Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Molecular phylogenetics of the land snail genus Quistrachia (Gastropoda : Camaenidae) in northern Western Australia

Caitlin O’Neill A B , Michael S. Johnson A D , Zoë R. Hamilton A and Roy J. Teale A C
+ Author Affiliations
- Author Affiliations

A School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia.

B Rio Tinto Ltd, 152-158 St Georges Terrace, Perth, WA 6000, Australia.

C Biota Environmental Sciences Pty Ltd, PO Box 155, Leederville, WA 6903, Australia.

D Corresponding author. Email: mike.johnson@uwa.edu.au

Invertebrate Systematics 28(3) 244-257 https://doi.org/10.1071/IS13045
Submitted: 2 October 2013  Accepted: 1 February 2014   Published: 30 June 2014

Abstract

Recent collecting in the remote Pilbara region of Western Australia has revealed substantial increases in the apparent distributions of species of the genus Quistrachia, and the discovery of new forms, raising questions about the morphological taxonomy. To resolve these questions, we examined mtDNA sequences in all known species of Quistrachia, the unidentified new forms and other members of the subfamily Sinumeloninae. Phylogenetic analysis confirmed the monophyly of Quistrachia, including one of the new forms. The two other new forms represent new genera within the Sinumeloninae. Monophyly of each species was confirmed, with the exception of Q. legendrei, in which populations from the Dampier Archipelago and those from the adjacent Burrup Peninsula are in separate clades. Based on phylogeny and levels of divergence within other species in the genus, the Burrup populations appear to be conspecific with Q. turneri. This is supported by anatomical comparisons, but not by shell morphology, which may well reflect the evolutionary plasticity of shell form. Given the patchiness of searches for land snails in the largely inaccessible Pilbara region, additional species almost certainly remain to be discovered. Our study shows the value of including molecular analyses in determining the taxonomic status of new forms.


References

Agapow, P.-M., Binida-Edmonds, O. R. P., Crandall, K. A., Gittleman, J. L., Mace, G. M., Marshall, J. C., and Purvis, A. (2004). The impact of species concept on biodiversity studies. The Quarterly Review of Biology 79, 161–179.
The impact of species concept on biodiversity studies.Crossref | GoogleScholarGoogle Scholar | 15232950PubMed |

Bookstein, F. L. (1991). ‘Morphometric Tools for Landmark Data.’ (Cambridge University Press: Cambridge.)

Criscione, F., and Köhler, F. (2013). Conserved shell disguises diversity in Mesodontrachia land snails from the Australian Monsoon Tropics (Gastropoda: Camaenidae). Zoologica Scripta 42, 389–405.
Conserved shell disguises diversity in Mesodontrachia land snails from the Australian Monsoon Tropics (Gastropoda: Camaenidae).Crossref | GoogleScholarGoogle Scholar |

Criscione, F., Law, M. L., and Köhler, F. (2012). Land snail diversity in the monsoon tropics of Northern Australia: revision of the genus Exiligada Iredale, 1939 (Mollusca: Pulmonata: Camaenidae), with description of 13 new species. Zoological Journal of the Linnean Society 166, 689–722.
Land snail diversity in the monsoon tropics of Northern Australia: revision of the genus Exiligada Iredale, 1939 (Mollusca: Pulmonata: Camaenidae), with description of 13 new species.Crossref | GoogleScholarGoogle Scholar |

Davison, A., and Clarke, B. (2000). History or current selection? A molecular analysis of ‘area effects’ in the land snails Cepaea nemoralis. Proceedings of the Royal Society of London B 267, 1399–1405.
History or current selection? A molecular analysis of ‘area effects’ in the land snails Cepaea nemoralis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVSit74%3D&md5=402f621bbf1f5b41450f088f223c91faCAS |

Davison, A., Blackie, R. L. E., and Scothern, G. P. (2009). DNA barcoding of stylommatophoran land snails: a test of existing sequences. Molecular Ecology Resources 9, 1092–1101.
DNA barcoding of stylommatophoran land snails: a test of existing sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Omurw%3D&md5=9e56084f87ea17ecbdc5e0deab8c852cCAS | 21564847PubMed |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=41891c10f444b637826cbf6001a4954cCAS | 7881515PubMed |

Goodacre, S. L. (2002). Population structure, history and gene flow in a group of closely related land snails: genetic variation in Partula from the Society Islands of the Pacific. Molecular Ecology 11, 55–68.
Population structure, history and gene flow in a group of closely related land snails: genetic variation in Partula from the Society Islands of the Pacific.Crossref | GoogleScholarGoogle Scholar | 11903904PubMed |

Harvey, M. S. (2002). Short-range endemism in the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism in the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Rix, M. G., Framenau, V. W., Hamilton, Z. R., Johnson, M. S., Teale, R. J., Humphreys, G., and Humphreys, W. F. (2011). Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics 25, 1–10.
Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes.Crossref | GoogleScholarGoogle Scholar |

Hugall, A. F., and Stanisic, J. (2011). Beyond the prolegomenon: a molecular phylogeny of the Australian camaenid land snail radiation. Zoological Journal of the Linnean Society 161, 531–572.
Beyond the prolegomenon: a molecular phylogeny of the Australian camaenid land snail radiation.Crossref | GoogleScholarGoogle Scholar |

Isaac, N. J. B., Mallet, J., and Mace, G. M. (2004). Taxonomic inflation: its influence on macroecology and conservation. Trends in Ecology & Evolution 19, 464–469.
Taxonomic inflation: its influence on macroecology and conservation.Crossref | GoogleScholarGoogle Scholar |

Johnson, M. S., Stine, O. C., and Murray, J. (1984). Reproductive compatibility despite large-scale genetic divergence in Cepaea nemoralis. Heredity 53, 655–665.
Reproductive compatibility despite large-scale genetic divergence in Cepaea nemoralis.Crossref | GoogleScholarGoogle Scholar |

Johnson, M. S., Murray, J., and Clarke, B. (1993). The ecological genetics and adaptive radiation of Partula on Moorea. Oxford Surveys in Evolutionary Biology 9, 167–238.

Johnson, M. S., Hamilton, Z. R., Teale, R., and Kendrick, P. G. (2012). Endemic evolutionary radiation of Rhagada land snails (Pulmonata: Camaenidae) in a continental archipelago in northern Western Australia. Biological Journal of the Linnean Society. Linnean Society of London 106, 316–327.
Endemic evolutionary radiation of Rhagada land snails (Pulmonata: Camaenidae) in a continental archipelago in northern Western Australia.Crossref | GoogleScholarGoogle Scholar |

Johnson, M. S., Stankowski, S., Whisson, C. S., Teale, R. J., and Hamilton, Z. R. (2013). Camaenid land snails on Barrow Island: distributions, molecular phylogenetics and taxonomic revision. Records of the Western Australian Museum 83, 159–171.

Kendall, D. G. (1984). Shape manifolds, procrustean metrics and complex projective spaces. Bulletin of the London Mathematical Society 16, 81–121.
Shape manifolds, procrustean metrics and complex projective spaces.Crossref | GoogleScholarGoogle Scholar |

Köhler, F. (2010a). Uncovering local endemism in the Kimberley, Western Australia: description of new species of the genus Amplirhagada Iredale, 1933 (Pulmonata, Camaenidae). Records of the Australian Museum 62, 217–284.
Uncovering local endemism in the Kimberley, Western Australia: description of new species of the genus Amplirhagada Iredale, 1933 (Pulmonata, Camaenidae).Crossref | GoogleScholarGoogle Scholar |

Köhler, F. (2010b). Three new species and two new genera of land snails from the Bonaparte Archipelago in the Kimberley, Western Australia (Pulmonata, Camaenidae). Molluscan Research 30, 1–16.

Köhler, F. (2011a). Descriptions of new species of the diverse and endemic land snail Amplirhagada Iredale, 1933 from rainforest patches across the Kimberley, Western Australia (Pulmonata, Camaenidae). Records of the Australian Museum 63, 167–202.
Descriptions of new species of the diverse and endemic land snail Amplirhagada Iredale, 1933 from rainforest patches across the Kimberley, Western Australia (Pulmonata, Camaenidae).Crossref | GoogleScholarGoogle Scholar |

Köhler, F. (2011b). The camaenid species of the Kimberley Islands, Western Australia (Stylommatophora: Helicoidea). Malacologia 54, 203–406.
The camaenid species of the Kimberley Islands, Western Australia (Stylommatophora: Helicoidea).Crossref | GoogleScholarGoogle Scholar |

Köhler, F. (2011c). Australocosmica, a new genus of land snails from the Kimberley, Western Australia (Eupulmonata, Camaenidae). Malacologia 53, 199–216.
Australocosmica, a new genus of land snails from the Kimberley, Western Australia (Eupulmonata, Camaenidae).Crossref | GoogleScholarGoogle Scholar |

Köhler, F., and Criscione, F. (2013). Small snails in a big place: a radiation in the semi-arid rangelands in northern Australia (Eupulmonata, Camaenidae, Nanotrachia gen. nov.). Zoological Journal of the Linnean Society 169, 103–123.
Small snails in a big place: a radiation in the semi-arid rangelands in northern Australia (Eupulmonata, Camaenidae, Nanotrachia gen. nov.).Crossref | GoogleScholarGoogle Scholar |

Köhler, F., and Johnson, M. S. (2012). Species limits in molecular phylogenies: a cautionary tale from Australian land snails (Camaenidae: Amplirhagada Iredale, 1933). Zoological Journal of the Linnean Society 165, 337–362.
Species limits in molecular phylogenies: a cautionary tale from Australian land snails (Camaenidae: Amplirhagada Iredale, 1933).Crossref | GoogleScholarGoogle Scholar |

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.
Clustal W and Clustal X version 2.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqsL%2FM&md5=d5663bdd0129d2d89dde395d066d73a9CAS | 17846036PubMed |

Palumbi, S., Martin, A., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). ‘The Simple Fool’s Guide to PCR.’ (University of Hawaii: Honolulu.)

Pinceel, J., Jordaens, K., and Backeljau, T. (2005). Extreme mtDNA divergences in a terrestrial slug (Gastropoda, Pulmonata, Arionidae): accelerated evolution, allopatric divergence and secondary contact. Journal of Evolutionary Biology 18, 1264–1280.
Extreme mtDNA divergences in a terrestrial slug (Gastropoda, Pulmonata, Arionidae): accelerated evolution, allopatric divergence and secondary contact.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWmsbnN&md5=8900c50f0703b21a5622892028c4d912CAS | 16135122PubMed |

Ponder, W. F. (1997). Conservation status, threats and habitat requirements of Australian terrestrial and freshwater Mollusca. Memoirs of Museum Victoria 56, 421–430.

Rohlf, F. J. (2008a). ‘tpsDIG. Version 2.12.’ (Department of Ecology and Evolution, State University of New York at Stony Brook: New-York.)

Rohlf, F. J. (2008b). ‘tpsRELW. Version 1.45.’ (Department of Ecology and Evolution, State University of New York at Stony Brook: New-York.)

Rohlf, F. J. (2008c). ‘tpsSPLINE. Version 1.2.’ (Department of Ecology and Evolution, State University of New York at Stony Brook: New-York.)

Rohlf, F. J., and Bookstein, F. L. (2003). Computing the uniform component of shape variation. Systematic Biology 52, 66–69.
Computing the uniform component of shape variation.Crossref | GoogleScholarGoogle Scholar | 12554441PubMed |

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=d5b84f5cc16cfb75b367ced57a76cb2cCAS | 12912839PubMed |

Schwenk, K. (1996). ‘Evolutionary Genetics of Daphnia Species Complex; Hybridism in Syntopy.’ (Netherlands Institute of Ecology, Centre for Limnonolgy: Neuwersluis, The Netherlands.)

Slice, D. E. (2001). Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Systematic Biology 50, 141–149.
Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntVOhsw%3D%3D&md5=76b30642db2320c5c5e35b98b124be28CAS | 12116591PubMed |

Solem, A. (1981). Camaenid land snails from Western and Central Australia (Mollusca: Pulmonata: Camaenidae). II. Taxa from the Kimberley, Amplirhagada Iredale, 1933. Records of the Western Australian Museum 11, 147–320.

Solem, A. (1991). Land snails of Kimberley rainforest patches and biogeography of all Kimberley land snails. In ‘Kimberley Rainforests of Australia’. (Eds N. L. McKenzie, R. B. Johnston and P. G. Kendrick.) pp. 145–246. (Surrey Beatty & Sons: Chipping Norton.)

Solem, A. (1997). Camaenid land snails from Western and Central Australia (Mollusca: Pulmonata: Camaenidae). VII. Taxa from Dampierland through the Nullarbor. Records of the Western Australian Museum 50, 1461–1906.

Stankowski, S. (2011). Extreme, continuous variation in an island snail: local diversification and association of shell form with the current environment. Biological Journal of the Linnean Society. Linnean Society of London 104, 756–769.
Extreme, continuous variation in an island snail: local diversification and association of shell form with the current environment.Crossref | GoogleScholarGoogle Scholar |

Stankowski, S. (2013). Ecological speciation in an island snail: evidence for the parallel evolution of a novel ecotype and maintenance by ecologically dependent postzygotic isolation. Molecular Ecology 22, 2726–2741.
Ecological speciation in an island snail: evidence for the parallel evolution of a novel ecotype and maintenance by ecologically dependent postzygotic isolation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Gisb0%3D&md5=f114997b8b00bb086108a18117cf031fCAS | 23506623PubMed |

Stankowski, S., and Johnson, M. S. (2014). Biogeographic discordance of molecular phylogenetic and phenotypic variation in a continental archipelago radiation of land snails. BMC Evolutionary Biology 14, 2.
Biogeographic discordance of molecular phylogenetic and phenotypic variation in a continental archipelago radiation of land snails.Crossref | GoogleScholarGoogle Scholar | 24393567PubMed |

Takezaki, N., Rzhetsky, A., and Nei, M. (1995). Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution 12, 823–833.
| 1:CAS:528:DyaK2MXns1yqsbg%3D&md5=9aefe43b07b333f372720d814906b3a2CAS | 7476128PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=5ee5a71f721d24a7782516dc0ff5fcfcCAS | 21546353PubMed |

Thomaz, D., Guiller, A., and Clarke, B. (1996). Extreme divergence of mitochondrial DNA within species of pulmonate land snails. Proceedings. Biological Sciences 263, 363–368.
Extreme divergence of mitochondrial DNA within species of pulmonate land snails.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislKnsb4%3D&md5=eded183275c97a3afe03032fefec033dCAS |

Von Cramon-Taubadel, N., Frazier, B. C., and Lahr, M. M. (2007). The problem of assessing landmark error in geometric morphometrics: theory, methods and modifications. American Journal of Physical Anthropology 134, 24–35.
The problem of assessing landmark error in geometric morphometrics: theory, methods and modifications.Crossref | GoogleScholarGoogle Scholar | 17503448PubMed |

Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L. (2004). ‘Geometric Morphometrics for Biologists: a Primer.’ (Elsevier Academic Press: London.)