Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effects of small changes in riparian forest complexity on aquatic insect bioindicators in Brazilian subtropical streams

A. E. Siegloch A C , R. Schmitt A , M. Spies B , M. Petrucio A and M. I. M. Hernández A
+ Author Affiliations
- Author Affiliations

A Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Ecologia e Zoologia, Programa de Pós Graduação em Ecologia, Campos Universitário, s/n, Bairro Córrego Grande, 88040-900, Florianópolis, SC, Brazil.

B Universidade Federal do Pampa, Campus São Gabriel, Avenida Antônio Trilha, 1847, 97300-000, São Gabriel, RS, Brazil.

C Corresponding author. Email: asiegloch@gmail.com

Marine and Freshwater Research 68(3) 519-527 https://doi.org/10.1071/MF15162
Submitted: 25 April 2015  Accepted: 21 March 2016   Published: 26 May 2016

Abstract

Riparian forests have positive effects on water quality and biodiversity. However, most studies have only tested the effects of distinct vegetation types or streams with and without forests, despite the fact that riparian forests differ in degrees of complexity. The aim of the present study was to test whether riparian forest complexity affected the composition and abundance of the Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa across a small environmental gradient. We also measured whether EPT genera or feeding groups responded to changes in riparian forest complexity. The study was conducted in two protection areas (i.e. Lagoa do Peri Municipal Park, PERI; and the Permanent Protection Area of Ratones, RAT) of Santa Catarina Island, Brazil. Primary production increased in streams with lower canopy percentage, and EPT assemblages differed among streams with different riparian forest complexity. In RAT, the water quality and forest variables affected EPT composition; however, in PERI, only water quality variables were important. Indicator species analysis based on genera suggested Kempnyia (Plecoptera) and Zelusia (Ephemeroptera) to be indicative of streams with greater forest complexity, whereas Farrodes (Ephemeroptera) was significant in streams of intermediate riparian forest complexity; however, no one functional group dominated. The results of the present study show that small changes in riparian forest complexity influence the composition of EPT insects in subtropical streams.

Additional keywords: Atlantic Forest, Ephemeroptera, Plecoptera and Trichoptera insects, indicator species.


References

Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics 35, 257–284.
Landscapes and riverscapes: the influence of land use on stream ecosystems.Crossref | GoogleScholarGoogle Scholar |

Allan, J. D., and Castillo, M. M. (2007). ‘Stream Ecology: Structure and Function of Running Waters’, 2nd edn. (Springer)

Anderson, M. J., Gorley, R. N., and Clarke, K. R. 2008. PERMANOVA + for PRIMER: Guide to Sofware and Statistical Methods. PRIMER-R: Plymouth, UK.

Bain, M. B., and Stevenson, N. J. (1999). ‘Aquatic Habitat Assessment: Common Methods.’ (American Fisheries Society: Bethesda, MD, USA.)

Balian, E. V., and Naiman, R. J. (2005). Abundance and production of riparian trees in the lowland floodplain of the Queets River, Washington. Ecosystems 8, 841–861.
Abundance and production of riparian trees in the lowland floodplain of the Queets River, Washington.Crossref | GoogleScholarGoogle Scholar |

Baptista, D. F., Buss, D. F., Nessimian, J. L., Da Silva, E. R., De Moraes Neto, A. H. A., Carvalho, S. N., De Oliveira, M. A., and Andrade, L. R. (2006). Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure of mouthparts. Annales de Limnologie – International Journal of Limnology 42, 87–96.
Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure of mouthparts.Crossref | GoogleScholarGoogle Scholar |

Bisheimer, M. V., Santos, C., and Carlson, V. E. (2013). ‘A mata atlântica da ilha de Santa Catarina’, 2nd edn. (Lagoa Editora: Florianópolis, Brazil.)

Bonnet, A., and Queiroz, M. H. (2006). Estratificação vertical de bromélias epifíticas em diferentes estádios sucessionais da Floresta Ombrófila Densa, Ilha de Santa Catarina, Santa Catarina, Brasil. Revista Brasileira de Botanica. Brazilian Journal of Botany 29, 217–228.

Brasil, L. S., Juen, L., Batista, J. D., Pavan, M. G., and Cabette, H. S. R. (2014). Longitudinal distribution of the functional feeding groups of aquatic insects in streams of Brazilian Cerrado Savanna. Neotropical Entomology 43, 421–428.
Longitudinal distribution of the functional feeding groups of aquatic insects in streams of Brazilian Cerrado Savanna.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2s%2FhtVWquw%3D%3D&md5=1ff1a5fa00a8ef03f48d9f845f893796CAS | 27193952PubMed |

Brower, J. E., Zar, J. H., and Von-Ende, C. N. (1998). ‘Field and Laboratory Methods for General Ecology’, 4th edn. (McGraw-Hill Science/Engineering/Math: Boston, MA, USA.)

Caruso, M. M. L. (1983). ‘O desmatamento da Ilha de Santa Catarina de 1500 aos dias atuais.’ (Universidade Federal de Santa Catarina: Florianópolis, Brazil.)

Clarke, K. R., and Gorley, R. N. (2006). ‘Primer v.6: User Manual/Tutorial.’ (PRIMER-E.)

Compin, A., and Céréghino, R. (2003). Sensitivity of aquatic insect richness to disturbance in the Adour-Garonne stream system (France). Ecological Indicators 3, 135–142.
Sensitivity of aquatic insect richness to disturbance in the Adour-Garonne stream system (France).Crossref | GoogleScholarGoogle Scholar |

Corbi, J. J., and Froehlich, C. G. (2010). Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Quimica Nova 33, 644–648.
Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1yhu7w%3D&md5=e8a8dee85fa6a8ed90a662239d5ef805CAS |

Corbi, J. J., and Trivinho-Strixino, S. (2008). Relationship between sugar cane cultivation and stream macroinvertebrate communities. Brazilian Archives of Biology and Technology 51, 769–779.
Relationship between sugar cane cultivation and stream macroinvertebrate communities.Crossref | GoogleScholarGoogle Scholar |

Corbi, J. J., Kleine, P., and Trivinho-Strixino, S. (2013). Are aquatic insect species sensitive to banana plant cultivation? Ecological Indicators 25, 156–161.
Are aquatic insect species sensitive to banana plant cultivation?Crossref | GoogleScholarGoogle Scholar |

Cummins, K. W., and Klug, M. J. (1979). Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10, 147–172.
Feeding ecology of stream invertebrates.Crossref | GoogleScholarGoogle Scholar |

Cummins, K. W., Merritt, R. W., and Andrade, P. C. N. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40, 69–89.
The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil.Crossref | GoogleScholarGoogle Scholar |

Domínguez, E., and Fernández, H. R. (2009). ‘Macroinvertebrados bentónicos sudamericanos: sistemática y biología.’ (Fundación Miguell Lillo: Tucumán, Argentina.)

Domínguez, E., Molineri, C., Pescador, M., Hubbard, M., and Nieto, C. (2006). ‘Aquatic Biodiversity in Latin America: Ephemeroptera of South America’, Volume 2. (Pensoft: Sofia, Bulgaria.)

Dufrêne, M., and Legendre, P. (1997). Species assemblages and indicador species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.

Egler, M. A., Buss, D. F. A., Moreira, J. C. B., and Baptista, D. F. (2012). Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil. Brazilian Journal of Biology 72, 437–443.
Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bot1agsA%3D%3D&md5=9e34bb1bbffaaaa1628851ea5d108803CAS |

França, J. S., Gregório, R. S., Paula, J. D., Gonçalves, J. F., Ferreira, F. A., and Callisto, M. (2009). Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Marine and Freshwater Research 60, 990–998.
Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream.Crossref | GoogleScholarGoogle Scholar |

Kleba Lisboa, L. K., Silva, A. L., Siegloch, A., Gonçalves, J. J., and Petrucio, M. (2015). Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic Rainforest Brazilian stream. Marine and Freshwater Research 66, 674–680.
Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic Rainforest Brazilian stream.Crossref | GoogleScholarGoogle Scholar |

Kleine, P., Trivinho-Strixino, S., and Corbi, J. J. (2011). Relationship between banana plant cultivation and stream macroinvertebrate communities. Acta Limnologica Brasiliensia 23, 344–352.
Relationship between banana plant cultivation and stream macroinvertebrate communities.Crossref | GoogleScholarGoogle Scholar |

Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, D., Melo, A. S., and Callisto, M. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators 25, 45–57.
Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness.Crossref | GoogleScholarGoogle Scholar |

Lorenzen, C. J. (1967). Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12, 343–346.
Determination of chlorophyll and pheopigments: spectrophotometric equations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXovFOqsQ%3D%3D&md5=503aeda84207892d15077a99c7d9deaeCAS |

Lorion, C. M., and Kennedy, B. P. (2009). Relationship between deforestation, riparian forest buffers and benthic macroinvertebrates in Neotropical headwater streams. Freshwater Biology 54, 165–180.
Relationship between deforestation, riparian forest buffers and benthic macroinvertebrates in Neotropical headwater streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCrtL0%3D&md5=3a342844a12e3401475ceb185f96228fCAS |

Mesa, L. M. (2014). Influence of riparian quality on macroinvertebrate assemblages in subtropical mountain streams. Journal of Natural History 48, 1153–1167.
Influence of riparian quality on macroinvertebrate assemblages in subtropical mountain streams.Crossref | GoogleScholarGoogle Scholar |

Moraes, A. B., Wilhelm, A. E., Boelter, T., Sternet, C., Schultz, U. H., and Maltchik, L. (2014). Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil. Environmental Monitoring and Assessment 186, 7063–7074.
Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WlsbzI&md5=3c57ec0afb781adeb32b410e873a2034CAS | 25052327PubMed |

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., and Kents, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=0996b0eb8bafd9ff8396e808c5a3cfccCAS | 10706275PubMed |

Naiman, R. J., Décamps, H., and Mcclain, M. E. (2005). ‘Riparia: Ecology, Conservation, and Management of Streamside Communities.’ (Elsevier Academic Press: Burlington, MA, USA.)

Nessimian, J. L., Venticinque, E. M., Zuanon, J., De Marco, P. J. R., Gordo, M., Fidelis, L., Batista, J. D., and Juen, L. (2008). Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614, 117–131.
Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams.Crossref | GoogleScholarGoogle Scholar |

Richardson, J. S., and Béraud, S. (2014). Effects of riparian forest harvest on streams: a meta-analysis. Journal of Applied Ecology 51, 1712–1721.
Effects of riparian forest harvest on streams: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Rosenberg, D. M., and Resh, V. H. (1993). ‘Freshwater Monitoring and Benthic Macroinvertebrates.’ (Chapman & Hall: New York.)

Salles, F. F., and Ferreira-Junior, N. (2014). Hábitat e hábitos. In ‘Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia’. (Eds N. Hamada, J. Luiz Nessimian, and R. Barbosa Querino.) pp. 39–49. (Editora do INPA: Manaus, Brazil.)

Salles, F. F., Da Silva, E. R., Serrão, J. E., and Francischetti, C. N. (2004). Baetidae (Ephemeroptera) na Região Sudeste do Brasil: novos registros e chave para os gêneros no estágio ninfal. Neotropical Entomology 33, 725–735.
Baetidae (Ephemeroptera) na Região Sudeste do Brasil: novos registros e chave para os gêneros no estágio ninfal.Crossref | GoogleScholarGoogle Scholar |

Siegloch, A. E., Suriano, M., Spies, M., and Fonseca-Gessner, A. (2014). Effect of land use on mayfly assemblages structure in Neotropical headwater streams. Anais da Academia Brasileira de Ciencias 86, 1735–1747.
Effect of land use on mayfly assemblages structure in Neotropical headwater streams.Crossref | GoogleScholarGoogle Scholar | 25590712PubMed |

Silva, P. G, and Hernández, M. I. M. (2014). Local and regional effects on community structure of dung beetles in a mainland–island scenario. PLOS One 9, e111883.
Local and regional effects on community structure of dung beetles in a mainland–island scenario.Crossref | GoogleScholarGoogle Scholar | 25356729PubMed |

Souza, A. L. T., Fonseca, D. G., Libório, R., and Tanaka, M. O. (2013). Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management 298, 12–18.
Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil.Crossref | GoogleScholarGoogle Scholar |

Stenert, C., Bacca, R. C., Moraes, A. B., Ávila, A. C., and Maltchik, L. (2012). Negative effects of exotic pine invasion on macroinvertebrate communities in southern Brazil coastal ponds. Marine and Freshwater Research 63, 283–292.
Negative effects of exotic pine invasion on macroinvertebrate communities in southern Brazil coastal ponds.Crossref | GoogleScholarGoogle Scholar |

Strahler, H. N. (1957). Quantitative analysis of watershed geomorphology. American Geophysical Union Transactions 38, 913–920.
Quantitative analysis of watershed geomorphology.Crossref | GoogleScholarGoogle Scholar |

Törnblom, J., Degerman, E., and Angelstam, P. (2011). Forest proportion as indicator of ecological integrity in streams using Plecoptera as a proxy. Ecological Indicators 11, 1366–1374.
Forest proportion as indicator of ecological integrity in streams using Plecoptera as a proxy.Crossref | GoogleScholarGoogle Scholar |

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
The river continuum concept.Crossref | GoogleScholarGoogle Scholar |

Ward, J. V. (1992). ‘Aquatic Insect Ecology: Biology and Habitat.’ (Wiley: New York.)

Wiggins, G. B. (1996). ‘Larvae of the North American Caddisfly Genera (Trichoptera)’, 2nd edn. (University of Toronto Press: Toronto, ON, Canada.)