Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Oxidation of CrIII aminocarboxylate complexes by hydrous manganese oxide: products and time course behaviour

Richard F. Carbonaro A B D and Alan T. Stone C
+ Author Affiliations
- Author Affiliations

A Department of Civil and Environmental Engineering, Manhattan College, Riverdale, NY 10471, USA.

B Mutch Associates, LLC, Ramsey, NJ 07446, USA.

C Department of Geography and Environmental Engineering, G.W.C. Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

D Corresponding author. Email: richard.carbonaro@manhattan.edu

Environmental Chemistry 12(1) 33-51 https://doi.org/10.1071/EN14041
Submitted: 21 February 2014  Accepted: 21 July 2014   Published: 27 October 2014

Environmental context. Oxidation of CrIII (trivalent chromium) to CrVI (hexavalent chromium) is of environmental concern because CrVI is a known mutagen and carcinogen. Our results show that hydrous manganese oxide (HMO) is capable of oxidising soluble CrIII complexed with iminodiacetic acid and nitrilotriacetic acid to CrVI at appreciable rates. CrVI production from soluble CrIII organic complexes is therefore expected to occur in natural and engineered systems that contain HMO.

Abstract. MnIII,IV (hydr)oxides are believed to be the principal oxidants of CrIII in the subsurface. In nearly all previous work on this subject, the CrIII reactant was prepared from inorganic salts (e.g. nitrate, chloride, sulfate). In our present work, CrIII complexes with the synthetic chelating agents iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) were reacted with hydrous manganese oxide (HMO) over a wide pH range to examine rates of reaction and product distribution. Capillary electrophoresis was used to quantify changes in reactant (CrIII–IDA and CrIII–NTA) and product (CrVI, free IDA and free NTA) concentrations as a function of time. In addition, a small number of experiments were performed using solutions prepared from CrIII alum (KCr(SO4)2·12H2O(s)) as the CrIII reactant. CrIII–IDA and CrIII–NTA were oxidised to CrVI, but rates were considerably lower than those obtained using inorganic CrIII. Within the timescales of our experiments, complete conversion of CrIII–NTA occurred at pH >7, but not under moderately acidic conditions, even when there was a large stoichiometric excess of HMO. MnCl2 addition experiments indicated that the observed reaction inhibition was attributable to MnII generation during the reaction. Our previous work has shown that citric acid, IDA, NTA and ethylenediaminetetraacetic acid solubilise CrIII from amorphous Cr(OH)3(s) at appreciable rates. The results of this study show that HMO is capable of oxidising the resulting soluble CrIII complexes, providing a viable mechanism for CrIII oxidation to CrVI over a wide pH range.

Additional keywords: capillary electrophoresis, chromium, iminodiacetic acid, nitrilotriacetic acid.


References

[1]  W. Mertz, Chromium in human-nutrition – a review. J. Nutr. 1993, 123, 626.
| 1:CAS:528:DyaK3sXitFWkt7Y%3D&md5=5a95564572802a9b1df7f44948122c35CAS | 8463863PubMed |

[2]  M. Costa, Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl. Pharmacol. 2003, 188, 1.
Potential hazards of hexavalent chromate in our drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFWltro%3D&md5=e970e816b088ca162a7544f44d0b8f98CAS | 12668116PubMed |

[3]  L. McNeill, J. McLean, M. Edwards, J. Parks, State of the Science of Hexavalent Chromium in Drinking Water 2011 (Water Research Foundation: Denver, CO, USA).

[4]  D. R. Lindsay, K. J. Farley, R. F. Carbonaro, Oxidation of CrIII to CrVI during chlorination of drinking water. J. Environ. Monit. 2012, 14, 1789.
Oxidation of CrIII to CrVI during chlorination of drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlWhu7g%3D&md5=e39f6810bca5686f3ad0c438349df6bbCAS | 22487808PubMed |

[5]  R. Dai, C. Yu, J. Liu, Y. Lan, B. Deng, Photo-oxidation of Cr(III)–citrate complexes forms harmful Cr(VI). Environ. Sci. Technol. 2010, 44, 6959.
Photo-oxidation of Cr(III)–citrate complexes forms harmful Cr(VI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVeltbnP&md5=1fb04fdd81e2221069fc22c082a668d4CAS | 20715867PubMed |

[6]  H. Zhang, R. J. Bartlett, Light-induced oxidation of aqueous chromium(III) in the presence of iron(III). Environ. Sci. Technol. 1999, 33, 588.
Light-induced oxidation of aqueous chromium(III) in the presence of iron(III).Crossref | GoogleScholarGoogle Scholar |

[7]  R. M. Weaver, M. F. Hochella, E. S. Ilton, Dynamic processes occurring at the Cr-aq(III)-manganite (γ-MnOOH) interface: simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution. Geochim. Cosmochim. Acta 2002, 66, 4119.
Dynamic processes occurring at the Cr-aq(III)-manganite (γ-MnOOH) interface: simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslSktrc%3D&md5=903137202a93413bbc6ae14bb44a14c4CAS |

[8]  M. Fendorf, R. J. Zasoski, Chromium(III) oxidation by δ-MnO2. 1. Characterization. Environ. Sci. Technol. 1992, 26, 79.
Chromium(III) oxidation by δ-MnO2. 1. Characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVymtQ%3D%3D&md5=cc6551c7176283494dc4d80b16144c03CAS |

[9]  L. E. Eary, D. Rai, Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese-dioxide. Environ. Sci. Technol. 1987, 21, 1187.
Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese-dioxide.Crossref | GoogleScholarGoogle Scholar |

[10]  E. Silvester, L. Charlet, A. Manceau, Mechanism of chromium(III) oxidation by Na-buserite. J. Phys. Chem. 1995, 99, 16662.
Mechanism of chromium(III) oxidation by Na-buserite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslGiu7s%3D&md5=1a26c70f39666a21b92c63f799b82355CAS |

[11]  G. Landrot, M. Ginder-Vogel, D. L. Sparks, Kinetics of chromium(III) oxidation by manganese(IV) oxides using quick scanning X-ray absorption fine structure spectroscopy (Q-XAFS). Environ. Sci. Technol. 2010, 44, 143.
Kinetics of chromium(III) oxidation by manganese(IV) oxides using quick scanning X-ray absorption fine structure spectroscopy (Q-XAFS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFShsrbF&md5=561229619fd525af61affe489134a999CAS | 19950944PubMed |

[12]  C. A. Johnson, A. G. Xyla, The oxidation of chromium(III) to chromium(VI) on the surface of manganite (γ-MnOOH). Geochim. Cosmochim. Acta 1991, 55, 2861.
The oxidation of chromium(III) to chromium(VI) on the surface of manganite (γ-MnOOH).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsF2qu7k%3D&md5=38f58ee69c27fcd326c0911383765636CAS |

[13]  S. E. Fendorf, M. Fendorf, D. L. Sparks, R. Gronsky, Inhibitory mechanisms of Cr(III) oxidation by δ-MnO2. J. Colloid Interface Sci. 1992, 153, 37.
Inhibitory mechanisms of Cr(III) oxidation by δ-MnO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1SqtLg%3D&md5=e2c07ac925a8c6cf8b2c4611d8f108dcCAS |

[14]  L. Charlet, A. A. Manceau, X-Ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. J. Colloid Interface Sci. 1992, 148, 443.
X-Ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmvVanuw%3D%3D&md5=b98cc13f257da1aba000d4f658ed6a59CAS |

[15]  A. Manceau, L. Charlet, X-Ray absorption spectroscopic study of the sorption of Cr(III) at the oxide water interface. I. Molecular mechanism of Cr(III) oxidation on Mn oxides. J. Colloid Interface Sci. 1992, 148, 425.
X-Ray absorption spectroscopic study of the sorption of Cr(III) at the oxide water interface. I. Molecular mechanism of Cr(III) oxidation on Mn oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xms1Oiug%3D%3D&md5=7b5d9d00b22b6978f45d20fe80805583CAS |

[16]  H. L. Schalfer, G. Gliemann, Basic Principles of Ligand Field Theory 1969 (Wiley-Interscience: New York).

[17]  L. D. Rich, D. L. Cole, E. M. Eyring, Hydrolysis kinetics of dilute aqueous chromium(III) perchlorate. J. Phys. Chem. A 1969, 73, 713.
| 1:CAS:528:DyaF1MXhtVSis74%3D&md5=930c73e43da1406338c99e6d2230c463CAS |

[18]  C. F. Baes, R. E. Mesmer, Hydrolysis of Cations 1976 (Wiley: New York).

[19]  F. P. Rotzinger, H. Stunzi, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 3. Kinetics of dimerization of the deprotonated aqua ion. Inorg. Chem. 1986, 25, 489.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 3. Kinetics of dimerization of the deprotonated aqua ion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xps1GitA%3D%3D&md5=6e6f2f64aee0cf49a429aff7ac4e19e3CAS |

[20]  H. Stuenzi, L. Spiccia, F. P. Rotzinger, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 4. Stability constants of the hydrolytic dimer, trimer, and tetramer at 25 °C and I = 1.0 M. Inorg. Chem. 1989, 28, 66.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 4. Stability constants of the hydrolytic dimer, trimer, and tetramer at 25 °C and I = 1.0 M.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksF2htg%3D%3D&md5=b339022b488d7989928370cbb3cfffe8CAS |

[21]  J. P. Barbier, C. Kappenstein, R. Hugel, The hydration isomers of chromium(III) chloride. J. Chem. Educ. 1972, 49, 204.
The hydration isomers of chromium(III) chloride.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xht1Gru7g%3D&md5=4ef6b335faca044fe42c160cab0e5286CAS |

[22]  F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry 1999 (Wiley: New York).

[23]  R. F. Carbonaro, A. T. Stone, Speciation of chromium(III) and cobalt(III) (amino)carboxylate complexes using capillary electrophoresis. Anal. Chem. 2005, 77, 155.
Speciation of chromium(III) and cobalt(III) (amino)carboxylate complexes using capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSmtrfJ&md5=eeb4b6ba931b758127885eaa6a48bac9CAS | 15623291PubMed |

[24]  M. E. Mendola, T. Paul, T. J. Strathmann, R. F. Carbonaro, Investigation of the kinetics of aquation of the 1 : 2 complex between CrIII and nitrilotriacetic acid. Polyhedron 2009, 28, 269.
Investigation of the kinetics of aquation of the 1 : 2 complex between CrIII and nitrilotriacetic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVahug%3D%3D&md5=34ac7c8dc16f4908d1fda9c67866dcd2CAS |

[25]  B. Nowack, J. M. VanBriesen, Chelating agents in the environment, in Biogeochemistry of Chelating Agents (Eds B. Nowack, J. M. VanBriesen) 2005, pp. 1–18 (American Chemical Society: Washington, DC).

[26]  C. R. Woodiwiss, R. D. Walker, F. A. Brownridge, Concentrations of nitrilotriacetate and certain metals in Canadian wastewaters and streams: 1971–1975. Water Res. 1979, 13, 599.
Concentrations of nitrilotriacetate and certain metals in Canadian wastewaters and streams: 1971–1975.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlvVSrt7s%3D&md5=e05ea7ad934d8dd678b43a01a92e129cCAS |

[27]  R. J. Bartlett, Chromium cycling in soils and water – links, gaps, and methods. Environ. Health Perspect. 1991, 92, 17.
Chromium cycling in soils and water – links, gaps, and methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFCiu74%3D&md5=b593703841991795b1e78d262543b25fCAS | 1935847PubMed |

[28]  B. R. James, R. J. Bartlett, Behavior of chromium in soils: V. Fate of organically complexed Cr(III) added to soil. J. Environ. Qual. 1983, 12, 169.
Behavior of chromium in soils: V. Fate of organically complexed Cr(III) added to soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXit1WhurY%3D&md5=faaeb3df77ab77ff5148388ddaecf142CAS |

[29]  Y. M. Tzou, R. H. Loeppert, M. K. Wang, Effect of organic complexing ligands on Cr(III) oxidation by MnOx. Soil Sci. 2002, 167, 729.
Effect of organic complexing ligands on Cr(III) oxidation by MnOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslSltLg%3D&md5=7302b04c685cf087065041d36faf6858CAS |

[30]  E. Nakayama, T. Kuwamoto, S. Tsurubo, T. Fujinaga, Chemical speciation of chromium in sea-water. 2. Effects of manganese oxides and reducible organic materials on the redox processes of chromium. Anal. Chim. Acta 1981, 130, 401.
Chemical speciation of chromium in sea-water. 2. Effects of manganese oxides and reducible organic materials on the redox processes of chromium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvFajtbc%3D&md5=ebc624607473515824ea1bcb433c93a3CAS |

[31]  R. F. Carbonaro, B. N. Gray, C. F. Whitehead, A. T. Stone, Carboxylate-containing chelating agent interactions with amorphous chromium (hydr)oxide: adsorption and dissolution. Geochim. Cosmochim. Acta 2008, 72, 3241.
Carboxylate-containing chelating agent interactions with amorphous chromium (hydr)oxide: adsorption and dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFGktbY%3D&md5=8e11bb847578405739647e600389c5fcCAS |

[32]  G. Landrot, M. Ginder-Vogel, K. Livi, J. P. Fitts, D. L. Sparks, Chromium(III) oxidation by three poorly crystalline manganese(IV) oxides. 2. Solid phase analyses. Environ. Sci. Technol. 2012, 46, 11601.
Chromium(III) oxidation by three poorly crystalline manganese(IV) oxides. 2. Solid phase analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyksrjK&md5=6ab50e8df86f82fe4e05989b416a5952CAS | 23050862PubMed |

[33]  C. S. McArdell, A. T. Stone, J. Tian, Reaction of EDTA and related aminocarboxylate chelating agents with Co(III)OOH (heterogenite) and Mn(III)OOH (manganite). Environ. Sci. Technol. 1998, 32, 2923.
Reaction of EDTA and related aminocarboxylate chelating agents with Co(III)OOH (heterogenite) and Mn(III)OOH (manganite).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFKqtb0%3D&md5=e6139e4c00cfbe82d65961ace6d14292CAS |

[34]  J. K. Klewicki, J. J. Morgan, Dissolution of β-MnOOH particles by ligands: pyrophosphate, ethylenediaminetetraacetate, and citrate. Geochim. Cosmochim. Acta 1999, 63, 3017.
Dissolution of β-MnOOH particles by ligands: pyrophosphate, ethylenediaminetetraacetate, and citrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCltL0%3D&md5=a45c06850b17bf774a311159601a471bCAS |

[35]  Y. Wang, A. T. Stone, Reaction of MnIII,IV (hydr)oxides with oxalic acid, glyoxylic acid, phosphonoformic acid, and structurally related organic compounds. Geochim. Cosmochim. Acta 2006, 70, 4477.
Reaction of MnIII,IV (hydr)oxides with oxalic acid, glyoxylic acid, phosphonoformic acid, and structurally related organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslSjur8%3D&md5=539822ca8fe1312102ff3b62edfc6b7aCAS |

[36]  Y. Wang, A. T. Stone, Phosphonate- and carboxylate-based chelating agents that solubilize (hydr)oxide-bound MnIII. Environ. Sci. Technol. 2008, 42, 4397.
Phosphonate- and carboxylate-based chelating agents that solubilize (hydr)oxide-bound MnIII.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVynu7k%3D&md5=eebffd1f46b1cecfe449624a495df005CAS | 18605561PubMed |

[37]  J. Lati, D. Meyerstein, Oxidation of first-row bivalent transition-metal complexes containing ethylenediaminetetra-acetate and nitrilotriacetate ligands by free radicals: a pulse-radiolysis study. J. Chem. Soc., Dalton Trans. 1978, 1105.
Oxidation of first-row bivalent transition-metal complexes containing ethylenediaminetetra-acetate and nitrilotriacetate ligands by free radicals: a pulse-radiolysis study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksVCjsg%3D%3D&md5=40004fabff256a1b9587d83eb9930a05CAS |

[38]  W. H. Koppenol, F. Levine, T. L. Hatmaker, J. Epp, J. D. Rush, Catalysis of superoxide dismutation by manganese aminopolycarboxylate complexes. Arch. Biochem. Biophys. 1986, 251, 594.
Catalysis of superoxide dismutation by manganese aminopolycarboxylate complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXotVyjsA%3D%3D&md5=d419154f8a77116b7693cacb619af171CAS | 3026248PubMed |

[39]  K. A. Schroeder, R. E. Hamm, Decomposition of ethylenediaminetetraacetate complex of manganese(3). Inorg. Chem. 1964, 3, 391.
Decomposition of ethylenediaminetetraacetate complex of manganese(3).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXltVKgtA%3D%3D&md5=651a9e4c62c3226e5787e3e60e04a133CAS |

[40]  B. Nowack, A. T. Stone, Degradation of nitrilotris(methylenephosphonic acid) and related (amino)phosphonate chelating agents in the presence of manganese and molecular oxygen. Environ. Sci. Technol. 2000, 34, 4759.
Degradation of nitrilotris(methylenephosphonic acid) and related (amino)phosphonate chelating agents in the presence of manganese and molecular oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVanu7o%3D&md5=c3025e61ba18758e41ae1f7a64ab0254CAS |

[41]  B. Nowack, A. T. Stone, Homogeneous and heterogeneous oxidation of nitrilotrismethylene-phosphonic acid (NTMP) in the presence of manganese(II,III) and molecular oxygen. J. Phys. Chem. B 2002, 106, 6227.
Homogeneous and heterogeneous oxidation of nitrilotrismethylene-phosphonic acid (NTMP) in the presence of manganese(II,III) and molecular oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFahtbk%3D&md5=8061f1fc319670b964644121c35fecf5CAS |

[42]  Y. Wang, A. T. Stone, The citric acid-MnIII,IVO2(s, birnessite) reaction. Electron transfer, complex formation, and autocatalytic feedback. Geochim. Cosmochim. Acta 2006, 70, 4463.
The citric acid-MnIII,IVO2(s, birnessite) reaction. Electron transfer, complex formation, and autocatalytic feedback.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslSjur4%3D&md5=a4fa458d57b8a3cb9e23e7fd04216d3dCAS |

[43]  A. Uehara, E. Kyuno, R. Tsuchiya, The chromium(III) complexes with ammoniatriacetic acid. I. The complexes with ammoniatriacetic acid as a tridentate or tetradentate ligand. Bull. Chem. Soc. Jpn. 1967, 40, 2.

[44]  J. A. Weyh, R. E. Hamm, Iminodiacetato, methyliminodiacetato and 1,3-propanediaminetetraacetato complexes of chromium(III). Inorg. Chem. 1968, 7, 2431.
Iminodiacetato, methyliminodiacetato and 1,3-propanediaminetetraacetato complexes of chromium(III).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXltFaqu70%3D&md5=a9461df74739935d1f162dd753055d1cCAS |

[45]  H. G. Visser, W. Purcell, S. S. Basson, Identification of different Cr(III)–NTA complexes; crystallisation of Cs2[Cr2(nta)2(μ-OH)2] 4H2O in two space groups. Polyhedron 1999, 18, 2795.
Identification of different Cr(III)–NTA complexes; crystallisation of Cs2[Cr2(nta)2(μ-OH)2] 4H2O in two space groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslertL4%3D&md5=6d1923e72d446f19de69acaeb02eb309CAS |

[46]  J. W. Murray, Surface chemistry of hydrous manganese-dioxide. J. Colloid Interface Sci. 1974, 46, 357.
Surface chemistry of hydrous manganese-dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXht1Ghtbc%3D&md5=855ee448a8ea1cab80340e9585a431feCAS |

[47]  J. W. Murray, Interaction of metal ions at manganese dioxide solution interface. Geochim. Cosmochim. Acta 1975, 39, 505.
Interaction of metal ions at manganese dioxide solution interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktFens7k%3D&md5=1d3927c2ac53ab375acca809093a3486CAS |

[48]  J. Locke, On the periodic system and the properties of inorganic compounds II. Gradations and the properties of alums. Am. Chem. J. 1901, 26, 166.

[49]  R. M. McKenzie, The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust. J. Soil Res. 1980, 18, 61.
The adsorption of lead and other heavy metals on oxides of manganese and iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXkslKgu70%3D&md5=1376854ceb0181d83aa874874f2d1fa4CAS |

[50]  W. Zhao, Q. Wang, F. Liu, G. Qiu, W. Tan, X. Feng, Pb2+ adsorption on birnessite affected by Zn2+ and Mn2+ pretreatments. J. Soils Sediments 2010, 10, 870.
Pb2+ adsorption on birnessite affected by Zn2+ and Mn2+ pretreatments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlKqt70%3D&md5=bd1f3341574ad3d46221a20a5655f6f5CAS |

[51]  M. M. Benjamin, J. O. Leckie, Conceptual model for metal-ligand-surface interactions during adsorption. Environ. Sci. Technol. 1981, 15, 1050.
Conceptual model for metal-ligand-surface interactions during adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltl2hu7g%3D&md5=601d251789bec4fac24d8651c07b535fCAS | 22284108PubMed |

[52]  P. S. Nico, R. J. Zasoski, Importance of Mn(III) availability on the rate of Cr(III) oxidation on δ-MnO2. Environ. Sci. Technol. 2000, 34, 3363.
Importance of Mn(III) availability on the rate of Cr(III) oxidation on δ-MnO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFaqs7s%3D&md5=768876330addb86150d0aea962ac7237CAS |

[53]  A. Manceau, A. I. Gorshkov, V. A. Drits, Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides. 1. Information from XANES spectroscopy. Am. Mineral. 1992, 77, 1133.
| 1:CAS:528:DyaK38XmsFCqu7g%3D&md5=63d9d73c14ff62a3d1e45ed2d0af28deCAS |

[54]  J. D. Carr, P. B. Kelter, A. T. Ericson, Ferrate(VI) oxidation of nitrilotriacetic acid. Environ. Sci. Technol. 1981, 15, 184.
Ferrate(VI) oxidation of nitrilotriacetic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXitFertrc%3D&md5=f9c78abf74f00c200165e982d1511bb5CAS | 22257195PubMed |

[55]  R. J. Stolzberg, D. N. Hume, Rapid formation of iminodiacetate from photochemical degradation of iron(III) nitrilotriacetate solutions. Environ. Sci. Technol. 1975, 9, 654.
Rapid formation of iminodiacetate from photochemical degradation of iron(III) nitrilotriacetate solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXks12jtrk%3D&md5=e57c155f0cb01867fb3894b03bc25c66CAS |

[56]  P. W. Schindler, Co-adsorption of metal ions and organic ligands; formation of ternary surface complexes. Rev. Mineral. Geochem. 1990, 23, 281.
| 1:CAS:528:DyaK3MXhs1Oqtrc%3D&md5=90cbcd0f0ca61441ee023b470326906bCAS |

[57]  D. C. Girvin, P. L. Gassman, H. Bolton, Adsorption of aqueous cobalt ethylenediaminetetraacetate by δ-Al2O3. Soil Sci. Soc. Am. J. 1993, 57, 47.
Adsorption of aqueous cobalt ethylenediaminetetraacetate by δ-Al2O3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFCjsb4%3D&md5=5d1e9332e4dff49d0969d650b820ad37CAS |

[58]  B. Nowack, J. Lutzenkirchen, P. Behra, L. Sigg, Modeling the adsorption of metal–EDTA complexes onto oxides. Environ. Sci. Technol. 1996, 30, 2397.
Modeling the adsorption of metal–EDTA complexes onto oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Wjtbw%3D&md5=8320f80dce9387b9466760efd70f7713CAS |

[59]  B. Nowack, L. Sigg, Adsorption of EDTA and metal–EDTA complexes onto goethite. J. Colloid Interface Sci. 1996, 177, 106.
Adsorption of EDTA and metal–EDTA complexes onto goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvFKgsQ%3D%3D&md5=f1872b59a0390626c0c84f51ce952517CAS | 10479422PubMed |

[60]  H. M. N. H. Irving, R. H. Al-Jarrah, Complexes of chromium(III) with nitrilotriacetic acid and their extraction by solutions of aliquat-336 in dichloroethane. Anal. Chim. Acta 1972, 60, 345.
Complexes of chromium(III) with nitrilotriacetic acid and their extraction by solutions of aliquat-336 in dichloroethane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xks1KrsLw%3D&md5=287e4ff93073b8033cf79890f7dbe924CAS |

[61]  G. Landrot, M. Ginder-Vogel, K. Livi, J. P. Fitts, D. L. Sparks, Chromium(III) oxidation by three poorly crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity. Environ. Sci. Technol. 2012, 46, 11594.
Chromium(III) oxidation by three poorly crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyltb3N&md5=c2ad666364aae849014b4e37eb854051CAS | 23050871PubMed |

[62]  R. M. Weaver, M. F. Hochella, The reactivity of seven Mn-oxides with Craq3+: a comparative analysis of a complex, environmentally important redox reaction. Am. Mineral. 2003, 88, 2016.
| 1:CAS:528:DC%2BD3sXpsV2gs7o%3D&md5=b9a6e729404d8ae85d7ed305ce2646d1CAS |

[63]  J. W. Tonkin, L. S. Balistrieri, J. W. Murray, Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl. Geochem. 2004, 19, 29.
Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWgsLY%3D&md5=bf10de9950bc756d55714966aa499f68CAS |

[64]  S. Grangeon, A. Manceau, J. Guilhermet, A.-C. Gaillot, M. Lanson, B. Lanson, Zn sorption modifies dynamically the layer and interlayer structure of vernadite. Geochim. Cosmochim. Acta 2012, 85, 302.
Zn sorption modifies dynamically the layer and interlayer structure of vernadite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVGgsrY%3D&md5=41ce7d76f71f2ec5f42f960176e7579fCAS |

[65]  S. Tu, G. J. Racz, T. B. Goh, Transformations of synthetic birnessite as affected by pH and manganese concentration. Clays Clay Miner. 1994, 42, 321.
Transformations of synthetic birnessite as affected by pH and manganese concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVCgsbw%3D&md5=74611dddbb5bb3440a6a5c7095983fc8CAS |

[66]  C. F. Huber, G. P. Haight, The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion. J. Am. Chem. Soc. 1976, 98, 4128.
The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XkvVelsbk%3D&md5=2c3312ce2aed1225cbf36e8653933f36CAS |

[67]  C. Li, Y.-Q. Lan, B.-L. Deng, Catalysis of manganese(II) on chromium(VI) reduction by citrate. Pedosphere 2007, 17, 318.
Catalysis of manganese(II) on chromium(VI) reduction by citrate.Crossref | GoogleScholarGoogle Scholar |

[68]  J. K. Beattie, G. P. Haight, Chromium(VI) oxidations of inorganic substrates, in Inorganic Reaction Mechanisms, Part 2 (Progress in Inorganic Chemistry, Vol. 17) (Ed. J. O. Edwards) 1972, pp. 93–145 (Wiley-Interscience: New York).