5=055f3daa90a8593d9c89fa1eb54d3c41CAS |

Ungar IA (1988) Effects of the parental environment on the temperature requirements and salinity tolerance of Spergularia marina seeds. Botanical Gazette 149, 432–436.
Effects of the parental environment on the temperature requirements and salinity tolerance of Spergularia marina seeds.Crossref | GoogleScholarGoogle Scholar |

Ungar IA (1996) Effect of salinity on seed germination, growth and ion accumulation of Atriplex patula (Chenopodiaceae). American Journal of Botany 83, 604–607.
Effect of salinity on seed germination, growth and ion accumulation of Atriplex patula (Chenopodiaceae).Crossref | GoogleScholarGoogle Scholar |

Ungar IA (1998) Are biotic factors significant in influencing the distribution of halophytes in saline habitats? Botanical Review 64, 176–199.
Are biotic factors significant in influencing the distribution of halophytes in saline habitats?Crossref | GoogleScholarGoogle Scholar |

Wang L, Huang Z, Baskin CC, Baskin JM, Dong M (2008) Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy. Annals of Botany 102, 757–769.
Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy.Crossref | GoogleScholarGoogle Scholar | 18772148PubMed |

Wang YQ, Li L, Cui WT, Xu S, Shen WB, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant and Soil 351, 107–119.
Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOks7g%3D&md5=7d426b61d480f7e80cc71b6a882d4d3dCAS |

Wetson AM, Cassaniti C, Flowers TJ (2008) Do conditions during dormancy influence germination of Suaeda maritima? Annals of Botany 101, 1319–1327.
Do conditions during dormancy influence germination of Suaeda maritima?Crossref | GoogleScholarGoogle Scholar | 18369238PubMed |

Witzel K, Weidner A, Surabhi GK, Varshney RK, Kunze G, Buck-Sorlin GH, Börner A, Mock HP (2010) Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant, Cell & Environment 33, 211–222.
Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFKhu7g%3D&md5=6b774fdf1df675d34410c55217de5259CAS |

Xu J, Yin H, Yang L, Xie Z, Liu X (2011a) Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica: from physiology to molecular analysis. Planta 233, 859–871.
Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica: from physiology to molecular analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFehurw%3D&md5=f7c08ee72d0777969db02d9a439c4534CAS | 21225279PubMed |

Xu D, Huang H, Xu ZQ, Schläppi M (2011b) The HyPRP gene EARLI1 has an auxillary role for germinability and early seedling development under low temperature and salt stress conditions in Arabidopsis thaliana. Planta 234, 565–577.
The HyPRP gene EARLI1 has an auxillary role for germinability and early seedling development under low temperature and salt stress conditions in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyrt77J&md5=0a184d89eca734af2a67e89ed9eb8f47CAS | 21556912PubMed |

Yokoishi T, Tanimoto S (1994) Seed germination of the halophyte Suaeda japonica under salt stress. Journal of Plant Research 107, 385–388.
Seed germination of the halophyte Suaeda japonica under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktl2it7o%3D&md5=37eef6647e3773f1393cb9d8dae13a05CAS |

Zhang L, Tian L-H, Zhao J-F, Song Y, Zhang C-J, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiology 149, 916–928.
Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1ajsr4%3D&md5=f8b49b5c829ddc466d5acafdb9738049CAS | 19036832PubMed |

Zhang S, Song J, Wang H, Feng G (2010) Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in Central Asia. Journal of Plant Ecology 3, 259–267.
Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in Central Asia.Crossref | GoogleScholarGoogle Scholar |

Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011a) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Molecular Biology Reporter 75, 365–378.
Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlegt7k%3D&md5=e21064e881c0c315d73b2ad427029fabCAS |

Zhang CJ, Zhao BC, Ge WN, Zhang YF, Song Y, Sun DY, Guo Y (2011b) An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiology 157, 1884–1899.
An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ektL%2FJ&md5=2c4ecb71ca621e1a8f5a88fee511f3c9CAS | 22010108PubMed |

Zhang H, Irving LJ, Tian Y, Zhou D (2012a) Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South African Journal of Botany 78, 203–210.
Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis.Crossref | GoogleScholarGoogle Scholar |

Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012b) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE 7, 1–12.

Zhao M-G, Tian QY, Zhang W-H (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiology 144, 206–217.
Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1Kjt7c%3D&md5=9b8444e0fdee684a953d61ba02d80f54CAS | 17351048PubMed |

Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environmental and Experimental Botany 67, 222–227.
Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2qs7vJ&md5=eb3821d35c67d5a4f9d84ee96cc5d6b7CAS |

Zhu JK (2001) Plant salt tolerance. Trends in Plant Science 6, 66–71.
Plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjtLs%3D&md5=36de2a21d4f2c605397e01ce5240d467CAS | 11173290PubMed |

Zhu S, Zhang X, Luo T, Liu Q, Tang Z, Jing Z (2011) Effects of NaCl stress on seed germination, early seedling growth and physiological characteristics of cauliflower (Brassica oleracea L. var. botrytis L.). African Journal of Biotechnology 10, 17 940–17 947.