Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

An enigmatic new tapeworm, Litobothrium aenigmaticum, sp. nov. (Platyhelminthes : Cestoda: Litobothriidea), from the pelagic thresher shark with comments on development of known Litobothrium species

J. N. Caira A D , K. Jensen B , A. Waeschenbach C and D. T. J. Littlewood C
+ Author Affiliations
- Author Affiliations

A Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Storrs, CT 06269-3043, USA.

B Department of Ecology & Evolutionary Biology and the Biodiversity Institute, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA.

C Department of Life Sciences, Natural History Museum, Cromwell Rd, London SW7 5BD, UK.

D Corresponding author. Email: janine.caira@uconn.edu

Invertebrate Systematics 28(3) 231-243 https://doi.org/10.1071/IS13047
Submitted: 6 October 2013  Accepted: 21 January 2014   Published: 30 June 2014

Abstract

An enigmatic new tapeworm is described from pelagic thresher sharks in México and Taiwan. While lsrRNA (D1-D3) data robustly place it in the Litobothriidea, it bears essentially no morphological resemblance to other members of the order. Instead it superficially resembles the freshwater fish-inhabiting Caryophyllidea. Its scolex consists of a simple dome-shaped scolex proper and an extensive cephalic peduncle housing four distinct tissue types. It is hyperapolytic, thus reproductive anatomy is unknown. Developmental data show typical litobothriideans bear basic elements of their adult scolex upon entering the definitive host, undermining the notion that the new cestode represents a distinct litobothriidean life cycle stage. Scanning electron microscopy revealed the new species shares bands of distinctive microtriches with its congeners. In combination these data justify establishment of Litobothrium aenigmaticum, sp. nov.; the generic, familial and ordinal diagnoses are emended accordingly. Unlike typical litobothriideans, each worm is associated with a mucosal expansion at its attachment site, like those seen in some caryophyllideans. This pathological change may represent a worm-induced host response serving to reinforce attachment of the simple scolex to the mucosa. If so, the convergence of this litobothriidean on a morphology like that seen in the distantly related Caryophyllidea is a result of similarity in mode of attachment.


References

Arme, C., and Threadgold, L. T. (1976). A unique tegumentary cell type and unicellular glands associated with the scolex of Eubothrium crissum (Cestoda: Pseudophyllidea). Rice University Studies 62, 21–34.

Burt, M. D. B. (1987). Early morphogenesis in the Platyhelminthes with special reference to egg development and development of cestode larvae. International Journal for Parasitology 17, 241–253.
Early morphogenesis in the Platyhelminthes with special reference to egg development and development of cestode larvae.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3itFWnsw%3D%3D&md5=96d683445ee84a1066c0738b20d1226dCAS |

Caira, J. N., Mega, J., and Ruhnke, T. R. (2005). An unusual blood sequestering tapeworm (Sanguilevator yearsleyi n. gen., n. sp.) from Borneo with description of Cathetocephalus resendezi n. sp. from Mexico and molecular support for the recognition of the order Cathetocephalidea (Platyhelminthes: Eucestoda). International Journal for Parasitology 35, 1135–1152.
An unusual blood sequestering tapeworm (Sanguilevator yearsleyi n. gen., n. sp.) from Borneo with description of Cathetocephalus resendezi n. sp. from Mexico and molecular support for the recognition of the order Cathetocephalidea (Platyhelminthes: Eucestoda).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mvnt1eksg%3D%3D&md5=7c00573dca6e1929758eed63f8ea260cCAS | 16019004PubMed |

Caira, J. N., Jensen, K., and Rajan, C. (2007). Seven new Yorkeria species (Cestoda: Tetraphyllidea) from Borneo and Australia and their implications for identification of Chiloscyllium (Elasmobranchii: Orectolobiformes) species. The Journal of Parasitology 93, 357–376.
Seven new Yorkeria species (Cestoda: Tetraphyllidea) from Borneo and Australia and their implications for identification of Chiloscyllium (Elasmobranchii: Orectolobiformes) species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2szislGgtQ%3D%3D&md5=2eb69185e9821dcb12f2cb2a1c899c45CAS | 17539421PubMed |

Caira, J. N., Jensen, K., Waeschenbach, A., Olson, P. D., and Littlewood, D. T. J. (2014). Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal for Parasitology 44, 55–73.
Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvF2rt77N&md5=4dfbc2d98222f5c7f07bc1dcc3d20f44CAS | 24275646PubMed |

Carvajal, J., Barros, C., and Santander, G. (1982). In vitro culture of Rhodobothrium mesodesmatum (Cestoda: Tetraphyllidea), parasite of a Chilean clam. Proceedings of the Helminthological Society of Washington 49, 226–230.

Chervy, L. (2009). Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008. Folia Parasitologica 56, 199–230.
Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008.Crossref | GoogleScholarGoogle Scholar | 19827364PubMed |

Dailey, M. D. (1969). Litobothrium alopias and L. coniformis, two new cestodes representing a new order from elasmobranch fishes. Proceedings of the Helminthological Society of Washington 36, 218–224.

Euzet, L. (1994). Order Tetraphyllidea Carus, 1863. In ‘Keys to the Cestode Parasites of Vertebrates’. (Eds L. F. Khalil, A. Jones and R. A. Bray.) pp. 149–194. (Wallingford: CAB International)

Fyler, C. A. (2011). An extremely hyperapolytic Acanthobothrium species (Cestoda: Tetraphyllidea) from the Japanese wobbegong, Orectolobus japonicus (Elasmobranchii: Orectolobiformes) in Taiwan. Comparative Parasitology 78, 4–14.
An extremely hyperapolytic Acanthobothrium species (Cestoda: Tetraphyllidea) from the Japanese wobbegong, Orectolobus japonicus (Elasmobranchii: Orectolobiformes) in Taiwan.Crossref | GoogleScholarGoogle Scholar |

Hayunga, E. G. (1979a). Observations on the intestinal pathology caused by three caryophyllid tapeworms of the white sucker Catostomus commersoni Lacépède. Journal of Fish Diseases 2, 239–248.
Observations on the intestinal pathology caused by three caryophyllid tapeworms of the white sucker Catostomus commersoni Lacépède.Crossref | GoogleScholarGoogle Scholar |

Hayunga, E. G. (1979b). The structure and function of the scolex glands of three caryophyllid tapeworms. Proceedings of the Helminthological Society of Washington 46, 171–179.
| 1:CAS:528:DyaL3cXntlShtA%3D%3D&md5=943c27d7b61d737dc786ccec2f659b76CAS |

Hayunga, E. G., and Mackiewicz, J. S. (1988). Comparative histology of the scolex and neck region of Glaridacris laruei (Lamont, 1921) Hunter, 1927 and Glaridacris catostomi Cooper, 1920 (Cestoidea: Caryophyllidea). Canadian Journal of Zoology 66, 790–803.
Comparative histology of the scolex and neck region of Glaridacris laruei (Lamont, 1921) Hunter, 1927 and Glaridacris catostomi Cooper, 1920 (Cestoidea: Caryophyllidea).Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. (2001). MR BAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MR BAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=ceab3d44bc74e85c441d4509c0328141CAS | 11524383PubMed |

Ibraheem, M. H., and Mackiewicz, J. S. (2006). Scolex development, morphology and mode of attachment of Wenyonia virilis Woodland, 1923 (Cestoidea, Caryophyllidea). Acta Parasitologica 51, 51–58.
Scolex development, morphology and mode of attachment of Wenyonia virilis Woodland, 1923 (Cestoidea, Caryophyllidea).Crossref | GoogleScholarGoogle Scholar |

Jensen, K., and Bullard, S. A. (2010). Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life-cycles. International Journal for Parasitology 40, 889–910.
Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life-cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlyhtr0%3D&md5=4ad52d6e21878858325277b8a1f894c8CAS | 20026125PubMed |

Jensen, K., Nikolov, P., and Caira, J. N. (2011). A new genus and two new species of Anteroporidae (Cestoda: Lecanicephalidea) from the darkspotted numbfish, Narcine maculata (Torpediniformes: Narcinidae), off Malaysian Borneo. Folia Parasitologica 58, 95–107.
| 21776890PubMed |

Kuperman, B. I., and Davydov, V. G. (1982). The fine structure of frontal glands in adult cestodes. International Journal for Parasitology 12, 285–293.
The fine structure of frontal glands in adult cestodes.Crossref | GoogleScholarGoogle Scholar |

Littlewood, D. T. J., Curini-Galletti, M., and Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution 16, 449–466.
The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsV2nu74%3D&md5=98c63340b38ae9547e5637a0ade5e35fCAS |

Mackiewicz, J. S., Cosgrove, G. E., and Gude, W. D. (1972). Relationship of pathology to scolex morphology among caryophyllid cestodes. Zeitschrift fur Parasitenkunde 39, 233–246.
Relationship of pathology to scolex morphology among caryophyllid cestodes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE383mvF2ntA%3D%3D&md5=88f76a575d7a57c2ac399fe9d40dbea8CAS | 5057360PubMed |

Maddison, W. P., and Maddison, D. R. (2005). ‘MacClade (ver. 4.0): computer program for phylogenetic analysis.’ (Sinauer Associates: Sunderland, MA)

McCullough, J. S., and Fairweather, I. (1983). A SEM study of the cestodes Trilocularia acanthiaevulgaris, Phyllobothrium squali and Gilquinia squali from the spiny dogfish. Parasitology Research 69, 655–665.

McCullough, J. S., and Fairweather, I. (1984). A comparative study of Trilocularia acanthiaevulgaris Olsson 1867 (Cestoda, Tetraphyllidea) from the stomach and spiral valve of the spiny dogfish. Zeitschrift für Parasitenkunde 70, 797–807.
A comparative study of Trilocularia acanthiaevulgaris Olsson 1867 (Cestoda, Tetraphyllidea) from the stomach and spiral valve of the spiny dogfish.Crossref | GoogleScholarGoogle Scholar |

Naylor, G. J. P., Caira, J. N., Jensen, K., Rosana, K. A. M., White, W. T., and Last, P. R. (2012). A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History 367, 1–262.
A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology.Crossref | GoogleScholarGoogle Scholar |

Nock, A. M., and Caira, J. N. (1988). Disculiceps galapagoensis n. sp. (Lecanicephalidea: Disculicepitidae) from the shark, Carcharhinus longimanus, with comments on D. pileatus. The Journal of Parasitology 74, 153–158.
Disculiceps galapagoensis n. sp. (Lecanicephalidea: Disculicepitidae) from the shark, Carcharhinus longimanus, with comments on D. pileatus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7osl2gsg%3D%3D&md5=edf5d636550cb8c8c7310eef794d8b56CAS | 3357097PubMed |

Olson, P. D., and Caira, J. N. (2001). Two new species of Litobothrium Dailey, 1969 (Cestoda: Litobothriidea) from thresher sharks in the Gulf of California, Mexico, with redescriptions of two species in the genus. Systematic Parasitology 48, 159–177.
Two new species of Litobothrium Dailey, 1969 (Cestoda: Litobothriidea) from thresher sharks in the Gulf of California, Mexico, with redescriptions of two species in the genus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mvksl2guw%3D%3D&md5=77aa3964fa86659e29ee1568c3e57520CAS | 11302614PubMed |

Olson, P. D., Littlewood, D. T. J., Bray, R. A., and Mariaux, J. (2001). Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution 19, 443–467.
Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Sgt70%3D&md5=704e4b142f12841735b6a142c47114f8CAS | 11399152PubMed |

Pickering, M., and Caira, J. N. (2012). A new hyperapolytic species, Trilocularia eberti sp. nov. (Cestoda: Tetraphyllidea), from Squalus cf. mitsukurii (Squaliformes: Squalidae) off South Africa with comments on its development and fecundity. Folia Parasitologica 59, 107–114.
A new hyperapolytic species, Trilocularia eberti sp. nov. (Cestoda: Tetraphyllidea), from Squalus cf. mitsukurii (Squaliformes: Squalidae) off South Africa with comments on its development and fecundity.Crossref | GoogleScholarGoogle Scholar | 22779111PubMed |

Pickering, M., and Caira, J. N. (2013). Differences in microthrix form between stomach and spiral intestine stages of the tapeworm, Trilocularia gracilis: interspecific variation or development? Journal of Parasitology 99, 1099–1105.
Differences in microthrix form between stomach and spiral intestine stages of the tapeworm, Trilocularia gracilis: interspecific variation or development?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVCmt7Y%3D&md5=08ff32dd90f816931f1ba7360d518788CAS | 23941618PubMed |

Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schaner, C., Sundberg, P., and Thollesson, M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48, 369–371.
Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCku74%3D&md5=f78e5ea29b2f3e8619b84036970d0fe1CAS | 18424089PubMed |

Posada, D., and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
MODELTEST: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=787c5224a9b3b4a919b481f4db32fc35CAS | 9918953PubMed |

Reyda, F., and Olson, P. D. (2003). Cestodes of cestodes of Peruvian freshwater stingrays. Journal of Parasitology 89, 1018–1024.
Cestodes of cestodes of Peruvian freshwater stingrays.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srkslOitg%3D%3D&md5=e0ac4cd5be98c55d23230bf652881aa2CAS | 14627150PubMed |

Richards, K. S., and Arme, C. (1981). The ultrastructure of the scolex-neck syncytium, neck cells and frontal gland cells of Caryophyllaeus laticeps (Caryophyllidea: Cestoda). Parasitology 83, 477–487.
The ultrastructure of the scolex-neck syncytium, neck cells and frontal gland cells of Caryophyllaeus laticeps (Caryophyllidea: Cestoda).Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=d5b84f5cc16cfb75b367ced57a76cb2cCAS | 12912839PubMed |

Sheehan, D. C., and Hrapchak, B. B. (1980). ‘Theory and Practice of Histotechnology.’ 2nd ed. (Battelle Press: Columbus, OH.)

Whittington, I. D., and Cribb, B. W. (2001). Adhesive secretions in Platyhelminthes. Advances in Parasitology 48, 101–224.
Adhesive secretions in Platyhelminthes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvmtlCntQ%3D%3D&md5=247540d2144a5236990284a8ab3eca89CAS | 11013756PubMed |