Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Colonisation patterns of supralittoral arthropods in naturally stranded wrack debris on Atlantic sandy beaches of Brazil and Spain

M. Carmen Ruiz-Delgado A E , Jenyffer Vierheller Vieira B , M. José Reyes-Martínez A , Carlos Alberto Borzone B , Raimundo Outerelo C , Juan Emilio Sánchez-Moyano D and Francisco José García-García A
+ Author Affiliations
- Author Affiliations

A Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera Utrera Kilómetro 1, E-41013 Sevilla, Spain.

B Centro de Estudos do Mar, Departamento de Ciências da Terra, Universidade Federal do Paraná, Avenida Beira Mar, s/n CEP 83255-000, Pontal do Sul, Pontal do Paraná, Paraná, Brazil.

C Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Novais, 12, E-28040 Madrid, Spain.

D Departamento de Zoología, Universidad de Sevilla, Avenida Reina Mercedes 6, E-41012 Sevilla, Spain.

E Corresponding author. Email mcruidel@upo.es

Marine and Freshwater Research 67(11) 1634-1643 https://doi.org/10.1071/MF14407
Submitted: 11 December 2014  Accepted: 8 August 2015   Published: 23 November 2015

Abstract

From an ecosystem perspective, wrack debris represents a key element for the maintenance of biodiversity and functioning of sandy beaches. Here, we characterised the colonisation patterns of supralittoral assemblages associated with wrack accumulations (seaweed and mangrove propagules) on multiple Atlantic sandy beaches (southern Brazil and south-western Spain). By using a manipulative field experiment, we sought to determine the temporal changes of the density, diversity and the structure of the whole community during the colonisation of wrack debris, and whether the colonisation patterns in response to the stranding of natural wrack debris were different on local (between beaches) and regional (between Atlantic regions) scales. Our results showed increases in density and diversity during the first 3 days after the stranding of seaweeds and mangrove-propagules debris. Moreover, wrack debris was promptly invaded by a wide range of species (i.e. talitrids, dipterans, coleopterans and spiders), although the colonisation pattern was slower in southern Brazil (16-day period) than in south-western Spain (3-day period). Wrack-debris characteristics (e.g. amount, degradation and composition) combined with biological strategies (e.g. trophic guilds and mobility) of supralittoral species could explain the different colonisation patterns in each Atlantic region. The temporal changes of wrack-associated fauna can have potential effects on the wrack-derived process and food-web structure on sandy beaches.

Additional keywords: macroinvertebrates, mangrove propagules, seaweeds, southern Brazil, south-western Spain, supratidal.


References

Abràmoff, M. D., Magalhaes, P. J., and Sunanda, J. R. (2004). Image processing with ImageJ. Biophotonics International 11, 36–42.

Adin, R., and Riera, P. (2003). Preferential food source utilization among stranded macroalgae by Talitrus saltator (Amphipoda, Talitridae): a stable isotopes study in the northern coast of Brittany (France). Estuarine, Coastal and Shelf Science 56, 91–98.
Preferential food source utilization among stranded macroalgae by Talitrus saltator (Amphipoda, Talitridae): a stable isotopes study in the northern coast of Brittany (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFGmtrc%3D&md5=0f1568ba17e5d63014944576c701a9dcCAS |

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.

Baldanzi, S., McQuaid, D. C., Cannicci, S., and Porri, F. (2013). Environmental domains and range-limiting mechanisms: testing the abundant centre hypothesis using southern African sandhoppers. PLoS One 8, e54598.
Environmental domains and range-limiting mechanisms: testing the abundant centre hypothesis using southern African sandhoppers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVylt70%3D&md5=96f1d765bca67a9bc4afe857785c0f65CAS | 23372740PubMed |

Barreiro, F., Gómez, M., Lastra, M., López, J., and De la Huz, R. (2011). Annual cycle of wrack supply to sandy beaches: effect of the physical environment. Marine Ecology Progress Series 433, 65–74.
Annual cycle of wrack supply to sandy beaches: effect of the physical environment.Crossref | GoogleScholarGoogle Scholar |

Barreiro, F., Gómez, M., Lastra, M., López, J., and De la Huz, R. (2013). Coupling between macroalgal inputs and nutrients outcrop in exposed sandy beaches. Hydrobiologia 700, 73–84.
Coupling between macroalgal inputs and nutrients outcrop in exposed sandy beaches.Crossref | GoogleScholarGoogle Scholar |

Benavente, J., Del Río, L., Anfuso, G., Gracia, F. J., and Reyes, J. L. (2002). Utility of morphodynamic characterisation in the prediction of beach damage by storms. Journal of Coastal Research 36, 56–64.

Bergamino, L., Lercari, D., and Defeo, O. (2011). Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis. Estuarine, Coastal and Shelf Science 91, 536–543.
Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslGgtLo%3D&md5=a10ad3f8a81df14219363a4b76146309CAS |

Bergamino, L., Gómez, J., Barboza, F. R., and Lercari, D. (2013). Major food web properties of two sandy beaches with contrasting morphodynamics, and effects on the stability. Aquatic Ecology 47, 253–261.
Major food web properties of two sandy beaches with contrasting morphodynamics, and effects on the stability.Crossref | GoogleScholarGoogle Scholar |

Caldas, A., and Almeida, J. R. (1985). Hábitos alimentares e eomportamento de Phaleria brasiliensis Laporle, 1840 (Coleoplera, Tenebrionidae) na praia de Bolafogo, Rio de Janeiro, RJ. Revista Brasileira de Entomologia 29, 221–224.

Colombini, I., and Chelazzi, L. (2003). Influence of marine allochthonous input on sandy beach communities. Oceanography and Marine Biology: An Annual Review 41, 115–159.

Colombini, I., Aloia, A., Fallaci, M., Pezzoli, G., and Chelazzi, L. (2000). Temporal and spatial use of stranded wrack by the macrofauna of a tropical sandy beach. Marine Biology 136, 531–541.
Temporal and spatial use of stranded wrack by the macrofauna of a tropical sandy beach.Crossref | GoogleScholarGoogle Scholar |

Colombini, I., Mateo, M. A., Serrano, O., Fallaci, M., Gagnarli, E., Serrano, L., and Chelazzi, L. (2009). On the role of Posidonia oceanica beach wrack for macroinvertebrates of a Tyrrhenian sandy shore. Acta Oecologica 35, 32–44.
On the role of Posidonia oceanica beach wrack for macroinvertebrates of a Tyrrhenian sandy shore.Crossref | GoogleScholarGoogle Scholar |

Colombini, I., Brilli, M., Fallaci, M., Gagnarli, E., and Chelazzi, L. (2011). Food webs of a sandy beach macroinvertebrate community using stable isotopes analysis. Acta Oecologica 37, 422–432.
Food webs of a sandy beach macroinvertebrate community using stable isotopes analysis.Crossref | GoogleScholarGoogle Scholar |

Colombini, I., Fallaci, M., Gagnarli, E., Rossano, C., Scapini, F., and Chelazzi, L. (2013). The behavioural ecology of two sympatric talitrid species, Talitrus saltator (Montagu) and Orchestia gammarellus (Pallas) on a Tyrrhenian sandy beach dune system. Estuarine, Coastal and Shelf Science 117, 37–47.
The behavioural ecology of two sympatric talitrid species, Talitrus saltator (Montagu) and Orchestia gammarellus (Pallas) on a Tyrrhenian sandy beach dune system.Crossref | GoogleScholarGoogle Scholar |

Crawley, K. R., Hyndes, G. A., Vanderklift, M. A., Revill, A. T., Peter, D., and Nichols, P. D. (2009). Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment. Marine Ecology Progress Series 376, 33–44.
Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment.Crossref | GoogleScholarGoogle Scholar |

Defeo, O., and Gómez, J. (2005). Morphodynamics and habitat safety in sandy beaches: life-history adaptations in a supralittoral amphipod. Marine Ecology Progress Series 293, 143–153.
Morphodynamics and habitat safety in sandy beaches: life-history adaptations in a supralittoral amphipod.Crossref | GoogleScholarGoogle Scholar |

Defeo, O., and McLachlan, A. (2011). Coupling between macrofauna community structure and beach type: a deconstructive meta-analysis. Marine Ecology Progress Series 433, 29–41.
Coupling between macrofauna community structure and beach type: a deconstructive meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Dufour, C., Probert, P. K., and Savage, C. (2012). Macrofaunal colonisation of stranded Durvillaea antarctica on a southern New Zealand exposed sandy beach. New Zealand Journal of Marine and Freshwater Research 1, 1–15.

Fanini, L., and Lowry, J. (2014). Coastal talitrids and connectivity between beaches: a behavioural test. Journal of Experimental Marine Biology and Ecology 457, 120–127.
Coastal talitrids and connectivity between beaches: a behavioural test.Crossref | GoogleScholarGoogle Scholar |

Gonçalves, S. C., and Marques, J. C. (2011). The effects of season and wrack subsidy on the community functioning of exposed sandy beaches. Estuarine, Coastal and Shelf Science 95, 165–177.
The effects of season and wrack subsidy on the community functioning of exposed sandy beaches.Crossref | GoogleScholarGoogle Scholar |

Griffiths, C. L., and Stenton-Dozey, J. M. E. (1981). The fauna and rate of degradation of stranded kelp. Estuarine, Coastal and Shelf Science 12, 645–653.
The fauna and rate of degradation of stranded kelp.Crossref | GoogleScholarGoogle Scholar |

Harris, L., Campbell, E. E., Nel, R., and Schoeman, D. (2014). Rich diversity, strong endemism, but poor protection: addressing the neglect of sandy beach ecosystems in coastal conservation planning. Diversity & Distributions 20, 1120–1135.
Rich diversity, strong endemism, but poor protection: addressing the neglect of sandy beach ecosystems in coastal conservation planning.Crossref | GoogleScholarGoogle Scholar |

Ince, R., Hyndes, G. A., Lavery, P. S., and Vanderklift, M. A. (2007). Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuarine, Coastal and Shelf Science 74, 77–86.
Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat.Crossref | GoogleScholarGoogle Scholar |

Inglis, G. (1989). The colonisation and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach. Journal of Experimental Marine Biology and Ecology 125, 203–217.
The colonisation and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach.Crossref | GoogleScholarGoogle Scholar |

Jędrzejczak, M. F. (2002). Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part II. Drifline effects of succession changes and colonisation of beach fauna. Oceanologia 44, 367–387.

Knoppers, B. A., Brandini, F. P., and Thamm, C. A. (1987). Ecological studies in the Bay of Paranagua. II: some physical and chemical characteristics. Nerítica 2, 1–36.

Lastra, M., Page, H. M., Dugan, J. E., Hubbard, D. M., and Rodil, I. F. (2008). Processing of allochthonous macrophyte subsidies by sandy beach consumers: estimates of feeding rates and impacts on food resources. Marine Biology 154, 163–174.
Processing of allochthonous macrophyte subsidies by sandy beach consumers: estimates of feeding rates and impacts on food resources.Crossref | GoogleScholarGoogle Scholar |

Lavoie, D. R. (1985). Population dynamics and ecology of beach wrack macroinvertebrates of the central California coast. Bulletin of the Southern California Academy of Sciences 84, 1–22.

Lercari, D., Bergamino, L., and Defeo, O. (2010). Trophic models in sandy beaches with contrasting morphodynamics: comparing ecosystem structure and biomass flow. Ecological Modelling 221, 2751–2759.
Trophic models in sandy beaches with contrasting morphodynamics: comparing ecosystem structure and biomass flow.Crossref | GoogleScholarGoogle Scholar |

Marinoni, R. C., and Dutra, R. C. (1997). Familias de coleoptera capturadas com armadilha malaise em oito localidades do estado do Paraná, Brasil, diversidades alfa e beta. Revista Brasileira de Zoologia 14, 751–770.
Familias de coleoptera capturadas com armadilha malaise em oito localidades do estado do Paraná, Brasil, diversidades alfa e beta.Crossref | GoogleScholarGoogle Scholar |

Marsden, I. D. (1991). Kelp–sandhopper interactions on a sandy beach in New Zealand. I. Drift composition and distribution. Journal of Experimental Marine Biology and Ecology 152, 61–74.
Kelp–sandhopper interactions on a sandy beach in New Zealand. I. Drift composition and distribution.Crossref | GoogleScholarGoogle Scholar |

McLachlan, A., and Brown, A. C. (2006). ‘The Ecology of Sandy Shores’, 2nd edn. (Academic Press: New York.)

Mews, M., Zimmer, M., and Jelinski, D. E. (2006). Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Marine Ecology Progress Series 328, 155–160.
Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada.Crossref | GoogleScholarGoogle Scholar |

Olabarria, C., Lastra, M., and Garrido, J. (2007). Succession of macrofauna on macroalgal wrack of an exposed sandy beach: effects of patch size and site. Marine Environmental Research 63, 19–40.
Succession of macrofauna on macroalgal wrack of an exposed sandy beach: effects of patch size and site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFerug%3D%3D&md5=05d5340694a901a08d0c66dd9e3ccc6aCAS | 16890281PubMed |

Orr, M., Zimmer, M., Jelinski, D. E., and Mews, M. (2005). Wrack deposition on different beach type: spatial and temporal variation in the pattern of subsidy. Ecology 86, 1496–1507.
Wrack deposition on different beach type: spatial and temporal variation in the pattern of subsidy.Crossref | GoogleScholarGoogle Scholar |

Pavesi, L., Tiedemann, R., De Matthaeis, E., and Ketmaier, V. (2013). Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea. Frontiers in Zoology 10, 1–19.
Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Polis, G. A., and Hurd, S. D. (1996). Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small island and coastal land communities. American Naturalist 147, 396–423.
Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small island and coastal land communities.Crossref | GoogleScholarGoogle Scholar |

Rodil, I. F., Olabarria, C., Lastra, M., and Lopez, J. (2008). Differential effects of native and invasive algal wrack on macrofaunal assemblages inhabiting exposed sandy beaches. Journal of Experimental Marine Biology and Ecology 358, 1–13.
Differential effects of native and invasive algal wrack on macrofaunal assemblages inhabiting exposed sandy beaches.Crossref | GoogleScholarGoogle Scholar |

Ruiz-Delgado, M. C., Vieira, J. V., Veloso, V. G., Reyes-Martínez, M. J., Sallorenzo, A. I., Borzone, C. A., Sánchez-Moyano, J. E., and García-García, F. J. (2014). The role of wrack deposits for supralittoral arthropods: an example using Atlantic sandy beaches of Brazil and Spain. Estuarine, Coastal and Shelf Science 136, 61–71.
The role of wrack deposits for supralittoral arthropods: an example using Atlantic sandy beaches of Brazil and Spain.Crossref | GoogleScholarGoogle Scholar |

Ruiz-Delgado, M. C., Reyes-Martínez, M. J., Sánchez-Moyano, J. E., López-Pérez, J., and García-García, F. J. (2015). Distribution patterns of supralittoral arthropods: wrack deposits as a source of food and refuge on exposed sandy beaches (SW Spain). Hydrobiologia 742, 205–219.
Distribution patterns of supralittoral arthropods: wrack deposits as a source of food and refuge on exposed sandy beaches (SW Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaku7%2FM&md5=9dbe119741d3dac70436cbe81685825aCAS |

Sandrini-Neto, L., and Camargo, M. G. (2013). GAD: an R package for ANOVA designs from general principles. (Comprehensive R Archive Network.) Available at https://cran.r-project.org/ [Verified 30 September 2015].

Spiller, D. A., Piovia-Scott, A. N., Wright, L. H., Yang, G., Takimoto, T. W., and Schoener, T. I. (2010). Marine subsidies have multiple effects on coastal food webs. Ecology 91, 1424–1434.
Marine subsidies have multiple effects on coastal food webs.Crossref | GoogleScholarGoogle Scholar | 20503874PubMed |

Underwood, A. J. (1997). ‘Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance.’ (Cambridge University Press: Cambridge, UK.)

Wildish, D. J. (2012). Long distance dispersal and evolution of talitrids (Crustacea: Amphipoda: Talitridae) in the northeast Atlantic islands. Journal of Natural History 46, 2329–2348.
Long distance dispersal and evolution of talitrids (Crustacea: Amphipoda: Talitridae) in the northeast Atlantic islands.Crossref | GoogleScholarGoogle Scholar |