Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW (Open Access)

Evolving research directions in Surface Ocean–Lower Atmosphere (SOLAS) science

Cliff S. Law A M , Emilie Brévière B , Gerrit de Leeuw C D , Véronique Garçon E , Cécile Guieu F , David J. Kieber G , Stefan Kontradowitz B , Aurélien Paulmier E H , Patricia K. Quinn I , Eric S. Saltzman J , Jacqueline Stefels K and Roland von Glasow L
+ Author Affiliations
- Author Affiliations

A National Institute of Water and Atmospheric Research (NIWA), Evans Bay Parade, Kilbirnie Wellington, 6002, New Zealand.

B GEOMAR Helmholtz-Zentrum für Ozeanforschung, Düsternbrooker Weg 20, D-24105 Kiel, Germany.

C Climate Change Unit, Finnish Meteorological Institute, PO Box 503, FI-00101 Helsinki, Finland,

D Department of Physics, University of Helsinki, PO Box 64, FI-00014 Helsinki, Finland.

E Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), CNRS-IRD-CNES-UPS, 14, avenue Édouard-Belin, F-31401 Toulouse Cedex 9, France.

F Laboratoire d’Océanographie de Villefranche (LOV), CNRS-UPMC, BP 28, F-06234 Villefranche-sur-mer Cedex, France.

G State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA.

H Instituto del Mar del Perú (IMARPE), Esquina de Gamarra y General Valle S/N Chucuito, Callao, Peru.

I NOAA, Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115, USA.

J University of California–Irvine, 3325 Croul Hall, 3100, Irvine, CA 92697, USA.

K University of Groningen, Ecophysiology of Plants, Centre for Ecological and Evolutionary Studies, PO Box 11103, NL-9700 CC Groningen, the Netherlands.

L University of East Anglia, School of Environmental Science, Norwich Research Park, Norwich, NR4 7TJ, Norfolk, UK.

M Corresponding author. Email: cliff.law@niwa.co.nz




Cliff Law is a Principal Scientist in the Ocean and Atmosphere Centres at the National Institute of Water and Atmospheric Research (NIWA) in Wellington, New Zealand, and the NIWA Centre for Chemical and Physical Oceanography at the University of Otago. He is a marine biogeochemist who has participated in ~40 research voyages and (co-)authored 85 papers on ocean–atmosphere exchange and nutrient and physical controls on primary production. He has been a member of the SOLAS Scientific Steering Committee since 2007.



Emilie Brévière is the SOLAS International Project Office Executive Officer since 2008, based at GEOMAR Helmholtz Centre for Ocean Research in Kiel, Germany. She is a marine biogeochemist holding a Ph.D. from the University Pierre et Marie Curie in Paris, France and a French engineering diploma in chemistry and chemical engineering from the Ecole Nationale Superieure de Chimie de Mulhouse, France.



Gerrit de Leeuw holds a professorship in the field of Satellite Remote Sensing of Aerosol Physical and Optical Properties at the University of Helsinki and at the Finnish Meteorological Institute (FMI), Finland, since 1 January 2007. He has (co-)authored ~135 peer-reviewed articles in the fields of aerosols, remote sensing and ocean–atmosphere interaction and co-edited a book on Aerosol Remote Sensing over Land. He has participated as principal investigator in 22 EU projects (3 as coordinator), 14 ESA projects (2 as coordinator, 1 as science leader) and many other (inter)national research projects.



Véronique Garçon is a Senior Scientist at LEGOS-CNRS in Toulouse, France. She obtained a Ph.D. at University Paris 7 and did her post-doc at MIT. She is Team leader on Physical Dynamics/Marine Biogeochemistry at LEGOS. She has been very active in the JGOFS SSC with thematics of interest related to the oceanic carbon cycle, biogeochemical cycles of nitrogen, phosphorus, oxygen, in the climate change context, and to biogeochemical climatic monitoring using synergistically different approaches: remote sensing, modelling, and experimental work. She initiated the OMZ-EBUS SOLAS Mid-Term Strategy with A. Paulmier, and has been acting as SOLAS vice chair since 2011.



Cécile Guieu is a Senior Scientist at Centre National de la Recherche Scientifique and works at Laboratoire d’Océanographie in Villefranche sur Mer (LOV), France. She is a marine biogeochemist and her research focuses on atmospheric inputs of nutrients and particles and how they affect marine biogeochemical cycles and carbon export. She is a member of the SOLAS Scientific Steering Committee since 2009.



David Kieber is a Professor of Chemistry at the State University of New York, College of Environmental Science and Forestry in Syracuse, New York. He received his Ph.D. from the University of Miami, Rosenstiel School of Marine and Atmospheric Science in 1988, and held a postdoctoral position at the Woods Hole Oceanographic Institution from 1989 to 1990. His research program is focussed on the study of biological, geochemical and photochemical transformations of naturally occurring organic matter in atmospheric and aquatic environments, and the resultant effects of these transformations on the global biogeochemical cycles of carbon, nitrogen, sulfur and phosphorus, especially as they are affected by climate change. He has been a member of the SOLAS Scientific Steering Committee since 2007.



Stefan Kontradowitz graduated from the University of Kiel in 2009 with a Degree in Physical Geography. After graduating he briefly worked for a space science journal before taking a job as a Research Assistant at GEOMAR Helmholtz Centre for Ocean Research in Kiel where he was introduced to the work of SOLAS. Since early 2011, he has been the Project Officer for the SOLAS International Project Office concentrating on planning and organising the SOLAS Open Science Conferences, SOLAS Summer Schools and Workshops.



Aurélien Paulmier is a Junior Scientist at IRD/LEGOS in Toulouse, France. He did his National Service as a research engineer in Chile, obtained a Ph.D. at Paris VI and has had several post-doctoral positions at IFM-Geomar in Kiel and MPI in Bremen. He is currently working in cooperation in Lima (Peru) and is co-initiator of the OMZ-EBUS SOLAS Mid-Term Strategy. Since 1999–2000, he has studied the impact and feedback effects of climate change on marine biogeochemistry, focussing on Oxygen Minimum Zones (OMZs). His activities contribute to the development of the key thematic of ocean deoxygenation, using complementary approaches (in-situ observations, experiments, data analysis, modeling).



Patricia Quinn is a Research Chemist at NOAA’s Pacific Marine Environmental Laboratory located in Seattle, Washington. Patricia’s research is focussed on the effect of atmospheric aerosol particles on air quality and climate. She has participated in research cruises since 1986 studying a broad range of aerosol types from remote marine aerosol in the Arctic and Antarctic, and pollution aerosol in the Houston Ship Channel and the Sacramento River. She has been a member of the SOLAS Scientific Steering Committee since 2010.



Eric Saltzman is a Professor of Earth System Science at the University of California, Irvine and the current Chair of the SOLAS Scientific Steering committee. He is an atmospheric chemist whose research involves the biogeochemical cycling of climate active trace gases. His research interests include air–sea gas transfer, assessing the reactivity of marine air, and using polar ice cores to reconstruct long term changes in atmospheric composition.



Jacqueline Stefels is Senior Scientist and lecturer at the University of Groningen, the Netherlands, within the group Ecophysiology of Plants. She is a marine phytoplankton biologist. Her research interests are the biological and environmental chemistry of dimethylsulfide and related compounds in oceans and sea-ice, the role of S-compounds in phytoplankton physiological adaptation to environmental stress and climate modelling. She is member of the SOLAS Scientific Steering Committee and co-chair of SCOR-WG140 on Biogeochemical Exchange Processes at the Sea-Ice Interfaces (BEPSII).



Roland von Glasow is a Professor of Atmospheric Science in the School of Environmental Sciences at the University of East Anglia. He is researching tropospheric multiphase chemistry with a focus on the chemistry and relevance of reactive halogens. He develops and applies numerical models and has so far worked extensively on the marine boundary layer, the polar boundary layer, volcanic plumes and salt lakes. He is co-chair of the SOLAS/IGAC task ‘Halogens in the Troposphere’ and has been a member of the SOLAS Scientific Steering Committee since 2010.

Environmental Chemistry 10(1) 1-16 https://doi.org/10.1071/EN12159
Submitted: 19 October 2012  Accepted: 10 December 2012   Published: 12 March 2013

Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND

Environmental context. Understanding the exchange of energy, gases and particles at the ocean–atmosphere interface is critical for the development of robust predictions of, and response to, future climate change. The international Surface Ocean–Lower Atmosphere Study (SOLAS) coordinates multi-disciplinary ocean–atmosphere research projects that quantify and characterise this exchange. This article details five new SOLAS research strategies – upwellings and associated oxygen minimum zones, sea ice, marine aerosols, atmospheric nutrient supply and ship emissions – that aim to improve knowledge in these critical areas.

Abstract. This review focuses on critical issues in ocean–atmosphere exchange that will be addressed by new research strategies developed by the international Surface Ocean–Lower Atmosphere Study (SOLAS) research community. Eastern boundary upwelling systems are important sites for CO2 and trace gas emission to the atmosphere, and the proposed research will examine how heterotrophic processes in the underlying oxygen-deficient waters interact with the climate system. The second regional research focus will examine the role of sea-ice biogeochemistry and its interaction with atmospheric chemistry. Marine aerosols are the focus of a research theme directed at understanding the processes that determine their abundance, chemistry and radiative properties. A further area of aerosol-related research examines atmospheric nutrient deposition in the surface ocean, and how differences in origin, atmospheric processing and composition influence surface ocean biogeochemistry. Ship emissions are an increasing source of aerosols, nutrients and toxins to the atmosphere and ocean surface, and an emerging area of research will examine their effect on ocean biogeochemistry and atmospheric chemistry. The primary role of SOLAS is to coordinate coupled multi-disciplinary research within research strategies that address these issues, to achieve robust representation of critical ocean–atmosphere exchange processes in Earth System models.


References

[1]  C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, T.-H. Peng, A. Kozyr, A. F. Rios, The oceanic sink for anthropogenic CO2. Science 2004, 305, 367.
The oceanic sink for anthropogenic CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egsbc%3D&md5=ae0c22ba73ce68ae835380d3f7715aaeCAS |

[2]  N. L. Bindof, J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. LeQuéré, S. Levitus, Y. Nojiri, C. Shum, L. Talley, A. Unnikrishnan, Observations: Oceanic Climate Change and Sea Level, in Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007 (Cambridge, United Kingdom, New York, USA).

[3]  C. B. Field, M. J. Behrenfeild, J. T. Randerson, P. Falkowski, Primary production of the biosphere: integrating terrestrial and oceanic components. Science 1998, 281, 237.
Primary production of the biosphere: integrating terrestrial and oceanic components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFKitb0%3D&md5=4740f2ba2221baa6cffd0853f8426964CAS |

[4]  Y. Shao, K.-H. Wyrwoll, A. Chappell, J. Huang, Z. Lin, G. H. McTainsh, M. Mikami, T. Y. Tanaka, X. Wang, S. Yoon, Dust cycle: an emerging core theme in Earth system science. Aeolian Research 2011, 2, 181.

[5]  Science Plan and Implementation Strategy, IGBP Report Number 50 2004 (SOLAS: Stockholm).

[6]  P. S. Liss, M. T. Johnson (Eds), Ocean–Atmosphere Interactions of Gases and Particles, in press (Springer: Heidelberg).

[7]  R. A. Duce, J. LaRoche, K. Altieri, K. R. Arrigo, A. R. Baker, D. G. Capone, S. Cornell, F. Dentener, J. Galloway, R. S. Ganeshram, R. J. Geider, T. Jickells, M. M. Kuypers, R. Langlois, P. S. Liss, S. M. Liu, J. J. Middelburg, C. M. Moore, S. Nickovic, A. Oschlies, T. Pedersen, J. Prospero, R. Schlitzer, S. Seitzinger, L. L. Sorensen, M. Uematsu, O. Ulloa, M. Voss, B. Ward, L. Zamora, Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 2008, 320, 893.
Impacts of atmospheric anthropogenic nitrogen on the open ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslygsb0%3D&md5=3f9fdac84daff679d7438ff688733eb5CAS |

[8]  N. M. Mahowald, A. R. Baker, G. Bergametti, N. Brooks, T. D. Jickells, R. A. Duce, T. D. Jickells, N. Kubilay, J. M. Prospero, I. Tegen, The atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles 2005, 19, GB4025.
The atmospheric global dust cycle and iron inputs to the ocean.Crossref | GoogleScholarGoogle Scholar |

[9]  T. D. Jickells, Z. S. An, K. K. Andersen, A. R. Baker, G. Bergametti, N. Brooks, J. J. Cao, P. W. Boyd, R. A. Duce, K. A. Hunter, H. Kawahata, N. Kubilay, J. laRoche, P. S. Liss, N. Mahowald, J. M. Prospero, A. J. Ridgwell, I. Tegen, R. Torres, Global iron connections between dust, ocean biogeochemistry and climate. Science 2005, 308, 67.
Global iron connections between dust, ocean biogeochemistry and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVaqs7w%3D&md5=539926c076b012508e50a4ea4f69d68fCAS |

[10]  N. M. Mahowald, T. D. Jickells, A. R. Baker, P. Artaxo, C. R. Benitez-Neslon, G. Bergametti, T. C. Bond, Y. Chen, D. D. Cohen, B. Herut, N. Kubilay, R. Losno, C. Luo, W. Maenhaut, K. A. McGee, G. S. Okin, R. L. Siefert, S. Tsukuda, Global distribution of atmospheric phosphorous sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem. Cycles 2008, 22, GB4026.
Global distribution of atmospheric phosphorous sources, concentrations and deposition rates, and anthropogenic impacts.Crossref | GoogleScholarGoogle Scholar |

[11]  H. W. Bange, T. G. Bell, M. Cornejo, A. Freing, G. Uher, R. C. Upstill-Goddard, G. Zhang, MEMENTO: a proposal to develop a database of marine nitrous oxide and methane measurements. Environ. Chem. 2009, 6, 195.
MEMENTO: a proposal to develop a database of marine nitrous oxide and methane measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CjurfP&md5=d1ba3de8b7a7778440bc414b00001887CAS |

[12]  A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles 2011, 25, GB1004.
An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean.Crossref | GoogleScholarGoogle Scholar |

[13]  A. J. Watson, U. Schuster, D. C. E. Bakker, N. Bates, A. Corbiere, M. Gonzalez-Davila, Tracking the variable North Atlantic sink for atmospheric CO2. Science 2009, 326, 1391.
Tracking the variable North Atlantic sink for atmospheric CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2gsLvK&md5=eaf8d3a9f1fc9cbaade84ecc0696ff96CAS |

[14]  T. Takahashi, S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely, D. W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D. C. E. Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Körtzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T. S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C. S. Wong, B. Delille, N. R. Bates, H. J. W. de Baar, Climatological mean and decadal changes in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554.https://doi.org/.
Climatological mean and decadal changes in surface ocean pCO2, and net sea–air CO2 flux over the global oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKjt74%3D&md5=ecaa9c8680635616aad2bf0786889cb6CAS |

[15]  Y. Le Clainche, A. Vezina, M. Levasseur, R. A. Cropp, J. R. Gunson, S. M. Vallina, M. Vogt, C. Lancelot, J. I. Allen, S. D. Archer, L. Bopp, C. Deal, S. Elliott, M. Jin, G. Malin, V. Schoemann, R. Simó, K. D. Six, J. Stefels, A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Global Biogeochem. Cycles 2010, 24, GB3021.
A first appraisal of prognostic ocean DMS models and prospects for their use in climate models.Crossref | GoogleScholarGoogle Scholar |

[16]  B. J. Huebert, B. W. Blomquist, M. X. Yang, S. D. Arche, P. D. Nightingale, M. J. Yelland, J. Stephens, R. W. Pascal, B. I. Moat, Linearity of DMS transfer coefficient with both friction velocity and wind speed in the moderate wind speed range. Geophys. Res. Lett. 2010, 37, L01605.
Linearity of DMS transfer coefficient with both friction velocity and wind speed in the moderate wind speed range.Crossref | GoogleScholarGoogle Scholar |

[17]  D. T. Ho, C. S. Law, M. J. Smith, P. Schlosser, M. Harvey, P. Hill, Measurements of air–sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys. Res. Lett. 2006, 33, L16611.
Measurements of air–sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations.Crossref | GoogleScholarGoogle Scholar |

[18]  R. Wanninkhof, W. E. Asher, D. T. Ho, C. Sweeney, W. R. McGillis, Advances in quantifying air–sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 2009, 1, 213.
Advances in quantifying air–sea gas exchange and environmental forcing.Crossref | GoogleScholarGoogle Scholar |

[19]  C. W. Fairall, M. Yang, L. Bariteau, J. B. Edson, D. Helmig, W. McGillis, S. Pezoa, J. E. Hare, B. Huebert, B. Blomquist, Implementation of the COARE flux algorithm with CO2, DMS, and O3. J. Geophys. Res. 2011, 116, C00F09.
Implementation of the COARE flux algorithm with CO2, DMS, and O3.Crossref | GoogleScholarGoogle Scholar |

[20]  N. M. Frew, D. M. Glover, E. J. Bock, S. J. McCue, A new approach to estimation of global air–sea gas transfer velocity fields using dual-frequency altimeter backscatter. J. Geophys. Res. – Oceans 2007, 112, C11003.
A new approach to estimation of global air–sea gas transfer velocity fields using dual-frequency altimeter backscatter.Crossref | GoogleScholarGoogle Scholar |

[21]  M. Steinacher, F. Joos, T. L. Frölicher, G.-K. Plattner, S. C. Doney, Imminent ocean acidification projected with the NCAR global coupled carbon cycle climate model. Biogeosciences 2009, 6, 515.
Imminent ocean acidification projected with the NCAR global coupled carbon cycle climate model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOmtbo%3D&md5=870f00ecd83a500af69d5fded9e3547cCAS |

[22]  L. Stramma, G. C. Johnson, J. Sprintall, V. Mohrholz, Expanding oxygen-minimum zones in the tropical oceans. Science 2008, 320, 655.
Expanding oxygen-minimum zones in the tropical oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyisro%3D&md5=87ee2ab58ae7bbe8a311f026dc144091CAS |

[23]  W. D. Collins, C. M. Bitz, M. L. Blackmon, G. B. Bonan, C. S. Bretherton, J. A. Carton, P. Chang, S. C. Doney, J. J. Hack, T. B. Henderson, J. T. Kiehl, W. G. Large, D. S. McKenna, B. D. Santer, R. D. Smith, The Community Climate System Model Version 3 (CCSM3). J. Clim. 2006, 19, 2122.
The Community Climate System Model Version 3 (CCSM3).Crossref | GoogleScholarGoogle Scholar |

[24]  M. Hood, W. Broadgate, E. Urban, O. Gaffney, (Eds) Ocean Acidification: a Summary for Policymakers from the Second Symposium on the Ocean in a High-CO2 World 2011. Available at http://www.us-ocb.org/publications/SPM-lorezv2.pdf [Verified 14 February 2013].

[25]  P. W. Boyd, T. Jickells, C. S. Law, S. Blain, E. A. Boyle, K. O. Buesseler, K. H. Coale, J. J. Cullen, H. J. W. de Baar, M. Follows, M. Harvey, C. Lancelot, M. Levasseur, N. P. J. Owens, R. Pollard, R. B. Rivkin, J. Sarmiento, V. Schoemann, V. Smetacek, S. Takeda, A. Tsuda, S. Turner, A. J. Watson, Mesoscale iron-enrichment experiments 1993–2005: synthesis and future directions. Science 2007, 315, 612.
Mesoscale iron-enrichment experiments 1993–2005: synthesis and future directions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyisLk%3D&md5=f61f0b74175b386614d2197b5670a736CAS |

[26]  H. Browman, P. W. Boyd, Implications of large-scale iron fertilization of the oceans. Mar. Ecol. Prog. Ser. 2008, 364, 213.
Implications of large-scale iron fertilization of the oceans.Crossref | GoogleScholarGoogle Scholar |

[27]  D. W. R. Wallace, C. S. Law, P. W. Boyd, Y. Collos, P. Croot, K. Denman, P. J. Lam, U. Riebesell, S. Takeda, P. Williamson, Ocean Fertilization. A Scientific Summary for Policy Makers, IOC/BRO/2010/2 2010 (IOC–UNESCO: Paris). Available at http://unesdoc.unesco.org/images/0019/001906/190674e.pdf [Verified 14 February 2013].

[28]  A.-I. Partanen, H. Kokkola, S. Romakkaniemi, V.-M. Kerminen, K. E. J. Lehtinen, T. Bergman, A. Arola, H. Korhonen, Direct and indirect effects of sea spray geoengineering and the role of injected particle size. J. Geophys. Res. 2012, 117, D02203.
Direct and indirect effects of sea spray geoengineering and the role of injected particle size.Crossref | GoogleScholarGoogle Scholar |

[29]  A. Paulmier, D. Ruiz-Pino, V. Garçon, CO2 maximum in the oxygen minimum zone (OMZ). Biogeosciences 2011, 8, 239.
CO2 maximum in the oxygen minimum zone (OMZ).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlymtr4%3D&md5=adafb9e9607b40a5f137aae56db21effCAS |

[30]  A. Paulmier, D. Ruiz-Pino, Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 2009, 80, 113.
Oxygen minimum zones (OMZs) in the modern ocean.Crossref | GoogleScholarGoogle Scholar |

[31]  R. Dugdale, J. Goering, R. Barber, R. Smith, T. Packard, Denitrification and hydrogen sulfide in Peru upwelling region during 1976. Deep-Sea Res. 1977, 24, 601.
Denitrification and hydrogen sulfide in Peru upwelling region during 1976.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXmtVKis7g%3D&md5=83530e85a4b289f23bf5e717676293caCAS |

[32]  R. J. Cicerone, R. S. Oremland, Biochemical aspects of atmospheric methane. Global Biogeochem. Cycles 1988, 2, 299.
Biochemical aspects of atmospheric methane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVCjtLk%3D&md5=d15f432b76ff76d8fbc809cff2252358CAS |

[33]  L. A. Codispoti, J. A. Brandes, J. P. Christensen, A. H. Devol, S. W. A. Naqvi, H. W. Paerl, T. Yoshinari, The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the Anthropocene? Sci. Mar. 2001, 65, 85.
| 1:CAS:528:DC%2BD38XisV2hsQ%3D%3D&md5=a8dfb96f186b1d306f47a1df0b54d689CAS |

[34]  A. Saiz-Lopez, A. S. Mahajan, R. A. Salmon, S. J.-B. Bauguitte, A. E. Jones, H. K. Roscoe, J. M. C. Plane, Boundary layer halogens in coastal. Antarct. Sci. 2007, 317, 348.
| 1:CAS:528:DC%2BD2sXnslGrsrg%3D&md5=fcf6548ac1ff87fa4b1f18932d1b6dd3CAS |

[35]  A. S. Mahajan, J. C. Gómez Martín, T. D. Hay, S.-J. Royer, S. Yvon-Lewis, Y. Liu, L. Hu, C. Prados-Roman, C. Ordóñez, J. M. C. Plane, A. Saiz-Lopez, Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources. Atmos. Chem. Phys. Discuss. 2012, 12, 15541.
Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources.Crossref | GoogleScholarGoogle Scholar |

[36]  L. Bopp, C. Le Quere, M. Heimann, A. C. Manning, P. Monfray, Climate induced oceanic fluxes: implications for the contemporary carbon budget. Global Biogeochem. Cycles 2002, 16, 1022.
Climate induced oceanic fluxes: implications for the contemporary carbon budget.Crossref | GoogleScholarGoogle Scholar |

[37]  R. J. Matear, A. C. Hirst, Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Global Biogeochem. Cycles 2003, 17, 1125.
Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming.Crossref | GoogleScholarGoogle Scholar |

[38]  O. Duteil, A. Oschlies, Sensitivity of simulated extent and future evolution of marine suboxia to mixing intensity. Geophys. Res. Lett. 2011, 38, L06607.
Sensitivity of simulated extent and future evolution of marine suboxia to mixing intensity.Crossref | GoogleScholarGoogle Scholar |

[39]  R. F. Keeling, A. Körtzinger, N. Gruber, Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2010, 2, 199.
Ocean deoxygenation in a warming world.Crossref | GoogleScholarGoogle Scholar |

[40]  N. Gruber, Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. Lond. A 2011, 369, 1980.
Warming up, turning sour, losing breath: ocean biogeochemistry under global change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFSks74%3D&md5=049fedebff2b1811c5e6155b012dc165CAS |

[41]  A. Paulmier, D. Ruiz-Pino, V. Garçon, The oxygen minimum zone (OMZ) off Chile as intense sources of CO2 and N2O. Cont. Shelf Res. 2008, 28, 2746.
The oxygen minimum zone (OMZ) off Chile as intense sources of CO2 and N2O.Crossref | GoogleScholarGoogle Scholar |

[42]  R. P. Kiene, T. S. Bates, Biological removal of dimethylsulphide from seawater. Nature 1990, 345, 702.
Biological removal of dimethylsulphide from seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlyjur8%3D&md5=82afd0bc7d1f121ef48c66675d75692dCAS |

[43]  E. Ryabenko, A. Kock, H. W. Bange, M. A. Altabet, D. W. R. Wallace, Contrasting biogeochemistry of nitrogen in the Atlantic and Pacific oxygen minimum zones. Biogeosciences 2012, 9, 203.
Contrasting biogeochemistry of nitrogen in the Atlantic and Pacific oxygen minimum zones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1yqtr0%3D&md5=ef7877ff99e040dcef8fecf79d482d7cCAS |

[44]  D.J. Cavalieri, C. L. Parkinson, Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res. – Oceans 2008, 113, C07004.
Antarctic sea ice variability and trends, 1979–2006.Crossref | GoogleScholarGoogle Scholar |

[45]  M. Montes-Hugo, S. C. Doney, H. W. Ducklow, W. Fraser, D. Martinson, S. E. Stammerjohn, O. Schofield, Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 2009, 323, 1470.
Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFSmu7g%3D&md5=ba0c5b81246bf1166fce33a02373fa31CAS |

[46]  B. B. Stephens, R. F. Keeling, The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 2000, 404, 171.
The influence of Antarctic sea ice on glacial–interglacial CO2 variations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFKqtrs%3D&md5=583db8aa210b9e6e26d55f9e4c344f93CAS |

[47]  B. Loose, L. A. Miller, S. Elliot, T. Papakyriakou, Sea ice biogeochemistry and material transport across the frozen interface. Oceanography 2011, 24, 202.
Sea ice biogeochemistry and material transport across the frozen interface.Crossref | GoogleScholarGoogle Scholar |

[48]  D. K. Perovich, J. A. Richter-Menge, Loss of sea ice in the arctic. Annu. Rev. Mar. Sci. 2009, 1, 417.
Loss of sea ice in the arctic.Crossref | GoogleScholarGoogle Scholar |

[49]  M.-E. Carr, M. A. M. Friedrichs, M. Schmeltz, M. Noguchi Aita, D. Antoine, K. R. Arrigo, I. Asanuma, O. Aumont, R. Barber, M. Behrenfeld, R. Bidigare, E. T. Buitenhuis, J. Campbell, A. Ciotti, H. Dierssen, M. Dowell, J. Dunne, W. Esaias, B. Gentili, W. Gregg, S. Groom, N. Hoepffner, J. Ishizaka, T. Kameda, C. Le Quéré, S. Lohrenz, J. Marra, F. Mélin, K. Moore, A. Morel, T. E. Reddy, J. Ryan, M. Scardi, T. Smyth, K. Turpie, G. Tilstone, K. Waters, Y. Yamanaka, A comparison of global estimates of marine production from ocean color. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 741.
A comparison of global estimates of marine production from ocean color.Crossref | GoogleScholarGoogle Scholar |

[50]  M. Steinacher, F. Joos, T. L. Fröhlicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, M. Gehlen, K. Lindsay, J. K. Moore, B. Schneider, J. Segschneider, Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 2010, 7, 979.
Projected 21st century decrease in marine productivity: a multi-model analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Cgu7c%3D&md5=c1738f41b2faa828abe160a22de451b7CAS |

[51]  B. G. T. Else, T. N. Papakyriakou, R. J. Galley, W. M. Drennan, L. A. Miller, H. Thomas, Eddy covariance measurements of wintertime CO2 fluxes in an arctic polynia: evidence for enhanced gas transfer during ice formation. J. Geophys. Res. 2011, 116, C00G03.
Eddy covariance measurements of wintertime CO2 fluxes in an arctic polynia: evidence for enhanced gas transfer during ice formation.Crossref | GoogleScholarGoogle Scholar |

[52]  N. R. Bates, S. B. Moran, D. A. Hansel, J. T. Mathis, An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys. Res. Lett. 2006, 33, L23609.
An increasing CO2 sink in the Arctic Ocean due to sea-ice loss.Crossref | GoogleScholarGoogle Scholar |

[53]  W.-J. Cai, L. Chen, B. Chen, Z. Gao, S. H. Lee, J. Chen, D. Pierrot, K. Sullivan, Y. Wang, X. Hu, W.-J. Huang, Y. Zhang, S. Xu, A. Murata, J. M. Grebmeier, E. P. Jones, H. Zhang, Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin. Science 2010, 329, 556.
Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlCltLY%3D&md5=ada34139d591530f5660e8f824068ddcCAS |

[54]  P. B. Shepson, P. A. Ariya, C. J. Deal, D. J. Donaldson, T. A. Douglas, B. Loose, T. Maksym, P. A. Matrai, L. M. Russell, B. Saenz, J. Stefels, N. Steiner, Changing polar environments: interdisciplinary challenges. Eos Trans. AGU 2012, 11, 112.

[55]  M. V. Orellana, P. A. Matrai, C. Leck, C. D. Rauschenberg, A. M. Lee, C. Esther, Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl. Acad. Sci. USA 2011, 108, 13612.
Marine microgels as a source of cloud condensation nuclei in the high Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2ms7jN&md5=c06d64c72dca92063774bdacfd5c1a62CAS |

[56]  T. J. Breider, M. P. Chipperfeld, N. A. D. Richards, K. S. Carslaw, G. W. Mann, D. V. Spracklen, Impact of BrO on dimethylsulfide in the remote marine boundary layer. Geophys. Res. Lett. 2010, 37, L02807.
Impact of BrO on dimethylsulfide in the remote marine boundary layer.Crossref | GoogleScholarGoogle Scholar |

[57]  W. R. Simpson, R. von Glasow, K. Riedel, P. Anderson, P. Ariya, J. Bottenheim, J. Burrows, L. J. Carpenter, U. Frieß, M. E. Goodsite, D. Heard, M. Hutterli, H.-W. Jacobi, L. Kaleschke, B. Neff, J. Plane, U. Platt, A. Richter, H. Roscoe, R. Sander, P. Shepson, J. Sodeau, A. Steffen, T. Wagner, E. Wolff, Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 2007, 7, 4375.
Halogens and their role in polar boundary-layer ozone depletion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurbK&md5=1e75ef33291d4990d8750c48ba99c86cCAS |

[58]  A. Saiz-Lopez, R. von Glasow, Reactive halogen chemistry in the troposphere. Chem. Soc. Rev. 2012, 41, 6448.
Reactive halogen chemistry in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaktr7J&md5=da397b1afcf452ef7e01a05b0a43f007CAS |

[59]  J.-L. Tison, F. Brabant, I. Dumont, J. Stefels, High‐resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first‐year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica. J. Geophys. Res. – Biogeosciences 2010, 115, 2156.

[60]  G. S. Dieckmann, G. Nehrke, S. Papadimitriou, J. Göttlicher, R. Steininger, H. Kennedy, D. Wolf-Gladrow, D. N. Thomas, Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophys. Res. Lett. 2008, 35, L08501.
Calcium carbonate as ikaite crystals in Antarctic sea ice.Crossref | GoogleScholarGoogle Scholar |

[61]  P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulfur emissions. Nature 2011, 480, 51.
The case against climate regulation via oceanic phytoplankton sulfur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=9ac26485b285fa3b680a4b0ea5bb26aeCAS |

[62]  E. R. Lewis, S. E. Schwartz, Sea salt aerosol production: mechanisms, methods, measurements and models – a critical review. Geophys. Monogr. 2004, 152, GM152.
Sea salt aerosol production: mechanisms, methods, measurements and models – a critical review.Crossref | GoogleScholarGoogle Scholar |

[63]  G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, S. E. Schwartz, Production flux of sea spray aerosol. Rev. Geophys. 2011, 49, RG2001.
Production flux of sea spray aerosol.Crossref | GoogleScholarGoogle Scholar |

[64]  B. Gantt, N. Meskhidze, The physical and chemical characteristics of marine organic aerosols: a review. Atmos. Chem. Phys. Discuss. 2012, 12, 21779.
The physical and chemical characteristics of marine organic aerosols: a review.Crossref | GoogleScholarGoogle Scholar |

[65]  C. D. O’Dowd, G. de Leeuw, Marine aerosol production: a review of the current knowledge. Phil. Trans. R. Soc. A. 2007, 365, 1753.
Marine aerosol production: a review of the current knowledge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Kks7g%3D&md5=8400aa52df8295cdbc9ed8afa5b5d874CAS |

[66]  M. C. Facchini, M. Rinaldi, S. Decesari, C. Carbone, E. Finessi, M. Mircea, S. Fuzzi, D. Ceburnis, R. Flanagan, E. D. Nilsson, G. de Leeuw, M. Martino, J. Woeltjen, C. D. O’Dowd, Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 2008, 35, L17814.
Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates.Crossref | GoogleScholarGoogle Scholar |

[67]  C. D. O’Dowd, M. C. Facchini, F. Cavalli, D. Cebrunis, M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, J.-P. Putaud, Biogenically driven organic contribution to marine aerosol. Nature 2004, 431, 676.
Biogenically driven organic contribution to marine aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGrurk%3D&md5=f75f284c2402ad620f45bd39dbece5baCAS |

[68]  W. C. Keene, H. Maring, D. J. Kieber, J. R. Maben, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. Zhou, L. Smoydzin, R. Sander, Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air–sea interface. J. Geophys. Res. 2007, 112, D21202.
Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air–sea interface.Crossref | GoogleScholarGoogle Scholar |

[69]  E. J. Hoffman, R. A. Duce, Organic carbon in marine atmospheric particulate matter: concentration and particle size distribution. Geophys. Res. Lett. 1977, 4, 449.
Organic carbon in marine atmospheric particulate matter: concentration and particle size distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmsVGjtQ%3D%3D&md5=85fb84b9f018aad103eb45c8554b6014CAS |

[70]  M. O. Andreae, D. Rosenfeld, Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev. 2008, 89, 13.
Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols.Crossref | GoogleScholarGoogle Scholar |

[71]  W. A. Hoppel, G. M. Frick, J. W. Fitzgerald, Surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface. J. Geophys. Res. 2002, 107, 4382.
Surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface.Crossref | GoogleScholarGoogle Scholar |

[72]  G. de Leeuw, C. Guieu, A. Arneth, N. Bellouin, L. Bopp, P. W. Boyd, H. A. C. Denier van der Gon, K. V. Desboeufs, F. Dulac, M. C. Facchini, B. Gantt, B. Langmann, N. M. Mahowald, E. Marañón, C. O'Dowd, N. Olgun, E. Pulido-Villena, M. Rinaldi, E. G. Stephanou, T. Wagener, Ocean–atmosphere interactions of particles, in Ocean–Atmosphere Interactions of Gases and Particles (Eds P. S. Liss, M. T. Johnson), in press (Springer: Heidelberg).

[73]  C. Textor, M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, P. Huang, I. Isaksen, I. Iversen, S. Kloster, D. Koch, A. Kirkevåg, J. E. Kristjansson, M. Krol, A. Lauer, J. F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, Ø. Seland, P. Stier, T. Takemura, X. Tie, Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 2006, 6, 1777.
Analysis and quantification of the diversities of aerosol life cycles within AeroCom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslWqtrY%3D&md5=6f85765e2821046ad5c19b6e1064a53dCAS |

[74]  S. Kinne, M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S. E. Bauer, T. Berntsen, T. F. Berglen, O. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevåg, S. Kloster, D. Koch, J. E. Kristjansson, M. Krol, A. Lauer, J. F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, X. Tie, An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos. Chem. Phys. 2006, 6, 1815.
An AeroCom initial assessment – optical properties in aerosol component modules of global models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslWqtrc%3D&md5=3e01a5fded886f947cd547e8789a7974CAS |

[75]  A. D. Clarke, S. R. Owens, J. Zhou, An ultrafine sea salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res. 2006, 111, D06202.
An ultrafine sea salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere.Crossref | GoogleScholarGoogle Scholar |

[76]  E. Fuentes, H. Coe, D. Green, G. de Leeuw, G. McFiggans, On the impacts of phytoplankton-derived organic matter on the properties of primary marine aerosol – Part 1: source fluxes. Atmos. Chem. Phys. 2010, 10, 9295.
On the impacts of phytoplankton-derived organic matter on the properties of primary marine aerosol – Part 1: source fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ait7vJ&md5=ab05dcf53af126e03a081b60000821cfCAS |

[77]  J. Ovadnevaite, D. Ceburnis, J. Bialek, C. Monahan, G. Martucci, M. Rinaldi, M. C. Facchini, H. Berresheim, D. R. Worsnop, C. O’Dowd, Primary marine organic aerosol: a dichotomy of low hygroscopicity and high CCN activity. Geophys. Res. Lett. 2011, 38, L21806.
Primary marine organic aerosol: a dichotomy of low hygroscopicity and high CCN activity.Crossref | GoogleScholarGoogle Scholar |

[78]  S. M. King, A. C. Butcher, T. Rosenoern, E. Coz, K. I. Lieke, G. de Leeuw, E. D. Nilsson, M. Bilde, Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles. Environ. Sci. Technol. 2012, 46, 10405.
Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCmt7rK&md5=94dfe99ed03e9471aeae3d68753c35c7CAS |

[79]  W. C. Keene, J. Stutz, A. A. P. Pszenny, J. R. Maben, E. V. Fischer, A. M. Smith, R. von Glasow, S. Pechtl, B. C. Sive, R. K. Varner, Inorganic chlorine and bromine in coastal New England air during summer. J. Geophys. Res. 2007, 112, D10S12.
Inorganic chlorine and bromine in coastal New England air during summer.Crossref | GoogleScholarGoogle Scholar |

[80]  H. D. Osthoff, J. M. Roberts, A. R. Ravishankara, E. J. Williams, B. M. Lerner, R. Sommariva, T. S. Bates, D. Coffman, P. K. Quinn, J. E. Dibb, H. Stark, J. B. Burkholder, R. K. Talukdar, J. Meagher, F. C. Fehsenfeld, S. S. Brown, High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nat. Geosci. 2008, 1, 324.
High levels of nitryl chloride in the polluted subtropical marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlCksLo%3D&md5=68935ffb235b2829f04652ca621debe1CAS |

[81]  X. Zhou, A. J. Davis, D. J. Kieber, W. C. Keene, J. R. Maben, H. Maring, E. E. Dahl, M. A. Izaguirre, R. Sander, L. Smoydzyn, Photochemical production of hydroxyl radical and hydroperoxides in water extracts of nascent marine aerosols produced by bursting bubbles from Sargasso seawater. Geophys. Res. Lett. 2008, 35, L20803.
Photochemical production of hydroxyl radical and hydroperoxides in water extracts of nascent marine aerosols produced by bursting bubbles from Sargasso seawater.Crossref | GoogleScholarGoogle Scholar |

[82]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=2f04a8f2a7df8f06b542df16b166b0bbCAS |

[83]  M. H. Smith, Sea-salt particles and the CLAW hypothesis. Environ. Chem. 2007, 4, 391.
Sea-salt particles and the CLAW hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVanurvE&md5=8524fe13066799e1ffc54ebe6df5c40dCAS |

[84]  C. D. O’Dowd, B. Langmann, S. Varghese, C. Scannell, D. Ceburnis, M. C. Facchini, A combined organic-inorganic sea-spray source function. Geophys. Res. Lett. 2008, 35, L01801.
A combined organic-inorganic sea-spray source function.Crossref | GoogleScholarGoogle Scholar |

[85]  M. S. Long, W. C. Keene, D. J. Kieber, D. J. Erickson, H. Maring, A sea-state based source function for size- and composition-resolved marine aerosol production. Atmos. Chem. Phys. 2011, 10, 22279.

[86]  L. Jaeglé, P. K. Quinn, T. S. Bates, B. Alexander, J.-T. Lin, Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 2011, 11, 3137.
Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations.Crossref | GoogleScholarGoogle Scholar |

[87]  N. Meskhidze, J. Xu, B. Gantt, Y. Zhang, A. Nenes, S. J. Ghan, X. Liu, R. Easter, R. Zaveri, Global distribution and climate forcing of marine organic aerosol. 1. Model improvements and evaluation. Atmos. Chem. Phys. 2011, 11, 11689.
Global distribution and climate forcing of marine organic aerosol. 1. Model improvements and evaluation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Kkt74%3D&md5=ea9bb9c0f6fbd6ec26b7d592c891d37eCAS |

[88]  B. Gantt, M. S. Johnson, N. Meskhidze, J. Sciare, J. Ovadnevaite, D. Ceburnis, C. D. O'Dowd, Model evaluation of marine primary organic aerosol emission schemes. Atmos. Chem. Phys. Discuss. 2012, 12, 12853.
Model evaluation of marine primary organic aerosol emission schemes.Crossref | GoogleScholarGoogle Scholar |

[89]  D. M. Westervelt, R. H. Moore, A. Nenes, P. J. Adams, Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations. Atmos. Chem. Phys. 2012, 12, 89.
Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFCgt7Y%3D&md5=e06e68a30c6aa37942fcf0f7266b89b2CAS |

[90]  The atmospheric input of trace species to the world ocean. GESAMP Reports and Studies 38 1989 (World Meteorological Organization). Available at http://www.gesamp.org/publications/publicationdisplaypages/rs38 [Verified 14 February 2013].

[91]  R. A. Duce, P. S. Liss, J. T. Merill, E. L. Atlas, P. Buat-Menard, B. B. Hicks, J. M. Miller, J. M. Prospero, R. Arimoto, T. M. Church, W. Ellis, J. N. Galloway, L. Hansen, T. D. Jickells, A. H. Knap, K. H. Reinhardt, B. Schneider, A. Soudine, J. J. Tokos, S. Tsunogai, R. Wollast, M. Zhou, The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 1991, 5, 193.
The atmospheric input of trace species to the world ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFeisr0%3D&md5=713a1d12dd60ea4d859c0180b00207a8CAS |

[92]  A. Paytan, K. R. M. Mackey, Y. Chen, I. D. Lima, S. C. Doney, N. Mahowald, R. Labiosa, A. F. Post, Toxicity of atmospheric aerosols on marine phytoplankton. Proc. Natl. Acad. Sci. USA 2009, 106, 4601.
Toxicity of atmospheric aerosols on marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFOgsLo%3D&md5=7d983e67fe1e3c12d4f3486362fcd3b9CAS |

[93]  N. M. Mahowald, S. Kloster, S. Engelstaedter, J. K. Moore, S. Mukhopadhyay, J. R. McConnell, S. Albani, S. C. Doney, A. Bhattacharya, M. A. J. Curran, M. G. Flanner, F. M. Hoffman, D. M. Lawrence, K. Lindsay, P. A. Mayewski, J. Neff, D. Rothenberg, E. Thomas, P. E. Thornton, C. S. Zender, Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 2010, 10, 10875.
Observed 20th century desert dust variability: impact on climate and biogeochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCisbw%3D&md5=1541952e130525b509bdbfadeef4ff08CAS |

[94]  P. W. Boyd, D. S. Mackie, K. A. Hunter, Aerosol iron deposition to the surface ocean – modes of iron supply and biological responses. Mar. Chem. 2010, 120, 128.
Aerosol iron deposition to the surface ocean – modes of iron supply and biological responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGlsLg%3D&md5=2796812a837194c57a1802447f4685dcCAS |

[95]  T. Wagener, E. Pulido-Villena, C. Guieu, Dust iron dissolution in seawater: results from a one-year time-series in the Mediterranean Sea. Geophys. Res. Lett. 2008, 35, L16601.
Dust iron dissolution in seawater: results from a one-year time-series in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

[96]  E. Marañón, A. Fernández, B. Mouriño-Carballido, S. Martínez-García, E. Teira, P. Cermeño, P. Chouciño, M. Huete-Ortega, E. Fernández, A. Calvo-Díaz, X. A. G. Morán, A. Bode, E. Moreno-Ostos, M. M. Varela, M. D. Patey, E. P. Achterberg, Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 2010, 55, 2339.
Degree of oligotrophy controls the response of microbial plankton to Saharan dust.Crossref | GoogleScholarGoogle Scholar |

[97]  R. A. Armstrong, C. Lee, J. I. Hedges, S. Honjo, S. G. Wakeham, A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 49, 219.
A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals.Crossref | GoogleScholarGoogle Scholar |

[98]  M. Bressac, C. Guieu, D. Doxaran, F. Bourrin, G. Obolensky, J. M. Grisoni, A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters. Geo-Mar. Lett. 2012, 32, 153.
A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters.Crossref | GoogleScholarGoogle Scholar |

[99]  M. Schulz, J. M. Prospero, A. R. Baker, F. Dentener, L. Ickes, P. S. Liss, N. M. Mahowald, S. Nickovic, C. Pérez García-Pando, S. Rodríguez, M. Sarin, I. Tegen, R. A. Duce, Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs. Environ. Sci. Technol. 2012, 46, 10390.
Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOgsb7O&md5=dd8daaa451fbb5479da0e039307661a9CAS |

[100]  SCOR-Working-Group GEOTRACES – an international study of the global marine biogeochemical cycles of trace elements and their isotopes. Chem. Erde 2007, 67, 85.
GEOTRACES – an international study of the global marine biogeochemical cycles of trace elements and their isotopes.Crossref | GoogleScholarGoogle Scholar |

[101]  V. Eyring, D. S. Stevenson, A. Lauer, F. J. Dentener, T. Butler, W. J. Collins, K. Ellingsen, M. Gauss, D. A. Hauglustaine, I. S. A. Isaksen, M. G. Lawrence, A. Richter, J. M. Rodriguez, M. Sanderson, S. E. Strahan, K. Sudo, S. Szopa, T. P. C. van Noije, O. Wild, Multi-model simulations of the impact of international shipping on atmospheric chemistry and climate in 2000 and 2030. Atmos. Chem. Phys. 2007, 7, 757.
Multi-model simulations of the impact of international shipping on atmospheric chemistry and climate in 2000 and 2030.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVylsrs%3D&md5=9d079755c5b4d9db89aa9dd45a45396eCAS |

[102]  J. J. Corbett, D. A. Lack, J. J. Winebrake, S. Harder, J. A. Silberman, M. Gold, Arctic shipping emissions inventories and future scenarios. Atmos. Chem. Phys. 2010, 10, 9689.
Arctic shipping emissions inventories and future scenarios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ait7bO&md5=dfd1b9bf689a2b312b37560d96e65746CAS |

[103]  S. Beirle, U. Platt, R. von Glasow, M. Wenig, T. Wagner, Estimate of nitrogen oxide emissions from shipping by satellite remote sensing. Geophys. Res. Lett. 2004, 31, L18102.
Estimate of nitrogen oxide emissions from shipping by satellite remote sensing.Crossref | GoogleScholarGoogle Scholar |

[104]  T. Marbach, S. Beirle, U. Platt, P. Hoor, F. Wittrock, A. Richter, M. Vrekoussis, M. Grzegorski, J. P. Burrows, T. Wagner, Satellite measurements of formaldehyde linked to shipping emissions. Atmos. Chem. Phys. 2009, 9, 8223.
Satellite measurements of formaldehyde linked to shipping emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1GjsLo%3D&md5=1eb83adb1809ea27819f51f13fb0174aCAS |

[105]  P. A. Durkee, K. J. Noone, R. T. Bluth, The Monterey area ship track experiment. J. Atmos. Sci. 2000, 57, 2523.
The Monterey area ship track experiment.Crossref | GoogleScholarGoogle Scholar |

[106]  G. Chen, L. G. Huey, M. Trainer, D. Nicks, J. Corbett, T. Ryerson, D. Parrish, J. A. Neuman, J. Nowak, D. Tanner, J. Holloway, C. Brock, J. Crawford, J. R. Olson, A. Sullivan, R. Weber, S. Schauffler, S. Donnelly, E. Atlas, J. Roberts, F. Flocke, G. Hübler, F. Fehsenfeld, An investigation of the chemistry of ship emission plumes during ITCT 2002. J. Geophys. Res. 2005, 110, D10S90.
An investigation of the chemistry of ship emission plumes during ITCT 2002.Crossref | GoogleScholarGoogle Scholar |

[107]  A. Petzold, J. Hasselbach, P. Lauer, R. Baumann, K. Franke, C. Gurk, H. Schlager, E. Weingartner, Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer. Atmos. Chem. Phys. 2008, 8, 2387.
Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKktro%3D&md5=4aa1d5ba3182201a143af3367c9894adCAS |

[108]  M. G. Lawrence, P. J. Crutzen, Influence of NOx emissions from ships on tropospheric photochemistry and climate. Nature 1999, 402, 167.
Influence of NOx emissions from ships on tropospheric photochemistry and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVektr0%3D&md5=e10ec94065a362faf4b330f45d4fdb81CAS |

[109]  P. Kasibhatla, H. Levy, W. J. Moxim, S. N. Pandis, J. J. Corbett, M. C. Peterson, R. E. Honrath, G. J. Frost, K. Knapp, D. D. Parrish, T. B. Ryerson, Do emissions from ships have a significant impact on concentrations of nitrogen oxides in the marine boundary layer? Geophys. Res. Lett. 2000, 27, 2229.
Do emissions from ships have a significant impact on concentrations of nitrogen oxides in the marine boundary layer?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVWmurc%3D&md5=5c051d4e68e6c4718e39c2b018da5730CAS |

[110]  R. von Glasow, M. G. Lawrence, R. Sander, P. J. Crutzen, Modeling the chemical effects of ship exhaust in the cloud-free marine boundary layer. Atmos. Chem. Phys. 2003, 3, 233.
Modeling the chemical effects of ship exhaust in the cloud-free marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Sntrg%3D&md5=7216ea166b19d01f4f8c1f90ae92d6e8CAS |

[111]  J. J. Corbett, P. S. Fischbeck, S. N. Pandis, Global nitrogen and sulfur inventories for ocean-going ships. J. Geophys. Res. 1999, 104, 3457.
Global nitrogen and sulfur inventories for ocean-going ships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFWjs78%3D&md5=5bd7d06294cb62c76bde3ea150217608CAS |

[112]  S. B. Dalsøren, M. S. Eide, Ø. Endresen, A. Mjelde, G. Gravir, I. S. A. Isaksen, Update on emissions and environmental impacts from the international fleet of ships: the contribution from major ship types and ports. Atmos. Chem. Phys. 2009, 9, 2171.
Update on emissions and environmental impacts from the international fleet of ships: the contribution from major ship types and ports.Crossref | GoogleScholarGoogle Scholar |

[113]  J. Fuglestvedt, T. Berntsen, V. Eyring, I. Isaksen, D. S. Lee, R. Sausen, Shipping emissions: from cooling to warming of climates and reducing impacts on health. Environ. Sci. Technol. 2009, 43, 9057.
Shipping emissions: from cooling to warming of climates and reducing impacts on health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVens7%2FO&md5=3d2e84afe04a2aef610a0bbcab27cfa0CAS |

[114]  V. Eyring, I. S. A. Isaksen, T. Berntsen, W. J. Collins, J. J. Corbett, O. Endresen, R. G. Grainger, J. Moldanova, H. Schlager, D. S. Stevenson, Transport impacts on atmosphere and climate: shipping. Atmos. Environ. 2010, 44, 4735.
Transport impacts on atmosphere and climate: shipping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12nt77P&md5=61201158ff3affb5fe6fb70f9881df7bCAS |

[115]  J. J. Corbett, J. J. Winebrake, E. H. Green, P. Kasibhatla, V. Eyring, A. Lauer, Mortality from ship emissions: a global assessment. Environ. Sci. Technol. 2007, 41, 8512.
Mortality from ship emissions: a global assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kitr3K&md5=c00cfb2b9cd8c7149e4d1b8d551f7e11CAS |

[116]  C. L. Charlton-Perez, M. J. Evans, J. H. Marsham, J. G. Esler, The impact of resolution on ship plume simulations with NOx chemistry. Atmos. Chem. Phys. 2009, 9, 7505.
The impact of resolution on ship plume simulations with NOx chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhtrzF&md5=08025667e90bc8b5c30c8cee0ffbbc4aCAS |

[117]  P. Huszar, D. Cariolle, R. Paoli, T. Halenka, M. Belda, H. Schlager, J. Miksovsky, P. Pisoft, Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization. Atmos. Chem. Phys. 2010, 10, 6645.
Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKlt73L&md5=4704ba957946e9d5d4ef9e76a367313dCAS |

[118]  G. C. M. Vinken, K. F. Boersma, D. J. Jacon, E. W. Meijer, Accounting for non-linear chemistry of ship plumes in the GEOS-Chem global chemistry transport model. Atmos. Chem. Phys. 2011, 11, 11707.
Accounting for non-linear chemistry of ship plumes in the GEOS-Chem global chemistry transport model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Kkt78%3D&md5=49bc2a0f4c12404643feba170766278fCAS |

[119]  S. Pechtl, R. von Glasow, Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: a model study. Geophys. Res. Lett. 2007, 34, L11813.
Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: a model study.Crossref | GoogleScholarGoogle Scholar |

[120]  C. H. Song, H. S. Kim, R. von Glasow, P. Brimblecombe, J. Kim, R. J. Park, J. H. Woo, Y. H. Kim, Source identification and budget analysis on elevated levels of formaldehyde within the ship plumes: a ship-plume photochemical/dynamic model analysis. Atmos. Chem. Phys. 2010, 10, 11969.
Source identification and budget analysis on elevated levels of formaldehyde within the ship plumes: a ship-plume photochemical/dynamic model analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemtrc%3D&md5=982b04d0132954031c30d7f4408ecf8aCAS |

[121]  S. C. Doney, N. Mahowald, I. Lima, R. A. Feely, F. T. Mackenzie, J.-F. Lamarque, P. J. Rasch, Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc. Natl. Acad. Sci. USA 2007, 104, 14580.
Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOlt7bI&md5=cb356baedffcce20b1c0cf36cd3de413CAS |

[122]  K. A. Hunter, P. S. Liss, V. Surapipith, F. Dentener, R. Duce, M. Kanakidou, N. Kubilay, N. Mahowald, G. Okin, M. Sarin, M. Uematsu, T. Zhu, Impacts of anthropogenic SOx, NOx and NH3 on acidification of coastal waters and shipping lanes. Geophys. Res. Lett. 2011, 38, L13602.
Impacts of anthropogenic SOx, NOx and NH3 on acidification of coastal waters and shipping lanes.Crossref | GoogleScholarGoogle Scholar |

[123]  V. Eyring, H. W. Köhler, A. Lauer, B. Lemper, Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. J. Geophys. Res. 2005, 110, D17306.
Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050.Crossref | GoogleScholarGoogle Scholar |