Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
REVIEW

Fertility control to mitigate human–wildlife conflicts: a review

Giovanna Massei A B and Dave Cowan A
+ Author Affiliations
- Author Affiliations

A National Wildlife Management Centre, Animal Health and Veterinary Laboratories Agency, Sand Hutton, York, YO26 5 LE, UK.

B Corresponding author. Email: giovanna.massei@ahvla.gsi.gov.uk

Wildlife Research 41(1) 1-21 https://doi.org/10.1071/WR13141
Submitted: 5 August 2013  Accepted: 27 February 2014   Published: 19 May 2014

Abstract

As human populations grow, conflicts with wildlife increase. Concurrently, concerns about the welfare, safety and environmental impacts of conventional lethal methods of wildlife management restrict the options available for conflict mitigation. In parallel, there is increasing interest in using fertility control to manage wildlife. The present review aimed at analysing trends in research on fertility control for wildlife, illustrating developments in fertility-control technologies and delivery methods of fertility-control agents, summarising the conclusions of empirical and theoretical studies of fertility control applied at the population level and offering criteria to guide decisions regarding the suitability of fertility control to mitigate human–wildlife conflicts. The review highlighted a growing interest in fertility control for wildlife, underpinned by increasing numbers of scientific studies. Most current practical applications of fertility control for wild mammals use injectable single-dose immunocontraceptive vaccines mainly aimed at sterilising females, although many of these vaccines are not yet commercially available. One oral avian contraceptive, nicarbazin, is commercially available in some countries. Potential new methods of remote contraceptive delivery include bacterial ghosts, virus-like particles and genetically modified transmissible and non-transmissible organisms, although none of these have yet progressed to field testing. In parallel, new species-specific delivery systems have been developed. The results of population-level studies of fertility control indicated that this approach may increase survival and affect social and spatial behaviour of treated animals, although the effects are species- and context-specific. The present studies suggested that a substantial initial effort is generally required to reduce population growth if fertility control is the sole wildlife management method. However, several empirical and field studies have demonstrated that fertility control, particularly of isolated populations, can be successfully used to limit population growth and reduce human–wildlife conflicts. In parallel, there is growing recognition of the possible synergy between fertility control and disease vaccination to optimise the maintenance of herd immunity in the management of wildlife diseases. The review provides a decision tree that can be used to determine whether fertility control should be employed to resolve specific human–wildlife conflicts. These criteria encompass public consultation, considerations about animal welfare and feasibility, evaluation of population responses, costs and sustainability.

Additional keywords: contraception, fertility inhibitor, immunocontraception, population control, wildlife management.


References

Asa, C. S., and Porton, I. J. (Eds) (2005). ‘Wildlife Contraception: Issues, Methods and Applications.’ (Johns Hopkins University Press: Baltimore, MD.)

Aune, K., Terry, J., Kreeger, T. J., Thomas, J., and Roffe, T. J. (2002). Overview of delivery systems for the administration of vaccines to elk and bison of the greater Yellowstone area. In ‘Proceedings of Brucellosis in Elk and Bison in the Greater Yellowstone Area’. (Ed. T. J. Kreeger.) pp. 66–79. (Wyoming Game and Fish Department: Cheyenne, WY.)

Avery, M. L., Yoder, C. A., and Tillman, E. A. (2008). Diazacon inhibits reproduction in invasive monk parakeet populations. The Journal of Wildlife Management 72, 1449–1452.
Diazacon inhibits reproduction in invasive monk parakeet populations.Crossref | GoogleScholarGoogle Scholar |

Baker, D. L., Nett, T. M., Hobbs, N. T., Gill, R. B., and Miller, M. M. (1999). Evaluation of GnRH-toxin conjugate as an irreversible contraceptive in female mule deer. In ‘Proceedings of The Wildlife Society 6th Annual Conference’. (Ed. S. Craven.) pp.5–11. (The Wildlife Society: Bethesda, MD.)

Baker, D. L., Wild, M. A., Conner, M. M., Ravivarapu, H. B., Dunn, R. L., and Nett, T. M. (2002). Effects of GnRH agonist (leuprolide) on reproduction and behaviour in female wapiti (Cervus elaphus nelsoni). Reproduction 60, 155–167.
| 1:CAS:528:DC%2BD38XnsFGksL8%3D&md5=713d8123d41558d4b62a7f0273cda348CAS | 12220155PubMed |

Baker, D. L., Wild, M. A., Conner, M. M., Ravivarapu, H. B., Dunn, R. L., and Nett, T. M. (2004). Gonadotropin-releasing hormone agonist: a new approach to reversible contraception in female deer. Journal of Wildlife Diseases 40, 713–724.
Gonadotropin-releasing hormone agonist: a new approach to reversible contraception in female deer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsV2htrc%3D&md5=275c27e32d360e66907b7d6a34d8d7caCAS | 15650089PubMed |

Ball, B. A., Sabeur, K., Nett, T., and Liu, I. K. M. (2006). Effects of a GnRH cytotoxin on reproductive function in peripubertal male dogs. Theriogenology 66, 766–774.
Effects of a GnRH cytotoxin on reproductive function in peripubertal male dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1WrtLo%3D&md5=d9c4612e179292ca1f7ea967f3268060CAS | 16504280PubMed |

Ballou, J. D., Traylor-Holzer, K., Turner, A., Malo, A. F., Powell, D., Maldonado, J., and Eggert, L. (2008). Simulation model for contraceptive management of the Assateague Island feral horse population using individual-based data. Wildlife Research 35, 502–512.
Simulation model for contraceptive management of the Assateague Island feral horse population using individual-based data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjO&md5=16999b0c8b99f66e29609a8f3f443046CAS |

Barfield, J. P., Nieschlag, E., and Cooper, T. G. (2006). Fertility control in wildlife: humans as a model. Contraception 73, 6–22.
Fertility control in wildlife: humans as a model.Crossref | GoogleScholarGoogle Scholar | 16371289PubMed |

Barlow, N. D. (1994). Predicting the effect of a novel vertebrate biocontrol agent: a model for viral-vectored immunocontraception of New Zealand possums. Journal of Applied Ecology 31, 454–462.
Predicting the effect of a novel vertebrate biocontrol agent: a model for viral-vectored immunocontraception of New Zealand possums.Crossref | GoogleScholarGoogle Scholar |

Barlow, N. D. (2000). The ecological challenge in immunocontraception: editor’s introduction. Journal of Applied Ecology 37, 897–902.
The ecological challenge in immunocontraception: editor’s introduction.Crossref | GoogleScholarGoogle Scholar |

Barr, J. J. F., Lurz, P. W. W., Shirley, M. D. F., and Rushton, S. P. (2002). Evaluation of immunocontraception as a publicly acceptable form of vertebrate pest species control: the introduced grey squirrel in Britain as an example. Environmental Management 30, 342–351.
Evaluation of immunocontraception as a publicly acceptable form of vertebrate pest species control: the introduced grey squirrel in Britain as an example.Crossref | GoogleScholarGoogle Scholar |

Benfield, N., and Darney, P. D. (2011). Contraceptive implants. In ‘Contraception’. (Ed. D. Shoupe.) pp. 57–66. (Wiley-Blackwell: Oxford, UK.)

Beringer, J., Hansen, L. P., Demand, J. A., and Sartwell, J. (2002). Efficacy of translocation to control urban deer in Missouri: costs, efficiency, and outcome. Wildlife Society Bulletin 30, 767–774.

Bertschinger, H. J., de Barros Guimarães, M. A., Trigg, T. E., and Human, A. (2008). The use of deslorelin implants for the long-term contraception of lionesses and tigers. Wildlife Research 35, 525–530.
The use of deslorelin implants for the long-term contraception of lionesses and tigers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjL&md5=d4e8ff574f06ab48213b68d6f0245776CAS |

Bomford, M. (1990). ‘A Role for Fertility Control in Wildlife Management? Bureau of Natural Resources Bulletin No. 7.’ (Australian Government Publishing Service: Canberra.)

Bomford, M., and O’Brien, P. (1997). Potential use of contraception for managing wildlife pests in Australia. In ‘Contraception in Wildlife Management. USDA–APHIS Technical Bulletin 1853’. (Ed. T. J. Kreeger.) pp. 205–214. (USDA–APHIS: Washington, DC.)

Boulanger, J. R., Curtis, P. D., Cooch, E. G., and DeNicola, A. J. (2012). Sterilization as an alternative deer control technique: a review. Human–Wildlife Interactions 6, 273–282.

Bradford, J. B., and Hobbs, N. T. (2008). Regulating overabundant ungulate populations: an example for elk in Rocky Mountain National Park, Colorado. Journal of Environmental Management 86, 520–528.
Regulating overabundant ungulate populations: an example for elk in Rocky Mountain National Park, Colorado.Crossref | GoogleScholarGoogle Scholar | 17276577PubMed |

Brown, R. G., Bowen, W. D., Eddington, J. D., Kimmins, W. C., Mezei, M., Parsons, J. L., and Pohajdak, B. (1997). Evidence for a long-lasting single administration contraceptive vaccine in wild grey seals. Journal of Reproductive Immunology 35, 43–51.
Evidence for a long-lasting single administration contraceptive vaccine in wild grey seals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1eqs74%3D&md5=577bf61ea66d13823ddbacff7075ae65CAS | 9373857PubMed |

Budke, C. M., and Slater, M. R. (2009). Utilization of matrix population models to assess a 3-year single treatment nonsurgical contraception program versus surgical sterilization in feral cat populations. Journal of Applied Welfare Science 12, 277–292.
Utilization of matrix population models to assess a 3-year single treatment nonsurgical contraception program versus surgical sterilization in feral cat populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12qs7bI&md5=5958741892697367886df4e3678456d8CAS |

Bynum, K. S., Eisemann, J. D., Weaver, G. C., Yoder, C. A., Fagerstone, K. A., and Miller, L. A. (2007). Nicarbazin OvoControl G bait reduces hatchability of eggs laid by resident Canada geese in Oregon. The Journal of Wildlife Management 71, 135–143.
Nicarbazin OvoControl G bait reduces hatchability of eggs laid by resident Canada geese in Oregon.Crossref | GoogleScholarGoogle Scholar |

Caley, P., and Ramsey, D. (2001). Estimating disease transmission in wildlife, with emphasis on leptospirosis and bovine tuberculosis in possums, and effects of fertility control. Journal of Applied Ecology 38, 1362–1370.
Estimating disease transmission in wildlife, with emphasis on leptospirosis and bovine tuberculosis in possums, and effects of fertility control.Crossref | GoogleScholarGoogle Scholar |

Campbell, T. A., Garcia, M. R., and Miller, L. A. (2010). Immunocontraception in male feral swine treated with a recombinant gonadotropin-releasing hormone vaccine. Journal of Swine Health and Production 18, 118–124.

Campbell, T. A., Long, D. B., and Massei, G. (2011). Efficacy of the boar-operated-system to deliver baits to feral swine. Preventive Veterinary Medicine 98, 243–249.
Efficacy of the boar-operated-system to deliver baits to feral swine.Crossref | GoogleScholarGoogle Scholar | 21176854PubMed |

Cariño, C., Prasad, S., Skinner, S., Dunbar, B., Chirinos, M., Schwoebel, E., Larrea, F., and Dunbar, B. (2002). Localization of species conserved zona pellucida antigens in mammalian ovaries. Reproductive Biomedicine Online 4, 116–126.
Localization of species conserved zona pellucida antigens in mammalian ovaries.Crossref | GoogleScholarGoogle Scholar | 12470573PubMed |

Carroll, M. J., Singer, A., Smith, G. C., Cowan, D. P., and Massei, G. (2010). The use of immunocontraception to improve rabies eradication in urban dog populations. Wildlife Research 37, 676–687.
The use of immunocontraception to improve rabies eradication in urban dog populations.Crossref | GoogleScholarGoogle Scholar |

Carter, S. P., Delahay, R. J., Smith, G. C., Macdonald, D. W., Riordan, P., Etherington, T., Pimley, E., and Cheeseman, C. L. (2007). Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proceedings. Biological Sciences 274, 2769–2777.
Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology.Crossref | GoogleScholarGoogle Scholar |

Caughley, C., Pech, R. P., and Grice, D. (1992). Effect of fertility control on a population’s productivity. Wildlife Research 19, 623–627.
Effect of fertility control on a population’s productivity.Crossref | GoogleScholarGoogle Scholar |

Chambers, L. K., Singleton, G. R., and Hinds, L. A. (1999). Fertility control of wild mouse populations: the effects of hormonal competence and an imposed level of sterility. Wildlife Research 26, 579–591.
Fertility control of wild mouse populations: the effects of hormonal competence and an imposed level of sterility.Crossref | GoogleScholarGoogle Scholar |

Chittick, E., Rotstein, D., Brown, T., and Wolfe, B. (2001). Pyometra and uterine adenocarcinoma in a melengestrol acetate-implanted captive coati (Nasua nasua). Journal of Zoo and Wildlife Medicine 32, 245–251.
| 1:STN:280:DC%2BD3s3msVWgtw%3D%3D&md5=d5685e32cd25e6b1802242faa842c2cbCAS | 12790429PubMed |

Choisy, M., and Rohani, P. (2006). Harvesting can increase severity of wildlife disease epidemics. Proceedings. Biological Sciences 273, 2025–2034.
Harvesting can increase severity of wildlife disease epidemics.Crossref | GoogleScholarGoogle Scholar |

Choudhury, S., Kakkar, V., Suman, P., Chakrabarti, K., Vrati, S., and Gupta, S. K. (2009). Immunogenicity of zona pellucida glycoprotein-3 and spermatozoa YLP(12) peptides presented on Johnson grass mosaic virus-like particles. Vaccine 27, 2948–2953.
Immunogenicity of zona pellucida glycoprotein-3 and spermatozoa YLP(12) peptides presented on Johnson grass mosaic virus-like particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWju7Y%3D&md5=e0be063572fe784b5a911b3aeb6417b7CAS | 19428905PubMed |

Conner, M. M., Baker, D. L., Wild, M. A., Powers, J. G., Hussain, M. D., Dun, R. L., and Nett, T. M. (2007). Fertility control in free-ranging elk using gonadotropin releasing hormone agonist leuprolide: effects on reproduction, behavior, and body condition. The Journal of Wildlife Management 71, 2346–2356.
Fertility control in free-ranging elk using gonadotropin releasing hormone agonist leuprolide: effects on reproduction, behavior, and body condition.Crossref | GoogleScholarGoogle Scholar |

Cooper, D. W., and Larsen, E. (2006). Immunocontraception of mammalian wildlife: ecological and immunogenetic issues. Reproduction 132, 821–828.
Immunocontraception of mammalian wildlife: ecological and immunogenetic issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsF2isg%3D%3D&md5=18753498bd780c269e9258a3a047ad0eCAS | 17127742PubMed |

Coulson, G., Nave, C. D., Shaw, J., and Renfree, M. B. (2008). Long-term efficacy of levonorgestrel implants for fertility control of eastern grey kangaroos (Macropus giganteus). Wildlife Research 35, 520–524.
Long-term efficacy of levonorgestrel implants for fertility control of eastern grey kangaroos (Macropus giganteus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjF&md5=7777fdf7e236038605381f993afd1e33CAS |

Courchamp, F., and Cornell, S. J. (2000). Virus-vectored immunocontraception to control feral cats on islands: a mathematical model. Journal of Applied Ecology 37, 903–913.
Virus-vectored immunocontraception to control feral cats on islands: a mathematical model.Crossref | GoogleScholarGoogle Scholar |

Cowan, D. P., and Massei, G. (2008). Wildlife contraception, individuals and populations: how much fertility control is enough? In ‘Proceedings 23rd Vertebrate Pest Conference’. (Eds R. M. Timm and M. B. Madon.) pp. 220–228. (University of California: Davis, CA.)

Cowan, D. P., and Quy, R. J. (2003). Rodenticide use against farm rat populations: biological constraints on effectiveness and safety. In ‘Conservation and Conflict: Mammals and Farming in Britain’. (Eds F. Tattersall and W. Manly.) pp. 172–185. (Linnean Society: London.)

Cowan, D. P., Massei, G., and Mellows, R. J. B. (2006). A modeling approach to evaluating potential applications of emerging fertility control technologies in the UK. In ‘Proceedings 22nd Vertebrate Pest Conference’. (Eds R. M. Timm, J. J. O’Brien.) pp. 55–62. (University of California: Davis, CA.)

Cowan, P. E., Grant, W. N., and Ralston, M. (2008). Assessing the suitability of the parasitic nematode Parastrongyloides trichosuri as a vector for transmissible fertility control of brushtail possums in New Zealand – ecological and regulatory considerations. Wildlife Research 35, 573–577.
Assessing the suitability of the parasitic nematode Parastrongyloides trichosuri as a vector for transmissible fertility control of brushtail possums in New Zealand – ecological and regulatory considerations.Crossref | GoogleScholarGoogle Scholar |

Crawford, J., Boulet, M., and Drea, C. M. (2011). Smelling wrong: hormonal contraception in lemurs alters critical female odour cues. Proceedings. Biological Sciences 278, 122–130.
Smelling wrong: hormonal contraception in lemurs alters critical female odour cues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Glurc%3D&md5=3ff259454cb631b9c6ac1d5b07c8a102CAS |

Cross, M. L., Zheng, T., Duckworth, J. A., and Cowan, P. E. (2011). Could recombinant technology facilitate the realisation of a fertility-control vaccine for possums? New Zealand Journal of Zoology 38, 91–111.
Could recombinant technology facilitate the realisation of a fertility-control vaccine for possums?Crossref | GoogleScholarGoogle Scholar |

Cui, X., Duckworth, J. A., Lubitz, P., Molinia, F. C., Haller, C., Lubitz, W., and Cowan, P. E. (2010). Humoral immune responses in brushtail possums (Trichosurus vulpecula) induced by bacterial ghosts expressing possum zona pellucida 3 protein. Vaccine 28, 4268–4274.
Humoral immune responses in brushtail possums (Trichosurus vulpecula) induced by bacterial ghosts expressing possum zona pellucida 3 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslWnsbw%3D&md5=81c689a5f449ac7d7efa38a9f1fb6782CAS | 20434548PubMed |

Curtis, P. D., Pooler, R. L., Richmond, M. E., Miller, L. A., Mattfeld, G. F., and Quimby, F. W. (2002). Comparative effects of GnRH and porcine zona pellucida (PZP) immunocontraceptive vaccines for controlling reproduction in white-tailed deer (Odocoileus virginianus). Reproduction 60, 131–141.
| 1:CAS:528:DC%2BD38XnsFGksL4%3D&md5=cac24b862826ecc741fb952425758c35CAS | 12220153PubMed |

Curtis, P. D., Richmond, M. E., Miller, L. A., and Quimby, F. W. (2007). Pathophysiology of white-tailed deer vaccinated with porcine zona pellucida immunocontraceptive. Vaccine 25, 4623–4630.
Pathophysiology of white-tailed deer vaccinated with porcine zona pellucida immunocontraceptive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsF2lsLY%3D&md5=194e724cd0a6d575cf890fda84fa0660CAS | 17475371PubMed |

Curtis, P. D., Richmond, M. E., Miller, L. A., and Quimby, F. W. (2008). Physiological effects of gonadotropin-releasing hormone immunocontraception on white-tailed deer. Human–Wildlife Conflicts 2, 68–79.

D’Occhio, M. J., Fordyce, G., Whyte, T. R., Jubb, T. F., Fitzpatrick, L. A., Cooper, N. J., Aspden, W. J., Bolam, M. J., and Trigg, T. E. (2002). Use of GnRH agonist implants for long-term suppression of fertility in extensively managed heifers and cows. Animal Reproduction Science 74, 151–162.
Use of GnRH agonist implants for long-term suppression of fertility in extensively managed heifers and cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlyrtLs%3D&md5=45351232a2ca80517e69e7493b3ba8dfCAS | 12417117PubMed |

Daszak, P., Cunningham, A. A., and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287, 443–449.
Emerging infectious diseases of wildlife – threats to biodiversity and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntl2jtw%3D%3D&md5=ae62898d658695e3d577c279c09aafa8CAS | 10642539PubMed |

Delahay, R. J., Brown, J. A., Mallinson, P. J., Spyvee, P. D., Handoll, D., Rogers, L. M., and Cheeseman, C. L. (2000). The use of marked bait in studies of the territorial organization of the European badger (Meles meles). Mammal Review 30, 73–87.
The use of marked bait in studies of the territorial organization of the European badger (Meles meles).Crossref | GoogleScholarGoogle Scholar |

Delsink, A. K., and Kirkpatrick, J. (Eds) (2012). ‘Free-ranging African Elephant Immunocontraception.’ (Trident Press: Cape Town, South Africa.)

Delsink, A. K., van Altena, J. J., Grobler, D., Bertschinger, H., Kirkpatrick, J., and Slotow, R. (2007). Implementing immunocontraception in free-ranging African elephants at Makalali Conservancy. Journal of the South African Veterinary Association 78, 25–30.
Implementing immunocontraception in free-ranging African elephants at Makalali Conservancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svkvV2mtg%3D%3D&md5=bec960d16609dd5f59f9889c890497e8CAS | 17665762PubMed |

DeNicola, A. J., Kesler, D. J., and Swihart, R. K. (1997). Dose determination and efficacy of remotely delivered norgestomet implants on contraception of white-tailed deer. Zoo Biology 16, 31–37.
Dose determination and efficacy of remotely delivered norgestomet implants on contraception of white-tailed deer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFChtrw%3D&md5=b01b7e97c36e876ab45695be0fbd7d06CAS |

DeNicola, A. J., VerCauteren, K. C., Curtis, P. D., and Hygnstrom, S. E. (Eds) (2000). ‘Managing White-tailed Deer in Suburban Environments: a Technical Guide.’ (Cornell Cooperative Extension: Ithaca, NY.)

Druce, H. C., Mackey, R. L., and Slowtow, R. (2011). How immunocontraception can contribute to elephant management in small, enclosed reserves: Munyawana population. PLoS ONE 6, e27952.
How immunocontraception can contribute to elephant management in small, enclosed reserves: Munyawana population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOm&md5=6f728fc0242e3df6366465566a8483dfCAS | 22174758PubMed |

Duckworth, J. A., Cui, X., Scobie, S., Arrow, J., and Cowan, P. E. (2008). Development of a contraceptive vaccine for the marsupial brushtail possum (Trichosurus vulpecula): lack of effects in mice and chickens immunised with recombinant possum ZP3 protein and a possum ZP3 antifertility epitope. Wildlife Research 35, 563–572.
Development of a contraceptive vaccine for the marsupial brushtail possum (Trichosurus vulpecula): lack of effects in mice and chickens immunised with recombinant possum ZP3 protein and a possum ZP3 antifertility epitope.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjK&md5=1de403137b47a3cad3f93dac868ff663CAS |

Duka, T., and Masters, P. (2005). Confronting a tough issue: fertility control and translocation for over-abundant koalas on Kangaroo Island, South Australia. Ecological Management & Restoration 6, 172–181.
Confronting a tough issue: fertility control and translocation for over-abundant koalas on Kangaroo Island, South Australia.Crossref | GoogleScholarGoogle Scholar |

Eade, J. A., Roberston, I. D., and James, C. M. (2009). Contraceptive potential of porcine and feline zona pellucida A, B and C subunits in domestic cats. Reproduction 137, 913–922.
Contraceptive potential of porcine and feline zona pellucida A, B and C subunits in domestic cats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKgsbg%3D&md5=5ba945d76d779d2e9d2dc68964343407CAS | 19279201PubMed |

Eidne, K. A., Henery, C. C., and Aitken, R. J. (2000). Selection of peptides targeting the human sperm surface using random peptide phage display to identify ligands homologous to ZP3. Biology of Reproduction 63, 1396–1402.
Selection of peptides targeting the human sperm surface using random peptide phage display to identify ligands homologous to ZP3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslCksL4%3D&md5=6a82a8b19d3b7f25cb5b6f50c5fb0c03CAS | 11058544PubMed |

Eymann, J., Herbert, C. A., Thomson, B. P., Trigg, T. E., Cooper, D. W., and Eckery, D. C. (2007). Effects of deslorelin implants on reproduction in the common brushtail possum (Trichosurus vulpecula). Reproduction, Fertility and Development 19, 899–909.
Effects of deslorelin implants on reproduction in the common brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1eqsrzL&md5=2ac6feef911515040cf08e30950389a9CAS |

Fagerstone, K. A., Miller, L. A., Eisemann, J. D., O’Hare, J. R., and Gionfriddo, J. P. (2008). Registration of wildlife contraceptives in the United States of America, with OvoControl and GonaCon immunocontraceptive vaccines as examples. Wildlife Research 35, 586–592.
Registration of wildlife contraceptives in the United States of America, with OvoControl and GonaCon immunocontraceptive vaccines as examples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjM&md5=170f58eb5b222b8f4a22b162ac3a3f46CAS |

Fagerstone, K. A., Miller, L. A., Killian, G. J., and Yoder, C. A. (2010). Review of issues concerning the use of reproductive inhibitors, with particular emphasis on resolving human–wildlife conflicts in North America. Integrative Zoology 5, 15–30.
Review of issues concerning the use of reproductive inhibitors, with particular emphasis on resolving human–wildlife conflicts in North America.Crossref | GoogleScholarGoogle Scholar | 21392318PubMed |

Ferri, M., Ferraresi, M., Gelati, A., Zannetti, G., Ubaldi, A., Contiero, B., and Bursi, E. (2009). Use of nicarbazine in the control of urban pigeon colonies in Italy in 1990–2007. Annali della Facolta’di Medicina Veterinaria di Parma 29, 91–102.

Fraker, M. A., Brown, R. G., Gaunt, G. E., Kerr, J. A., and Pohajdak, B. (2002). Long-lasting, single-dose immunocontraception of feral fallow deer in British Columbia. The Journal of Wildlife Management 66, 1141–1147.
Long-lasting, single-dose immunocontraception of feral fallow deer in British Columbia.Crossref | GoogleScholarGoogle Scholar |

Fu, H., Zhang, J., Shi, D., and Wu, X. (2013). Effects of levonorgestrel-quinestrol (EP-1) treatment on Mongolian gerbil wild populations: a case study. Integrative Zoology 8, 277–284.
Effects of levonorgestrel-quinestrol (EP-1) treatment on Mongolian gerbil wild populations: a case study.Crossref | GoogleScholarGoogle Scholar | 24020466PubMed |

Garrott, R. A., and Siniff, D. B. (1992). Limitations of male-oriented contraception for controlling feral horse populations. The Journal of Wildlife Management 56, 456–464.
Limitations of male-oriented contraception for controlling feral horse populations.Crossref | GoogleScholarGoogle Scholar |

Gionfriddo, J. P., Eisemann, J. D., Sullivan, K. J., Healey, R. S., and Miller, L. A. (2009). Field test of a single-injection gonadotrophin-releasing hormone immunocontraceptive vaccine in female white-tailed deer. Wildlife Research 36, 177–184.
Field test of a single-injection gonadotrophin-releasing hormone immunocontraceptive vaccine in female white-tailed deer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVOnsLk%3D&md5=6029f02c476bc187844dc2463746b960CAS |

Gionfriddo, J. P., Denicola, A. J., Miller, L. A., and Fagerstone, K. A. (2011a). Efficacy of GnRH immunocontraception of wild white-tailed deer in New Jersey. Wildlife Society Bulletin 35, 142–148.
Efficacy of GnRH immunocontraception of wild white-tailed deer in New Jersey.Crossref | GoogleScholarGoogle Scholar |

Gionfriddo, J. P., Denicola, A. J., Miller, L. A., and Fagerstone, K. A. (2011b). Health effects of GnRH immunocontraception of wild white-tailed deer in New Jersey. Wildlife Society Bulletin 35, 149–160.
Health effects of GnRH immunocontraception of wild white-tailed deer in New Jersey.Crossref | GoogleScholarGoogle Scholar |

Giunchi, D., Baldaccini, N. E., Sbragia, G., and Soldatini, C. (2007). Use of pharmacological sterilisation to control feral pigeon populations. Wildlife Research 34, 306–318.
Use of pharmacological sterilisation to control feral pigeon populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsV2gsrk%3D&md5=614f8d5cab40cdc7d1eb435774fc1b3bCAS |

Gobello, C. (2007). New GnRH analogs in canine reproduction. Animal Reproduction Science 100, 1–13.
New GnRH analogs in canine reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2is7k%3D&md5=3158cdf81268e74e93b2ea4822697881CAS | 16979859PubMed |

Gray, M. E., and Cameron, E. Z. (2010). Does contraceptive treatment in wildlife result in side effects? A review of quantitative and anecdotal evidence. Reproduction (Cambridge, England) 139, 45–55.
Does contraceptive treatment in wildlife result in side effects? A review of quantitative and anecdotal evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWntQ%3D%3D&md5=e46bcf046f2a32f7203c7215ace1595fCAS |

Gray, M. E., Thain, D. S., Cameron, E. Z., and Miller, L. A. (2010). Multi-year fertility reduction in free-roaming feral horses with single-injection immunocontraceptive formulations. Wildlife Research 37, 475–481.
Multi-year fertility reduction in free-roaming feral horses with single-injection immunocontraceptive formulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCht7%2FI&md5=c3e9661701e7683e8c26875df48ef2d1CAS |

Grignard, E., Cadet, R., Saez, F., Drevet, J. R., and Vernet, P. (2007). Identification of sperm antigens as a first step towards the generation of a contraceptive vaccine to decrease fossorial water vole Arvicola terrestris sherman proliferations. Theriogenology 68, 779–795.
Identification of sperm antigens as a first step towards the generation of a contraceptive vaccine to decrease fossorial water vole Arvicola terrestris sherman proliferations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1SgsL4%3D&md5=23dc8893cf7b9269d3538b5d0fb67801CAS | 17645936PubMed |

Gross, J. (2000). A dynamic simulation model for evaluating effects of removal and contraception on genetic variation and demography of Pryor Mountain wild horses. Biological Conservation 96, 319–330.
A dynamic simulation model for evaluating effects of removal and contraception on genetic variation and demography of Pryor Mountain wild horses.Crossref | GoogleScholarGoogle Scholar |

Gupta, S. K., and Bhandari, B. (2011). Acrosome reaction: relevance of zona pellucida glycoproteins. Asian Journal of Andrology 13, 97–105.
Acrosome reaction: relevance of zona pellucida glycoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejsQ%3D%3D&md5=2fb0c39ee8c8bf8c93c1890bd62a7cd4CAS | 21042299PubMed |

Gupta, S. K., Srinivasan, V. A., Suman, P., Rajan, S., Nagendrakumar, S. B., Gupta, N., Shrestha, A., Joshi, P., and Panda, A. K. (2011). Contraceptive vaccines based on the zona pellucida glycoproteins for dogs and other wildlife population management. American Journal of Reproductive Immunology 66, 51–62.
Contraceptive vaccines based on the zona pellucida glycoproteins for dogs and other wildlife population management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVGms7o%3D&md5=a19bfa139f80366600988800a94aaf22CAS | 21501280PubMed |

Gupta, N., Chakrabarti, K., Prakash, K., Wadhwa, N., Gupta, T., and Gupta, S. K. (2013). Immunogenicity and contraceptive efficacy of Escherichia coli-expressed recombinant porcine zona pellucida proteins. American Journal of Reproductive Immunology 70, 139–152.
Immunogenicity and contraceptive efficacy of Escherichia coli-expressed recombinant porcine zona pellucida proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCqt7bP&md5=f58e7ed6c698931902be873ae4720395CAS | 23444974PubMed |

Hall-Woods, M. L., Bauman, K. L., Bauman, J. E., Fischer, M., Houston, E. W., and Asa, C. S. (2007). Melengestrol acetate implant contraception in addax (Addax nasomaculatus) and Arabian oryx (Oryx leucoryx). Zoo Biology 26, 299–310.
Melengestrol acetate implant contraception in addax (Addax nasomaculatus) and Arabian oryx (Oryx leucoryx).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSks73J&md5=b1ab079d1d7698b5ae9b2d10b537f760CAS | 19360582PubMed |

Herbert, C. A., and Trigg, T. E. (2005). Applications of GnRH in the control and management of fertility in female animals. Animal Reproduction Science 88, 141–153.
Applications of GnRH in the control and management of fertility in female animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslygtro%3D&md5=815bc31206ecbe16c824aba82c6c9107CAS | 16102921PubMed |

Herbert, C. A., Trigg, T. E., Renfree, M. B., Shaw, G., Eckery, D. C., and Cooper, D. W. (2005). Long-term effects of deslorelin implants on reproduction in the female tammar wallaby (Macropus eugenii). Reproduction 129, 361–369.
Long-term effects of deslorelin implants on reproduction in the female tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSntLY%3D&md5=a927255130915b2e4468db0822c7bdb9CAS | 15749962PubMed |

Hernandez, S., Locke, S. L., Cook, M. W., Harveson, L. A., Davis, D. S., Lopez, R. R., Silvy, N. J., and Fraker, M. A. (2006). Effects of SpayVac® on urban female white-tailed deer movements. Wildlife Society Bulletin 34, 1430–1434.
Effects of SpayVac® on urban female white-tailed deer movements.Crossref | GoogleScholarGoogle Scholar |

Hobbs, N. T., Bowden, D. C., and Baker, D. L. (2000). Effects of fertility control on populations of ungulates: general, stage-structured models. The Journal of Wildlife Management 64, 473–491.
Effects of fertility control on populations of ungulates: general, stage-structured models.Crossref | GoogleScholarGoogle Scholar |

Holland, O. J., Cowan, P. E., Gleeson, D. M., Duckworth, J. A., and Chamley, L. W. (2009). MHC haplotypes and response to immunocontraceptive vaccines in the brushtail possum. Journal of Reproductive Immunology 82, 57–65.
MHC haplotypes and response to immunocontraceptive vaccines in the brushtail possum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltbnE&md5=1f4eb0361dfe8535b89d4ea333a55d1fCAS | 19577310PubMed |

Hone, J. (1992). Rate of increase and fertility control. Journal of Applied Ecology 29, 695–698.
Rate of increase and fertility control.Crossref | GoogleScholarGoogle Scholar |

Hone, J. (1995). Spatial and temporal aspects of vertebrate pest damage with emphasis on feral pigs. Journal of Applied Ecology 32, 311–319.
Spatial and temporal aspects of vertebrate pest damage with emphasis on feral pigs.Crossref | GoogleScholarGoogle Scholar |

Hone, J. (1999). On rate of increase (r): patterns of variation in Australian mammals and the implications for wildlife management. Journal of Applied Ecology 36, 709–718.
On rate of increase (r): patterns of variation in Australian mammals and the implications for wildlife management.Crossref | GoogleScholarGoogle Scholar |

Hone, J. (2002). Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management. Biological Conservation 105, 231–242.
Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management.Crossref | GoogleScholarGoogle Scholar |

Hoyer, P. B., Devine, P. J., Hu, X., Thompson, K. E., and Sipes, I. G. (2001). Ovarian toxicity of 4-vinylcyclohexene diepoxide: a mechanistic model. Toxicologic Pathology 29, 91–99.
Ovarian toxicity of 4-vinylcyclohexene diepoxide: a mechanistic model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtl2mtbw%3D&md5=a821375080861d8a4be6ad7b8114b683CAS | 11215690PubMed |

Hu, X., Roberts, J. R., Apopa, P. L., Kan, Y. W., and Ma, Q. (2006). Accelerated ovarian failure induced by 4-vinyl cyclohexene diepoxide in Nrf2 null mice. Molecular and Cellular Biology 26, 940–954.
Accelerated ovarian failure induced by 4-vinyl cyclohexene diepoxide in Nrf2 null mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOnsrw%3D&md5=2b162bd71f68fc35b458eab52a3a7c32CAS | 16428448PubMed |

Huchard, E., Canale, C. I., Le Gros, C., Perret, M., Henry, P.-Y., and Kappeler, P. M. (2012). Convenience polyandry or convenience polygyny? Costly sex under female control in a promiscuous primate. Proceedings. Biological Sciences 279, 1371–1379.
Convenience polyandry or convenience polygyny? Costly sex under female control in a promiscuous primate.Crossref | GoogleScholarGoogle Scholar |

Humphrys, S., and Lapidge, S. J. (2008). Delivering and registering species-tailored oral antifertility products: a review. Wildlife Research 35, 578–585.
Delivering and registering species-tailored oral antifertility products: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjN&md5=a36355569ae8e9981ce9fc6384cd27eeCAS |

Jacob, J., Herawati, N. A., Davis, S. A., and Singleton, G. R. (2004). The impact of sterilised females on enclosed populations of ricefield rats. The Journal of Wildlife Management 68, 1130–1137.
The impact of sterilised females on enclosed populations of ricefield rats.Crossref | GoogleScholarGoogle Scholar |

Jacob, J., Singleton, G. R., and Hinds, L. A. (2008). Fertility control of rodent pests. Wildlife Research 35, 487–493.
Fertility control of rodent pests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjI&md5=dd7ba0812dd317e99842171c495e9039CAS |

Jacobsen, N. K., Jessup, D. A., and Kesler, D. J. (1995). Contraception in captive black-tailed deer by remotely delivered norgestomet ballistic implants. Wildlife Society Bulletin 23, 718–722.

Jewell, P. (1986). Survival in a feral population of primitive sheep in St Kilda, Outer Hebrides, Scotland. National Geographic Research 2, 402–406.

Ji, W. H. (2009). A review of the potential of fertility control to manage brushtail possums in New Zealand. Human–Wildlife Conflicts 3, 20–29.

Ji, W. H., Clout, M. N., and Sarre, S. D. (2000). Responses of male brushtail possums to sterile females: implications for biological control. Journal of Applied Ecology 37, 926–934.
Responses of male brushtail possums to sterile females: implications for biological control.Crossref | GoogleScholarGoogle Scholar |

Johnson, E., and Tait, A. J. (1983). Prospects for the chemical control of reproduction in the grey squirrel. Mammal Review 13, 167–172.
Prospects for the chemical control of reproduction in the grey squirrel.Crossref | GoogleScholarGoogle Scholar |

Jones, J. E., Solis, J., Hughes, B. L., Castaldo, D. J., and Toler, J. E. (1990). Production and egg-quality responses of white leghorn layers to anticoccidial agents. Poultry Science 69, 378–387.
Production and egg-quality responses of white leghorn layers to anticoccidial agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2gs70%3D&md5=de93ee7c02945e61f6b969a5d4906444CAS | 2345719PubMed |

Kadir, Z., Ma, X., Li, J., and Zhang, F. (2013). Granulocyte–macrophage colony-stimulating factor enhances the humoral immune responses of mouse zona pellucida 3 vaccine strategy based on DNA and protein coadministration in BALB/c mice. Reproductive Sciences 20, 400–407.
Granulocyte–macrophage colony-stimulating factor enhances the humoral immune responses of mouse zona pellucida 3 vaccine strategy based on DNA and protein coadministration in BALB/c mice.Crossref | GoogleScholarGoogle Scholar | 23111125PubMed |

Kemp, J., and Miller, L. A. (2008). Oral vaccination and immunocontraception of feral swine using Brucella suis with multimeric GnRH protein expression. In ‘Proceedings of 23rd Vertebrate Pest Conference’. (Eds R. M. Timm and M. B. Madon.) pp. 250–252. (University of California: Davis, CA.)

Kennis, J., Sluydts, V., Leirs, H., and van Hooft, W. F. P. (2008). Polyandry and polygyny in an African rodent pest species, Mastomys natalensis. Mammalia 72, 150–160.
Polyandry and polygyny in an African rodent pest species, Mastomys natalensis.Crossref | GoogleScholarGoogle Scholar |

Khan, M. A. H., Ogita, K., Ferro, V. A., Kumasawa, K., Tsutsui, T., and Kimura, T. (2008). Immunisation with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and T-helper epitopes in saline suppresses rodent fertility. Vaccine 26, 1365–1374.
Immunisation with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and T-helper epitopes in saline suppresses rodent fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlemt7o%3D&md5=917b6bb46aeb20e6d37d588f747f3588CAS |

Killian, G. J., and Miller, L. A. (2000). Behavioral observations and physiological implications for white-tailed deer treated with two different immunocontraceptives. In ‘Proceedings of the 9th Wildlife Damage Management Conference’. (Eds M. C. Brittingham, J. Kays and R. McPeake.) pp. 283–291. (Pennsylvania State University: State College, PA.)

Killian, G., Miller, L. A., Rhyan, J., and Doten, H. (2006). Immunocontraception of Florida feral swine with a single-dose GnRH vaccine. American Journal of Reproductive Immunology 55, 378–384.
Immunocontraception of Florida feral swine with a single-dose GnRH vaccine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xltlehtr4%3D&md5=96dc1957bf413139c6c203978f57dea2CAS | 16635212PubMed |

Killian, G., Thain, D., Diehl, N. K., Rhyan, J., and Miller, L. A. (2008). Four-year contraception rates of mares treated with single-injection porcine zona pellucida and GnRH vaccines and intrauterine devices. Wildlife Research 35, 531–539.
Four-year contraception rates of mares treated with single-injection porcine zona pellucida and GnRH vaccines and intrauterine devices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjJ&md5=3d6115876f5da47fd33626bde8b97532CAS |

Killian, G., Kreeger, T. J., Rhyan, J., Fagerstone, K., and Miller, L. A. (2009). Observations on the use of Gonacon™ in captive female elk (Cervus elaphus). Journal of Wildlife Diseases 45, 184–188.
Observations on the use of Gonacon™ in captive female elk (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 19204347PubMed |

Kirkpatrick, J. F. (2007). Measuring the effects of wildlife contraception: the argument for comparing apples with oranges. Reproduction, Fertility and Development 19, 548–552.
Measuring the effects of wildlife contraception: the argument for comparing apples with oranges.Crossref | GoogleScholarGoogle Scholar |

Kirkpatrick, J. F., and Franck, K. M. (2005). Contraception in free-ranging wildlife. In ‘Wildlife Contraception: Issues, Methods and Applications’. (Eds C. S. Asa and I. J.Porton.) pp. 195–221 (The Johns Hopkins University Press: Baltimore, MD.)

Kirkpatrick, J. F., and Turner, J. W. (1991). Reversible fertility control in non-domestic animals. Journal of Zoo and Wildlife Medicine 22, 392–408.

Kirkpatrick, J. F., and Turner, A. (2002). Reversibility of action and safety during pregnancy of immunization against porcine zona pellucida in wild mares (Equus caballus). Reproduction (Cambridge, England) 60, 197–202.
| 1:CAS:528:DC%2BD38XnsFGksLs%3D&md5=6e3cf1930d104a9adf28f8a7310f24efCAS |

Kirkpatrick, J. F., and Turner, A. (2007). Immunocontraception and increased longevity in equids. Zoo Biology 26, 237–244.
Immunocontraception and increased longevity in equids.Crossref | GoogleScholarGoogle Scholar | 19360577PubMed |

Kirkpatrick, J. F., and Turner, A. (2008). Achieving population goals in long-lived wildlife with contraception. Wildlife Research 35, 513–519.
Achieving population goals in long-lived wildlife with contraception.Crossref | GoogleScholarGoogle Scholar |

Kirkpatrick, J. F., Rowan, A., Lamberski, N., Wallace, R., Frank, K., and Lyda, R. (2009). The practical side of immunocontraception: zona proteins and wildlife. Journal of Reproductive Immunology 83, 151–157.
The practical side of immunocontraception: zona proteins and wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntr7L&md5=7e181e946ce354c1e793a9655e6710e2CAS | 19850355PubMed |

Kirkpatrick, J. F., Lyda, R. O., and Frank, K. M. (2011). Contraceptive vaccines for wildlife: a review. American Journal of Reproductive Immunology 66, 40–50.
Contraceptive vaccines for wildlife: a review.Crossref | GoogleScholarGoogle Scholar | 21501279PubMed |

Kitchener, A. L., Kay, D. J., Walters, B., Menkhorst, P., McCartney, C. A., Buist, J. A., Mate, K. E., and Rodger, J. C. (2009). The immune response and fertility of koalas (Phascolarctos cinereus) immunised with porcine zonae pellucidae or recombinant brushtail possum ZP3 protein. Journal of Reproductive Immunology 82, 40–47.
The immune response and fertility of koalas (Phascolarctos cinereus) immunised with porcine zonae pellucidae or recombinant brushtail possum ZP3 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltbnK&md5=85cbd7d7b0e3aaa11a66a0fea79772c5CAS | 19709753PubMed |

Kreeger, T. J. (1997). Overview of delivery systems for the administration of contraceptives to wildlife. In ‘Contraception in Wildlife Management. USDA–APHIS Technical Bulletin 1853’. (Ed. T. J. Kreeger.) pp. 29–48. (USDA–APHIS: Washington, DC.)

Lambert, M. S., Massei, G., Yoder, C. A., and Cowan, D. P. (2010). An evaluation of Diazacon as a potential contraceptive in non-native rose-ringed parakeets. The Journal of Wildlife Management 74, 573–581.
An evaluation of Diazacon as a potential contraceptive in non-native rose-ringed parakeets.Crossref | GoogleScholarGoogle Scholar |

Levy, J. K. (2011). Contraceptive vaccines for the humane control of community cat populations. American Journal of Reproductive Immunology 66, 63–70.
Contraceptive vaccines for the humane control of community cat populations.Crossref | GoogleScholarGoogle Scholar | 21501281PubMed |

Levy, J. K., Friary, J. A., Miller, L. A., Tucker, S. J., and Fagerstone, K. A. (2011). Long-term fertility control in female cats with GonaCon™, a GnRH immunocontraceptive. Theriogenology 76, 1517–1525.
Long-term fertility control in female cats with GonaCon™, a GnRH immunocontraceptive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isbnF&md5=2d43237948d5208446b95cb1354e47cbCAS | 21835455PubMed |

Liu, J., Jiang, Z., Liu, L., Zhang, Y., Zhang, S., Xiao, J., Ma, M., and Zhang, L. (2011). Triptolide induces adverse effect on reproductive parameters of female Sprague–Dawley rats. Drug and Chemical Toxicology 34, 1–7.
Triptolide induces adverse effect on reproductive parameters of female Sprague–Dawley rats.Crossref | GoogleScholarGoogle Scholar | 20954797PubMed |

Liu, M., Qu, J., Yang, M., Wang, Z., Wang, J., Zhang, Y., and Zhang, Z. (2012). Effects of quinestrol and levonorgestrel on populations of plateau pikas, Ochotona curzoniae, in the Qinghai–Tibetan Plateau. Pest Management Science 68, 592–601.
Effects of quinestrol and levonorgestrel on populations of plateau pikas, Ochotona curzoniae, in the Qinghai–Tibetan Plateau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVKlsg%3D%3D&md5=ca13799d65f77a4f7f030cf342fa0cfdCAS | 22232019PubMed |

Locke, S. L., Cook, M. W., Harveson, L. A., Davis, D. S., Lopez, R. R., Silvy, N. J., and Fraker, M. A. (2007). Effectiveness of SpayVac® on reducing white-tailed deer fertility. Journal of Wildlife Diseases 43, 726–730.
Effectiveness of SpayVac® on reducing white-tailed deer fertility.Crossref | GoogleScholarGoogle Scholar | 17984269PubMed |

Lohr, C. A., Mills, H., Robertson, H., and Bencini, R. (2009). Deslorelin implants control fertility in urban brushtail possums (Trichosurus vulpecula) without negatively influencing their body-condition index. Wildlife Research 36, 324–332.
Deslorelin implants control fertility in urban brushtail possums (Trichosurus vulpecula) without negatively influencing their body-condition index.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1agur8%3D&md5=cd7e9a6bc3cbad5edc41885bbc8695e7CAS |

Lyda, R. O., Hall, R., and Kirkpatrick, J. F. (2005). A comparison of Freund’s complete and Freund’s modified adjuvants used with a contraceptive vaccine in wild horses (Equus caballus). Journal of Zoo and Wildlife Medicine 36, 610–616.
A comparison of Freund’s complete and Freund’s modified adjuvants used with a contraceptive vaccine in wild horses (Equus caballus).Crossref | GoogleScholarGoogle Scholar | 17312717PubMed |

Ma, X., Li, J., and Zhang, F. (2012). Intranasal co-delivery with the mouse zona pellucida 3 and GM–CSF expressing constructs enhances humoral immune responses and contraception in mice. Scandinavian Journal of Immunology 76, 521–527.
Intranasal co-delivery with the mouse zona pellucida 3 and GM–CSF expressing constructs enhances humoral immune responses and contraception in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1eitL3P&md5=6eee80d3f4d416a0effc86141fe42604CAS | 22924630PubMed |

Magiafoglou, A., Schiffer, M., Hoffmann, A. A., and McKechni, S. W. (2003). Immunocontraception for population control: will resistance evolve? Immunology and Cell Biology 81, 152–159.
Immunocontraception for population control: will resistance evolve?Crossref | GoogleScholarGoogle Scholar | 12631239PubMed |

Massei, G. (2012). Catch, inject and release: immunocontraception as alternative to culling and surgical sterilisation to control rabies in free-roaming dogs. In ‘Compendium of the Office International Epizooties Global Conference on Rabies Control’. (Eds A. R. Fooks and T. Muller.) pp. 181–187. (Office International Epizooties: Paris.)

Massei, G. (2013). Fertility control in dogs. In ‘Dogs, Zoonoses and Public Health’. (Eds C. N. Macpherson, F. X. Meslin and A. I. Wandeler.) pp. 259–270. (CABI International: Wallingford, UK.)

Massei, G., and Miller, L. A. (2013). Non-surgical fertility control for managing free-roaming dog populations: a review of products and criteria for field applications. Theriogenology 80, 829–838.
Non-surgical fertility control for managing free-roaming dog populations: a review of products and criteria for field applications.Crossref | GoogleScholarGoogle Scholar | 23998740PubMed |

Massei, G., Cowan, D. P., Coats, J., Gladwell, F., Lane, J. E., and Miller, L. A. (2008). Effect of the GnRH vaccine GonaCon™ on the fertility, physiology and behaviour of wild boar. Wildlife Research 35, 540–547.
Effect of the GnRH vaccine GonaCon™ on the fertility, physiology and behaviour of wild boar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLjP&md5=385f446f988e658008ec2bb3bc9bdf9cCAS |

Massei, G., Quy, R., Gurney, J., and Cowan, D. P. (2010a). Can translocations be used to manage human–wildlife conflicts? Wildlife Research 37, 428–439.
Can translocations be used to manage human–wildlife conflicts?Crossref | GoogleScholarGoogle Scholar |

Massei, G., Miller, L. A., and Killian, G. J. (2010b). Immunocontraception to control rabies in dog populations. Human–Wildlife Interactions 4, 155–157.

Massei, G., Coats, J., Quy, R., Storer, K., and Cowan, D. P. (2010c). The Boar-Operated-System: a novel method to deliver baits to wild pigs. The Journal of Wildlife Management 74, 333–336.
The Boar-Operated-System: a novel method to deliver baits to wild pigs.Crossref | GoogleScholarGoogle Scholar |

Massei, G., Cowan, D. P., Coats, J., Bellamy, F., Quy, R., Brash, M., and Miller, L. A. (2012). Long-term effects of immunocontraception on wild boar fertility, physiology and behaviour. Wildlife Research 39, 378–385.
Long-term effects of immunocontraception on wild boar fertility, physiology and behaviour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKluro%3D&md5=7a6e0b9ff0fbc646688d3b395ee86e63CAS |

Mayer, L. P., Pearsall, N. A., Christian, P. J., Devine, P. J., Payne, C. M., McCuskey, M. K., Marion, S. L., Sipes, I. G., and Hoyer, P. B. (2002). Long-term effects of ovarian follicular depletion in rats by 4-vinylcyclohexene diepoxide. Reproductive Toxicology 16, 775–781.
Long-term effects of ovarian follicular depletion in rats by 4-vinylcyclohexene diepoxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVChsLY%3D&md5=ded2921a7f42763d8cb16cadd99fc985CAS | 12401505PubMed |

Mayer, L. P., Devine, P. J., Dyer, C. A., and Hoyer, P. B. (2004). The follicle-deplete mouse ovary produces androgen. Biology of Reproduction 71, 130–138.
The follicle-deplete mouse ovary produces androgen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKktbg%3D&md5=4776bb236447770caa562bc0f6879791CAS | 14998904PubMed |

Mayle, B. A., Ferryman, M., Peace, A., Yoder, C. A., Miller, L., and Cowan, D. P. (2013). The use of DiazaCon™ to limit fertility by reducing serum cholesterol in female grey squirrels, Sciurus carolinensis. Pest Management Science 69, 414–424.
The use of DiazaCon™ to limit fertility by reducing serum cholesterol in female grey squirrels, Sciurus carolinensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVWgs7zJ&md5=990f4fb51ecb5205e21a7416990e601bCAS | 22791583PubMed |

McLaughlin, E. A., and Aitken, R. J. (2011). Is there a role for immunocontraception? Molecular and Cellular Endocrinology 335, 78–88.
Is there a role for immunocontraception?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Ggsrs%3D&md5=ee9bae838385b99db22acbf84b7fc79fCAS | 20412833PubMed |

McLeod, S. R., and Saunders, G. (2014). Fertility control is much less effective than lethal baiting for controlling foxes. Ecological Modelling 273, 1–10.
Fertility control is much less effective than lethal baiting for controlling foxes.Crossref | GoogleScholarGoogle Scholar |

McLeod, S. R., Saunders, G., Twigg, L. E., Arthur, A. D., Ramsey, D., and Hinds, L. A. (2007). Prospects for the future: is there a role for virally vectored immunocontraception in vertebrate pest management? Wildlife Research 34, 555–566.
Prospects for the future: is there a role for virally vectored immunocontraception in vertebrate pest management?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVamur%2FO&md5=3f1ceddf7692b420a36415a470b2618fCAS |

Merrill, J. A., Cooch, E. G., and Curtis, P. D. (2003). Time to reduction: factors influencing management efficacy in sterilizing overabundant white-tailed deer. The Journal of Wildlife Management 67, 267–279.
Time to reduction: factors influencing management efficacy in sterilizing overabundant white-tailed deer.Crossref | GoogleScholarGoogle Scholar |

Merrill, J. A., Cooch, E. G., and Curtis, P. D. (2006). Managing an over-abundant deer population by sterilization: effects of immigration, stochasticity and the capture process. The Journal of Wildlife Management 70, 268–277.
Managing an over-abundant deer population by sterilization: effects of immigration, stochasticity and the capture process.Crossref | GoogleScholarGoogle Scholar |

Middleton, D. R., Walters, B., Menkhorst, P., and Wright, P. (2003). Fertility control in the koala, Phascolarctos cinereus: the impact of slow-release implants containing levonorgestrel or oestradiol on the production of pouch young. Wildlife Research 30, 207–212.
Fertility control in the koala, Phascolarctos cinereus: the impact of slow-release implants containing levonorgestrel or oestradiol on the production of pouch young.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntV2msbk%3D&md5=4036a2426a4cfc82795fec608c602c9eCAS |

Miller, L. A., and Killian, G. J. (2002). In search of the active PZP epitope in white-tailed deer immunocontraception. Vaccine 20, 2735–2742.
In search of the active PZP epitope in white-tailed deer immunocontraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVCrtbs%3D&md5=80e92ea025554b3e4ee70624be00e45dCAS | 12034100PubMed |

Miller, L. A., Johns, B. E., Elias, D. J., and Killian, G. K. (1999). Oral vaccination of white-tailed deer using a recombinant bacillus Calmette–Guerin vaccine expressing the Borrelia burgdorferi outer surface protein A: prospects for immunocontraception. American Journal of Reproductive Immunology 41, 279–285.
Oral vaccination of white-tailed deer using a recombinant bacillus Calmette–Guerin vaccine expressing the Borrelia burgdorferi outer surface protein A: prospects for immunocontraception.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzgtFansw%3D%3D&md5=7eee3b67707fd975aca0d92f7bd8e21fCAS | 10374705PubMed |

Miller, L. A., Johns, B. E., and Killian, G. J. (2000). Immunocontraception of white-tailed deer with GnRH vaccine. American Journal of Reproductive Immunology 44, 266–274.
Immunocontraception of white-tailed deer with GnRH vaccine.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7lt1Gnug%3D%3D&md5=5aa1f69018434954dc564589cd030e65CAS | 11125787PubMed |

Miller, L. A., Crane, K., Gaddis, S., and Killian, G. J. (2001). Porcine zona pellucida immunocontraception: long-term health effects on white-tailed deer. The Journal of Wildlife Management 65, 941–945.
Porcine zona pellucida immunocontraception: long-term health effects on white-tailed deer.Crossref | GoogleScholarGoogle Scholar |

Miller, L. A., Rhyan, J. C., and Drew, M. (2004). Contraception of bison by GnRH vaccine: a possible means of decreasing transmission of brucellosis in bison. Journal of Wildlife Diseases 40, 725–730.
Contraception of bison by GnRH vaccine: a possible means of decreasing transmission of brucellosis in bison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsV2ht74%3D&md5=5cac4a34acdac104a3c6b5212af1556cCAS | 15650090PubMed |

Miller, L. A., Gionfriddo, J. P., Fagerstone, K. A., Rhyan, J. C., and Killian, G. J. (2008a). The single-shot GnRH immunocontraceptive vaccine (GonaCon™) in white-tailed deer: comparison of several GnRH preparations. American Journal of Reproductive Immunology 60, 214–223.
The single-shot GnRH immunocontraceptive vaccine (GonaCon™) in white-tailed deer: comparison of several GnRH preparations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKrsbzP&md5=19e6d7112adcfe8e7a7812e8184190a8CAS | 18782282PubMed |

Miller, L. A., Gionfriddo, J. P., Rhyan, J. C., Fagerstone, K. A., Wagner, D. C., and Killian, G. J. (2008b). GnRH immunocontraception of male and female white-tailed deer fawns. Human–Wildlife Interactions 2, 93–101.

Miller, L. A., Fagerstone, K. A., Wagner, D. C., and Killian, G. J. (2009). Factors contributing to the success of a single-shot, multiyear PZP immunocontraceptive vaccine for white-tailed deer. Human–Wildlife Conflicts 3, 103–115.

Moore, H. D., Jenkins, N. M., and Wong, C. (1997). Immunocontraception in rodents: a review of the development of a sperm-based immunocontraceptive vaccine for the grey squirrel (Sciurus carolinensis). Reproduction, Fertility and Development 9, 125–129.
Immunocontraception in rodents: a review of the development of a sperm-based immunocontraceptive vaccine for the grey squirrel (Sciurus carolinensis).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mt12qtg%3D%3D&md5=313d3412d3ce001759f86461b2af59cdCAS |

Moresco, A., Munson, L., and Gardner, I. A. (2009). Naturally occurring melengestrol acetate-associated reproductive tract lesions in zoo canids. Veterinary Pathology 46, 1117–1128.
Naturally occurring melengestrol acetate-associated reproductive tract lesions in zoo canids.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1Mjjs1Glug%3D%3D&md5=4cbd419917c55caec7aa46f9f99cc780CAS | 19605907PubMed |

Munson, L. (2006). Contraception in felids. Theriogenology 66, 126–134.
Contraception in felids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFKrsL8%3D&md5=7cca9e3139edec906f409a71c154e843CAS | 16626799PubMed |

Munson, L., Harrenstien, L. A., Acton, A. E., Graham, P. A., Chassy, L. M., and Kirkpatrick, J. F. (2005). Immunologic responses and adverse reactions to Freund’s-adjuvanted porcine zona pellucida immuno-contraceptives in domestic cats. Vaccine 23, 5646–5654.
Immunologic responses and adverse reactions to Freund’s-adjuvanted porcine zona pellucida immuno-contraceptives in domestic cats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ars7fL&md5=bacc0e1cb268a29e795be9d8a99a861dCAS | 16171906PubMed |

Nash, P., Furcolow, C. A., Bynum, K. S., Yoder, C. A., Miller, L. A., and Johnston, J. J. (2007). 20, 25-diazacholesterol as an oral contraceptive for blacktailed prairie dog population management. Human–Wildlife Conflicts 1, 60–67.

Nave, C. D., Coulson, G., Short, R. V., Poiani, A., Shaw, G., and Renfree, M. B. (2002a). Long-term fertility control in the kangaroo and the wallaby using levonorgestrel implants. Reproduction 60, 71–80.
| 1:CAS:528:DC%2BD38XnsFGks7c%3D&md5=4e694e1e8ee9366ab1a4e5f0499f6636CAS | 12220166PubMed |

Nave, C. D., Coulson, G., Poiani, A., Shaw, G., and Renfree, M. B. (2002b). Fertility control in the eastern grey kangaroo using levonorgestrel implants. The Journal of Wildlife Management 66, 470–477.
Fertility control in the eastern grey kangaroo using levonorgestrel implants.Crossref | GoogleScholarGoogle Scholar |

Naz, R. K. (2005). Search for peptide sequences involved in human antisperm antibody-mediated male immunoinfertility by using phage display technology. Molecular Reproduction and Development 72, 25–30.
Search for peptide sequences involved in human antisperm antibody-mediated male immunoinfertility by using phage display technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlCls7o%3D&md5=ac11a1b90dd80f2adedb8c2b02a6f2b4CAS | 15895468PubMed |

Naz, R. K. (2011). Contraceptive vaccines: success, status, and future perspectives. American Journal of Reproductive Immunology 66, 2–4.
Contraceptive vaccines: success, status, and future perspectives.Crossref | GoogleScholarGoogle Scholar | 21645164PubMed |

Naz, R. K., Gupta, S. K., Gupta, J. C., Vyas, H. K., and Talwar, A. G. (2005). Recent advances in contraceptive vaccine development: a mini-review. Human Reproduction 20, 3271–3283.
Recent advances in contraceptive vaccine development: a mini-review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GltrrE&md5=58a94c190f1813843b4894788a8d6671CAS | 16113040PubMed |

Nett, T. M., Glode, L. M., and Ball, B. A. (2003). Evaluation of GnRH conjugated to a cytotoxic agent as a reproductive sterilant in mammals. In ‘Managing African elephant Populations: Act or Let Die? Proceedings of an Expert Consultation on the Control of Wild Elephant Populations’. (Eds B. Colenbrander, J. de Gooijer, R. Paling, S. Stout, T. Stout, and T. Allen) pp. 57–58. (Faculty of Veterinary Medicine, Utrecht University: Utrecht, The Netherlands.)

Nettles, V. F. (1997). Potential consequences and problems with wildlife contraceptives. Reproduction, Fertility and Development 9, 137–143.
Potential consequences and problems with wildlife contraceptives.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mt12qtA%3D%3D&md5=97bd904ae1282c65569c27434b7624b1CAS |

Nuñez, C. M. V., Adelman, J. S., Mason, C., and Rubenstein, D. I. (2009). Immunocontraception decreases group fidelity in a feral horse population during the non-breeding season. Applied Animal Behaviour Science 117, 74–83.
Immunocontraception decreases group fidelity in a feral horse population during the non-breeding season.Crossref | GoogleScholarGoogle Scholar |

Nuñez, C. M. V., Adelman, J. S., and Rubenstein, D. I. (2010). Immunocontraception in wildwild horses (Equus caballus) extends reproductive cycling beyond the normal breeding season. PLoS ONE 5, e13635.
Immunocontraception in wildwild horses (Equus caballus) extends reproductive cycling beyond the normal breeding season.Crossref | GoogleScholarGoogle Scholar |

Patton, M. L., Jochle, W., and Penfold, L. M. (2007). Review of contraception in ungulate species. Zoo Biology 26, 311–326.
Review of contraception in ungulate species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSks73L&md5=3f6b3bbf2bc0eca1bceb686bdf69481aCAS | 19360583PubMed |

Perdok, A. A., de Boer, W. F., and Stout, T. A. E. (2007). Prospects for managing African elephant population growth by immunocontraception: a review. Pachyderm 42, 97–107.

Plotka, E. D., and Seal, U. S. (1989). Fertility control in female white-tailed deer. Journal of Wildlife Diseases 25, 643–646.
Fertility control in female white-tailed deer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2FktFSktg%3D%3D&md5=b6415016aff97ce8b222708cfef92315CAS | 2509740PubMed |

Poiani, A., Coulson, G., Salamon, D., Holland, S., and Nave, C. D. (2002). Fertility control of eastern grey kangaroos: do levonorgestrel implants affect behavior? The Journal of Wildlife Management 66, 59–66.
Fertility control of eastern grey kangaroos: do levonorgestrel implants affect behavior?Crossref | GoogleScholarGoogle Scholar |

Powers, J. G., Baker, D. L., Davis, T. L., Conner, M. M., Lothridge, A. H., and Nett, T. M. (2011). Effects of gonadotropin-releasing hormone immunization on reproductive function and behavior in captive female Rocky Mountain elk (Cervus elaphus nelsoni). Biology of Reproduction 85, 1152–1160.
Effects of gonadotropin-releasing hormone immunization on reproductive function and behavior in captive female Rocky Mountain elk (Cervus elaphus nelsoni).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShsLbP&md5=f1563ce1b25cf8b061829e38e90d7cf0CAS | 21753192PubMed |

Purswell, B. J., and Kolster, K. A. (2006). Immunocontraception in companion animals. Theriogenology 66, 510–513.
Immunocontraception in companion animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vivVajsQ%3D%3D&md5=f848d621cf6a3e064cd1634bdbb34687CAS | 16837035PubMed |

Ramsey, D. (2005). Population dynamics of brushtail possums subject to fertility control. Journal of Applied Ecology 42, 348–360.
Population dynamics of brushtail possums subject to fertility control.Crossref | GoogleScholarGoogle Scholar |

Ramsey, D. (2007). Effects of fertility control on behavior and disease transmission in brushtail possums. The Journal of Wildlife Management 71, 109–116.
Effects of fertility control on behavior and disease transmission in brushtail possums.Crossref | GoogleScholarGoogle Scholar |

Ramsey, D., and Efford, M. G. (2010). The effect of fertility control on the transmission of bovine tuberculosis in wild brushtail possums. Journal of Applied Ecology 47, 911–919.
The effect of fertility control on the transmission of bovine tuberculosis in wild brushtail possums.Crossref | GoogleScholarGoogle Scholar |

Ransom, J. I., Cade, B. S., and Hobbs, N. T. (2010). Influences of immunocontraception on time budgets, social behavior, and body condition in feral horses. Applied Animal Behaviour Science 124, 51–60.
Influences of immunocontraception on time budgets, social behavior, and body condition in feral horses.Crossref | GoogleScholarGoogle Scholar |

Ransom, J. I., Roelle, J. E., Cade, B. S., Coates-Markle, L., and Kane, A. J. (2011). Foaling rates in feral horses treated with the immunocontraceptive porcine zona pellucida. Wildlife Society Bulletin 35, 343–352.
Foaling rates in feral horses treated with the immunocontraceptive porcine zona pellucida.Crossref | GoogleScholarGoogle Scholar |

Reynolds, J. C., Short, M. J., and Leigh, R. J. (2004). Development of population control strategies for mink Mustela vison, using floating rafts as monitors and trap sites. Biological Conservation 120, 533–543.
Development of population control strategies for mink Mustela vison, using floating rafts as monitors and trap sites.Crossref | GoogleScholarGoogle Scholar |

Robinson, A. J., Jackson, R., Kerr, P., Merchant, J., Parer, I., and Pech, R. (1997). Progress towards using recombinant myxoma virus as a vector for fertility control in rabbits. Reproduction, Fertility and Development 9, 77–83.
Progress towards using recombinant myxoma virus as a vector for fertility control in rabbits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mt12rug%3D%3D&md5=410ec6d7dc1fa6ffdceea309f23c3a21CAS |

Rudolph, B. A., Porter, W. F., and Underwood, H. B. (2000). Evaluating immunocontraception for managing suburban white-tailed deer in Irondequoit, New York. The Journal of Wildlife Management 64, 463–473.
Evaluating immunocontraception for managing suburban white-tailed deer in Irondequoit, New York.Crossref | GoogleScholarGoogle Scholar |

Rutberg, A. T. (2005). Deer contraception: what we know and what we don’t. In ‘Humane Wildlife Solutions: the Role of Immunocontraception’. (Ed. A. T. Rutberg.) pp. 23–42. (Humane Society Press: Washington, DC.)

Rutberg, A. T., and Naugle, R. E. (2008). Population effects of immunocontraception in white-tailed deer (Odocoileus virginianus). Wildlife Research 35, 494–501.
Population effects of immunocontraception in white-tailed deer (Odocoileus virginianus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLnM&md5=c964a97bb87daa08aa36d60ceb11bc26CAS |

Rutberg, A. T., Naugle, R. E., Thiele, L. A., and Liu, I. K. M. (2004). Effects of immunocontraception on a suburban population of white-tailed deer Odocoileus virginianus. Biological Conservation 116, 243–250.
Effects of immunocontraception on a suburban population of white-tailed deer Odocoileus virginianus.Crossref | GoogleScholarGoogle Scholar |

Rutberg, A. T., Naugle, R. E., Turner, J. W., Fraker, M. A., and Flanagan, D. R. (2013). Field testing of single-administration porcine zona pellucida contraceptive vaccines in white-tailed deer (Odocoileus virginianus). Wildlife Research 40, 281–288.
Field testing of single-administration porcine zona pellucida contraceptive vaccines in white-tailed deer (Odocoileus virginianus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVeitLnP&md5=a2d2c4474fa60707b31c7c9636e545c1CAS |

Sachs, B. A., and Wolfman, L. (1965). 20, 25-diazacholestenol dihydrochloride: inhibition of cholesterol biosynthesis in hyperlipemic subjects. Archives of Internal Medicine 116, 366–372.
20, 25-diazacholestenol dihydrochloride: inhibition of cholesterol biosynthesis in hyperlipemic subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvFSktb8%3D&md5=d40be5e0823167bdabc5cee041a10d09CAS | 14325910PubMed |

Samoylova, T. I., Cochran, A. M., Samoylov, A. M., Schemera, B., Breiteneicher, A. H., Ditchkoff, S. S., Petrenko, V. A., and Cox, N. R. (2012). Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife. Journal of Biotechnology 162, 311–318.
Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslejsLnE&md5=2b7652dfc882b9685dec0756ec35cb73CAS | 23079080PubMed |

Saunders, G., Mcilroy, J., Berghout, M., Kay, B., Gifford, E., Perry, R., and Van De Ven, R. (2002). The effects of induced sterility on the territorial behaviour and survival of foxes. Journal of Applied Ecology 39, 56–66.
The effects of induced sterility on the territorial behaviour and survival of foxes.Crossref | GoogleScholarGoogle Scholar |

Seamark, R. F. (2001). Biotech prospects for the control of introduced mammals in Australia. Reproduction, Fertility and Development 13, 705–711.
Biotech prospects for the control of introduced mammals in Australia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383lvF2jtA%3D%3D&md5=e029235099a660819a99308615bcb86cCAS |

Sharma, S., and Hinds, L. A. (2012). Formulation and delivery of vaccines: ongoing challenges for animal management. Journal of Pharmacy and Bioallied Sciences 4, 258–266.
Formulation and delivery of vaccines: ongoing challenges for animal management.Crossref | GoogleScholarGoogle Scholar | 23248557PubMed |

Sharp, T., and Saunders, G. (2008). ‘A Model for Assessing the Relative Humaneness of Pest Animal Control Methods.’ (Australian Government Department of Agriculture, Fisheries and Forestry: Canberra.)

Shi, D. Z., Wan, X. R., Davis, S. A., Pech, R. P., and Zhang, Z. B. (2002). Simulation of lethal control and fertility control in a demographic model for Brandt’s vole Microtus brandti. Journal of Applied Ecology 39, 337–348.
Simulation of lethal control and fertility control in a demographic model for Brandt’s vole Microtus brandti.Crossref | GoogleScholarGoogle Scholar |

Sibly, R. M., and Hone, J. (2002). Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London Series Biological Sciences 357, 1153–1170.
Population growth rate and its determinants: an overview.Crossref | GoogleScholarGoogle Scholar |

Sinclair, A. R. E. (2003). Mammal population regulation, keystone processes and ecosystem dynamics. Philosophical Transactions of the Royal Society London Series B 358, 1729–1740.
Mammal population regulation, keystone processes and ecosystem dynamics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svotlymsg%3D%3D&md5=2c5e86f8cd47241e98465e9238bded4bCAS |

Singla, N., Kaur, G., Babbar, B. K., and Sandhu, B. S. (2013). Potential of triptolide in reproductive management of the house rat, Rattus rattus. Integrative Zoology 8, 260–276.
Potential of triptolide in reproductive management of the house rat, Rattus rattus.Crossref | GoogleScholarGoogle Scholar | 24020465PubMed |

Singleton, G. R., Farroway, L. N., Chambers, L. K., Lawson, M. A., Smith, A. L., and Hinds, L. A. (2002). Ecological basis for fertility control in the house mouse (Mus domesticus) using immunocontraceptive vaccines. Reproduction 60, 31–39.
| 1:STN:280:DC%2BD38vmtFCisA%3D%3D&md5=4595352bdc17d5ef584b4838f96a09cfCAS | 12220162PubMed |

Smith, G. C., and Cheeseman, C. L. (2002). A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control. Ecological Modelling 150, 45–53.
A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control.Crossref | GoogleScholarGoogle Scholar |

Smith, G. C., and Wilkinson, D. (2003). Modeling control of rabies outbreaks in red fox populations to evaluate culling, vaccination, and vaccination combined with fertility control. Journal of Wildlife Diseases 39, 278–286.
Modeling control of rabies outbreaks in red fox populations to evaluate culling, vaccination, and vaccination combined with fertility control.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szns1Gksg%3D%3D&md5=908cda00d12625aa80e411a802592ebbCAS | 12910754PubMed |

Swinton, J., Tuyttens, F., MacDonald, D., Nokes, D. J., Cheeseman, C. L., and Clifton-Hadley, R. (1997). A comparison of fertility control and lethal control of bovine tuberculosis in badgers: the impact of perturbation induced transmission. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 352, 619–631.
A comparison of fertility control and lethal control of bovine tuberculosis in badgers: the impact of perturbation induced transmission.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szislSjtw%3D%3D&md5=01f4a499e06879c145840e3cbf496d1bCAS | 9183803PubMed |

Temple, J. L., Millar, R. P., and Rissman, E. F. (2003). An evolutionarily conserved form of gonadotropin-releasing hormone coordinates energy and reproductive behavior. Endocrinology 144, 13–19.
An evolutionarily conserved form of gonadotropin-releasing hormone coordinates energy and reproductive behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFShuw%3D%3D&md5=3e54cbefebb911c49af093f921782bb9CAS | 12488325PubMed |

Totton, S. C., Wandeler, A. I., Zinsstag, J., Bauch, C. T., Ribble, C. S., Rosatte, R. C., and McEwen, S. A. (2010). Stray dog population demographics in Jodhpur, India following a population control/rabies vaccination program. Preventive Veterinary Medicine 97, 51–57.
Stray dog population demographics in Jodhpur, India following a population control/rabies vaccination program.Crossref | GoogleScholarGoogle Scholar | 20696487PubMed |

Tran, T. T., and Hinds, L. A. (2013). Fertility control of rodent pests: a review of the inhibitory effects of plant extracts on ovarian function. Pest Management Science 69, 342–354.
Fertility control of rodent pests: a review of the inhibitory effects of plant extracts on ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFOktbY%3D&md5=f33cf2f8ccb59d2bc12b0f0a78a218deCAS | 22753347PubMed |

Turner, A., and Kirkpatrick, J. F. (2002). Effects of immunocontraception on population, longevity and body condition in wild mares Equus caballus. Reproduction 60, 187–195.
| 1:CAS:528:DC%2BD38XnsFGksLo%3D&md5=c641c4e1aa648a54b1db014d2beabd1fCAS | 12220158PubMed |

Turner, J. W., Liu, I. K. M., and Kirkpatrick, J. F. (1996). Remotely delivered immunocontraception in free-roaming feral burros (Equus asinus). Journal of Reproduction and Fertility 107, 31–35.
Remotely delivered immunocontraception in free-roaming feral burros (Equus asinus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFOltbo%3D&md5=eeec51537880d67256eb0d64725f12f0CAS | 8699431PubMed |

Turner, J. W., Flanagan, D. R., Rutberg, A. T., and Kirkpatrick, J. F. (2007). Immunocontraception in wild horses: one inoculation provides two years of infertility. The Journal of Wildlife Management 71, 662–667.
Immunocontraception in wild horses: one inoculation provides two years of infertility.Crossref | GoogleScholarGoogle Scholar |

Turner, J. W., Rutberg, A. T., Naugle, R. E., Kaur, M. A., Flanagan, D. R., Bertschinger, H. J., and Liu, I. K. M. (2008). Controlled-release components of PZP contraceptive vaccine extend duration of infertility. Wildlife Research 35, 555–562.
Controlled-release components of PZP contraceptive vaccine extend duration of infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLbL&md5=bd4694f440cfabeeafb399a2f965a8a3CAS |

Tuyttens, F. A. M., and Macdonald, D. W. (1998). Sterilization as an alternative strategy to control wildlife diseases: bovine tuberculosis in European badgers as a case study. Biodiversity and Conservation 7, 705–723.
Sterilization as an alternative strategy to control wildlife diseases: bovine tuberculosis in European badgers as a case study.Crossref | GoogleScholarGoogle Scholar |

Twigg, L. E., and Williams, C. K. (1999). Fertility control of overabundant species; can it work for feral rabbits? Ecology Letters 2, 281–285.
Fertility control of overabundant species; can it work for feral rabbits?Crossref | GoogleScholarGoogle Scholar |

Twigg, L. E., Lowe, T. J., Martin, G. R., Wheeler, A. G., Gray, G. S., Griffin, S. L., O’Reilly, C. M., Robinson, D. J., and Hubach, P. H. (2000). Effects of surgically imposed sterility on free-ranging rabbit populations. Journal of Applied Ecology 37, 16–39.
Effects of surgically imposed sterility on free-ranging rabbit populations.Crossref | GoogleScholarGoogle Scholar |

Tyndale-Biscoe, H., and Hinds, L. A. (2007). Introduction – virally vectored immunocontraception in Australia. Wildlife Research 34, 507–510.
Introduction – virally vectored immunocontraception in Australia.Crossref | GoogleScholarGoogle Scholar |

Walcher, P., Cui, X., Arrow, J. A., Scobie, S., Molinia, F. C., Cowan, P. E., Lubitz, W., and Duckworth, J. A. (2008). Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula). Vaccine 26, 6832–6838.
Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVertrzF&md5=1f2fe5afa3a8cfedc7b3618ebfed3705CAS | 18948157PubMed |

Wheaton, C. J., Savage, A., Shukla, A., Neiffer, D., Qu, W., Sun, Y., and Lasley, B. L. (2011). The use of long acting subcutaneous levonorgestrel (LNG) gel depot as an effective contraceptive option for cotton-top tamarins (Saguinus oedipus). Zoo Biology 30, 498–522.
The use of long acting subcutaneous levonorgestrel (LNG) gel depot as an effective contraceptive option for cotton-top tamarins (Saguinus oedipus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GnurrF&md5=9ecbd3d65cdd6c6fa863ced8ace01c68CAS | 20938969PubMed |

White, P. C. L., and Ward, A. I. (2010). Interdisciplinary approaches for the management of existing and emerging human–wildlife conflicts. Wildlife Research 37, 623–629.
Interdisciplinary approaches for the management of existing and emerging human–wildlife conflicts.Crossref | GoogleScholarGoogle Scholar |

White, P. C. L., Lewis, A. J. G., and Harris, S. (1997). Fertility control as a means of controlling bovine tuberculosis in badger (Meles meles) populations in south-west England: predictions from a spatial stochastic simulation model. Proceedings. Biological Sciences 264, 1737–1747.
Fertility control as a means of controlling bovine tuberculosis in badger (Meles meles) populations in south-west England: predictions from a spatial stochastic simulation model.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7gvFSgtA%3D%3D&md5=04dac4ccf13ce8e3485ed1d81ef1a3ecCAS |

Wilkinson, D., Bennett, R., McFarlane, I., Rushton, S., Shirley, M., and Smith, G. C. (2009). Cost–benefit analysis model of badger (Meles meles) culling to reduce cattle herd tuberculosis breakdowns in Britain, with particular reference to badger perturbation. Journal of Wildlife Diseases 45, 1062–1088.
Cost–benefit analysis model of badger (Meles meles) culling to reduce cattle herd tuberculosis breakdowns in Britain, with particular reference to badger perturbation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MjkvFyjug%3D%3D&md5=df294f2da442e7d0e2fdc69a8a8e820eCAS | 19901382PubMed |

Williams, C. K. (2007). Assessment of the risk of inadvertently exporting from Australia a genetically modified immunocontraceptive virus in live mice (Mus musculus domesticus). Wildlife Research 34, 540–554.
Assessment of the risk of inadvertently exporting from Australia a genetically modified immunocontraceptive virus in live mice (Mus musculus domesticus).Crossref | GoogleScholarGoogle Scholar |

Williams, C. K., Davey, C. C., Moore, R. J., Hinds, L. A., Silvers, L. E., Kerr, P. J., French, N., Hood, G. M., Pech, R. P., and Krebs, C. J. (2007). Population responses to sterility imposed on female European rabbits. Journal of Applied Ecology 44, 291–301.
Population responses to sterility imposed on female European rabbits.Crossref | GoogleScholarGoogle Scholar |

Wood, C., Ballou, J. D., and Houle, C. S. (2001). Restoration of reproductive potential following expiration or removal of melengestrol acetate contraceptive implants in golden lion tamarins (Leontopithecus rosalia). Journal of Zoo and Wildlife Medicine 32, 417–425.
| 1:STN:280:DC%2BD3s3mtVejtg%3D%3D&md5=0d30a1b798194fbe7097a820ec7740ddCAS | 12785695PubMed |

Xu, C.-K., and Zhao, Y.-H. (2010). Apoptosis of rat’s ovarian follicle cells induced by triptolide in vivo. African Journal of Pharmacy and Pharmacology 4, 422–430.
| 1:CAS:528:DC%2BC3cXpt1Gmsbc%3D&md5=5726cbad9f09154764e682ed99c0ea45CAS |

Yoder, C. A., and Miller, L. A. (2010). Effect of GonaCon™ vaccine on black-tailed prairie dogs: immune response and health effects. Vaccine 29, 233–239.
Effect of GonaCon™ vaccine on black-tailed prairie dogs: immune response and health effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajt7vI&md5=3336ce2df7db5904819966336f6f7c58CAS | 21055491PubMed |

Yoder, C., Andelt, W., Miller, L., Johnston, J., and Goodall, M. (2004). Effectiveness of twenty, twenty-five diazacholesterol, avian gonadotropin-releasing hormone, and chicken riboflavin carrier protein for inhibiting reproduction in Coturnix quail. Poultry Science 83, 234–244.
Effectiveness of twenty, twenty-five diazacholesterol, avian gonadotropin-releasing hormone, and chicken riboflavin carrier protein for inhibiting reproduction in Coturnix quail.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslGntr0%3D&md5=393783bd2be58a2bc22eae61ac9eff23CAS | 14979575PubMed |

Yoder, C. A., Avery, M. L., Keacher, K. L., and Tillman, E. A. (2007). Use of DiazaCon™ as a reproductive inhibitor for monk parakeets (Myiopsitta monachus). Wildlife Research 34, 8–13.
Use of DiazaCon™ as a reproductive inhibitor for monk parakeets (Myiopsitta monachus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1artrc%3D&md5=9c836c2f170c8650a4377f7c83f7c19aCAS |

Yoder, C. A., Mayle, B. A., Furcolow, C. A., Cowan, D. P., and Fagerstone, K. A. (2011). Feeding of grey squirrels (Sciurus carolinensis) with the contraceptive agent DiazaCon™: effect on cholesterol, hematology, and blood chemistry. Integrative Zoology 6, 409–419.
Feeding of grey squirrels (Sciurus carolinensis) with the contraceptive agent DiazaCon™: effect on cholesterol, hematology, and blood chemistry.Crossref | GoogleScholarGoogle Scholar | 22182332PubMed |

Zhang, Z. (2000). Mathematical models of wildlife management by contraception. Ecological Modelling 132, 105–113.
Mathematical models of wildlife management by contraception.Crossref | GoogleScholarGoogle Scholar |