Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Characteristics, seasonality and sources of inorganic ions and trace metals in North-east Asian aerosols

Chandra Mouli Pavuluri A E , Kimitaka Kawamura A , Nikolaos Mihalopoulos A B C and Pingqing Fu A D
+ Author Affiliations
- Author Affiliations

A Institute of Low Temperature Science, Hokkaido University, N19, W8, Kita-ku, Sapporo 060-0819, Japan.

B Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, PO Box 2208, GR-71003 Voutes, Heraklion, Greece.

C Present address: Institute for Environmental Research and Sustainable Development, National Observatory of Athens, GR-15236 Palea Penteli, Greece.

D Present address: State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.

E Corresponding author. Email address: cmpavuluri@pop.lowtem.hokudai.ac.jp

Environmental Chemistry 12(3) 338-349 https://doi.org/10.1071/EN14186
Submitted: 13 September 2014  Accepted: 23 December 2014   Published: 20 April 2015

Environmental context. Atmospheric aerosols affect the Earth’s climate system and can cause adverse effects on human health depending on their loading and chemical composition. This study presents the chemical characteristics and seasonality of inorganic ions and trace metals in atmospheric aerosols from Sapporo, northern Japan, and explores their possible sources. The work is relevant for our understanding of atmospheric composition and climate change.

Abstract. To better understand the characteristics, seasonality and sources of inorganic aerosols in North-east Asia, we studied total suspended particulate samples collected in Sapporo, northern Japan for inorganic ions and trace metals over a 1-year period. SO42– was found as the most abundant ionic species, which accounted for on average 43 ± 15 % of the measured total ionic mass followed by Cl ≈ NO3 ≈ Na+. Among the metals determined, Ca was found as the most abundant (45 ± 5.2 % of the measured total metals) followed by Fe. Temporal variations of methanesulfonate (MS) and SO42– showed a clear seasonal pattern with a maximum in summer followed by spring. Cl, NO3, NH4+ and K+ showed increasing trends from mid autumn to winter. Na+, Ca2+ and Mg2+ and crustal metals (Al, Ca, Fe, Ti and Mn) peaked in early spring. Na+ and Mg2+ and Ni, Cu and As were abundant in autumn whereas Zn was in spring. However, Cd and Pb did not show any seasonality. Based on comparisons of such seasonal trends with those of organic tracers as well as the air mass trajectories, we infer that the seasonality in inorganic aerosols in the North-east Asian atmosphere is mainly controlled by their season-specific source(s): soil dust in early spring, biogenic emissions in spring–summer, microbial activities in autumn and forest fires and biomass burning in autumn–winter. However, contributions from anthropogenic sources are significant in all seasons. This study also suggests that fungal spores partly contribute to some trace metals (i.e. Ni, Cu and As) whereas pollen contributes to Zn in aerosols.


References

[1]  V. Ramanathan, P. J. Crutzen, J. T. Kiehl, D. Rosenfeld, Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119.
Aerosols, climate, and the hydrological cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVOnur8%3D&md5=acef06085c520da5f337c77f60ef8653CAS | 11739947PubMed |

[2]  A. Nel, Air pollution-related illness: effects of particulates. Science 2005, 308, 804.
Air pollution-related illness: effects of particulates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVWrtLg%3D&md5=fb42313746ab620864c52dc72aa5c975CAS | 15879201PubMed |

[3]  U. Pöschl, Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520.
Atmospheric aerosols: composition, transformation, climate and health effects.Crossref | GoogleScholarGoogle Scholar |

[4]  T. Moreno, X. Querol, A. Alastuey, C. Reche, M. Cusack, F. Amato, M. Pandolfi, J. Pey, A. Richard, A. S. H. Prevot, M. Furger, W. Gibbons, Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmos. Chem. Phys. 2011, 11, 9415.
Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyisr%2FM&md5=6d0c68a14dda5331fdf01b26d9d2b746CAS |

[5]  S. Gioia, D. Weiss, B. Coles, T. Arnold, M. Babinski, Accurate and precise zinc isotope ratio measurements in urban aerosols. Anal. Chem. 2008, 80, 9776.
Accurate and precise zinc isotope ratio measurements in urban aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVShsL7M&md5=dc5f68d35367745f118f9cd029840328CAS | 19072275PubMed |

[6]  W. J. Li, Y. Wang, J. L. Collett, J. M. Chen, X. Y. Zhang, Z. F. Wang, W. X. Wang, Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region. Environ. Sci. Technol. 2013, 47, 4172.
Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVWksL8%3D&md5=2a44f0a9cfbc9c7b6c1c86db58bdc07dCAS |

[7]  C. Déandreis, Y. Balkanski, J. L. Dufresne, A. Cozic, Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability. Atmos. Chem. Phys. 2012, 12, 5583.
Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability.Crossref | GoogleScholarGoogle Scholar |

[8]  Q. Zhang, J. Meng, J. Quan, Y. Gao, D. Zhao, P. Chen, H. He, Impact of aerosol composition on cloud condensation nuclei activity. Atmos. Chem. Phys. 2012, 12, 3783.
Impact of aerosol composition on cloud condensation nuclei activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlenurbJ&md5=f58fd896e8bf9535a5caaa8898cf374cCAS |

[9]  F. J. Dentener, G. R. Carmichael, Y. Zhang, J. Lelieveld, P. J. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res. – Atmos. 1996, 101, 22869.
Role of mineral aerosol as a reactive surface in the global troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslWnsr8%3D&md5=05e77fed63be1c9775e8fa0bd2ee337cCAS |

[10]  F. Schaumann, P. J. A. Borm, A. Herbrich, J. Knoch, M. Pitz, R. P. F. Schins, B. Luettig, J. M. Hohlfeld, J. Heinrich, N. Krug, Metal-rich ambient particles (particulate matter2.5) cause airway inflammation in healthy subjects. Am. J. Resp. Crit. Care 2004, 170, 898.
Metal-rich ambient particles (particulate matter2.5) cause airway inflammation in healthy subjects.Crossref | GoogleScholarGoogle Scholar |

[11]  S. Zahran, M. A. S. Laidlaw, S. P. McElmurry, G. M. Filippelli, M. Taylor, Linking source and effect: resuspended soil lead, air lead, and children's blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 2013, 47, 2839.
Linking source and effect: resuspended soil lead, air lead, and children's blood lead levels in Detroit, Michigan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFalurw%3D&md5=1297446734f908393aa4bce4d85adf78CAS | 23428083PubMed |

[12]  Y. G. Zuo, J. Hoigne, Photochemical decomposition of oxalic, glyoxalic and pyruvic-acid catalyzed by iron in atmospheric waters. Atmos. Environ. 1994, 28, 1231.
Photochemical decomposition of oxalic, glyoxalic and pyruvic-acid catalyzed by iron in atmospheric waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFKkt7s%3D&md5=f0accfd9607adf5ef014b223e3e4fdecCAS |

[13]  C. M. Pavuluri, K. Kawamura, Evidence for 13-carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase. Geophys. Res. Lett. 2012, 39, L03802.
Evidence for 13-carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase.Crossref | GoogleScholarGoogle Scholar |

[14]  W. J. Li, T. Wang, S. Z. Zhou, S. C. Lee, Y. Huang, Y. Gao, W. X. Wang, Microscopic observation of metal-containing particles from Chinese continental outflow observed from a non-industrial site. Environ. Sci. Technol. 2013, 47, 9124.
Microscopic observation of metal-containing particles from Chinese continental outflow observed from a non-industrial site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKlsLzM&md5=e3f4d7c37a9fc774ca5b0307d8eeb819CAS |

[15]  K. W. Fomba, K. Muller, D. van Pinxteren, H. Herrmann, Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde Islands. Atmos. Chem. Phys. 2013, 13, 4801.
Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde Islands.Crossref | GoogleScholarGoogle Scholar |

[16]  G. R. Carmichael, B. Adhikary, S. Kulkarni, A. D'Allura, Y. Tang, D. Streets, Q. Zhang, T. C. Bond, V. Ramanathan, A. Jamroensan, P. Marrapu, Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change. Environ. Sci. Technol. 2009, 43, 5811.
Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlahurs%3D&md5=aecdc00d3272866bf103ef1a6bafa9c1CAS | 19731681PubMed |

[17]  L. K. Sahu, Y. Kondo, Y. Miyazaki, M. Kuwata, M. Koike, N. Takegawa, H. Tanimoto, H. Matsueda, S. C. Yoon, Y. J. Kim, Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005. J. Geophys. Res. – Atmos. 2009, 114, D03301.
Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005.Crossref | GoogleScholarGoogle Scholar |

[18]  K. Kawamura, M. Kobayashi, N. Tsubonuma, M. Mochida, T. Watanabe, M. Lee, Organic and inorganic compositions of marine aerosols from East Asia: seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition, in Geochemical Investigations in Earth and Space Science: a Tribute to Isaac R. Kaplan (Eds R. J., J. Leventhal, Z. Aizenshtat, M. J. Baedecker, G. Claypool, R. Eganhouse, M. Goldhaber, K. Peters) 2004, publication number 9 (The Geochemical Society: Saint Louis, MO, USA).

[19]  I. Uno, K. Eguchi, K. Yumimoto, Z. Liu, Y. Hara, N. Sugimoto, A. Shimizu, T. Takemura, Large Asian dust layers continuously reached north America in April 2010. Atmos. Chem. Phys. 2011, 11, 7333.
Large Asian dust layers continuously reached north America in April 2010.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yks7fN&md5=500ddf72d13d695e59826bbbeb7c000eCAS |

[20]  T. Nakajima, S. C. Yoon, V. Ramanathan, G. Y. Shi, T. Takemura, A. Higurashi, T. Takamura, K. Aoki, B. J. Sohn, S. W. Kim, H. Tsuruta, N. Sugimoto, A. Shimizu, H. Tanimoto, Y. Sawa, N. H. Lin, C. T. Lee, D. Goto, N. Schutgens, Overview of the atmospheric brown cloud East Asian regional experiment 2005 and a study of the aerosol direct radiative forcing in East Asia. J. Geophys. Res. – Atmos. 2007, 112, D24S91.
Overview of the atmospheric brown cloud East Asian regional experiment 2005 and a study of the aerosol direct radiative forcing in East Asia.Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Huang, R. E. Dickinson, W. L. Chameides, Impact of aerosol indirect effect on surface temperature over East Asia. Proc. Natl. Acad. Sci. USA 2006, 103, 4371.
Impact of aerosol indirect effect on surface temperature over East Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt12qt78%3D&md5=814e10dacedd4dfd6744d092fd494b85CAS | 16537432PubMed |

[22]  S. G. Aggarwal, K. Kawamura, Carbonaceous and inorganic composition in long-range transported aerosols over Northern Japan: implication for aging of water-soluble organic fraction. Atmos. Environ. 2009, 43, 2532.
Carbonaceous and inorganic composition in long-range transported aerosols over Northern Japan: implication for aging of water-soluble organic fraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1ygurk%3D&md5=60c857095c261a14c54998af1db8fb22CAS |

[23]  S. Agarwal, S. G. Aggarwal, K. Okuzawa, K. Kawamura, Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmos. Chem. Phys. 2010, 10, 5839.
Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKltrbM&md5=9a47cb320c25194d6445f929ec7f34b4CAS |

[24]  C. M. Pavuluri, K. Kawamura, M. Kikuta, E. Tachibana, S. G. Aggarwal, Time-resolved variations in the distributions of inorganic ions, carbonaceous components, dicarboxylic acids and related compounds in atmospheric aerosols from Sapporo, Northern Japan during summertime. Atmos. Environ. 2012, 62, 622.
Time-resolved variations in the distributions of inorganic ions, carbonaceous components, dicarboxylic acids and related compounds in atmospheric aerosols from Sapporo, Northern Japan during summertime.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFertr7P&md5=4517acbb22515fff018ae27502e69fb9CAS |

[25]  C. M. Pavuluri, K. Kawamura, M. Uchida, M. Kondo, P. Q. Fu, Enhanced modern carbon and biogenic organic tracers in northeast Asian aerosols during spring/summer. J. Geophys. Res. – Atmos. 2013, 118, 2362.
Enhanced modern carbon and biogenic organic tracers in northeast Asian aerosols during spring/summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFWis7g%3D&md5=4ea1463ad610cddebaa1594647227509CAS |

[26]  S. Squizzato, M. Masiol, A. Brunelli, S. Pistollato, E. Tarabotti, G. Rampazzo, B. Pavoni, Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmos. Chem. Phys. 2013, 13, 1927.
Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy).Crossref | GoogleScholarGoogle Scholar |

[27]  C. Theodosi, Z. Markaki, A. Tselepides, N. Mihalopoulos, The significance of atmospheric inputs of soluble and particulate major and trace metals to the eastern Mediterranean seawater. Mar. Chem. 2010, 120, 154.
The significance of atmospheric inputs of soluble and particulate major and trace metals to the eastern Mediterranean seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGlsbw%3D&md5=bf1a5ff94c6e1006f860c1f61a367332CAS |

[28]  P. Q. Fu, K. Kawamura, C. M. Pavuluri, T. Swaminathan, J. Chen, Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmos. Chem. Phys. 2010, 10, 2663.
Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVahs7w%3D&md5=dda188316f5c77bcd13624db9aad8cceCAS |

[29]  R. R. Draxler, G. D. Rolph, Hysplit (hybrid single-particle lagrangian integrated trajectory) model access via NOAA ARL ready website 2012 (NOAA air resources laboratory, Silver Spring, MD). Available at http://ready.arl.noaa.gov/HYSPLIT_traj.php [Verified 12 February 2015].

[30]  Y. Toma, F. G. Fernandez, S. Sato, M. Izumi, R. Hatano, T. Yamada, A. Nishiwaki, G. Bollero, J. R. Stewart, Carbon budget and methane and nitrous oxide emissions over the growing season in a Miscanthus sinensis grassland in Tomakomai, Hokkaido, Japan. GCB Bioenergy 2011, 3, 116.
Carbon budget and methane and nitrous oxide emissions over the growing season in a Miscanthus sinensis grassland in Tomakomai, Hokkaido, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFeis7o%3D&md5=e44d3adff56b6b089466b35e0020d2caCAS |

[31]  S. Yamamoto, K. Kawamura, O. Seki, Long-range atmospheric transport of terrestrial biomarkers by the Asian winter monsoon: evidence from fresh snow from Sapporo, Northern Japan. Atmos. Environ. 2011, 45, 3553.
Long-range atmospheric transport of terrestrial biomarkers by the Asian winter monsoon: evidence from fresh snow from Sapporo, Northern Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlensrg%3D&md5=161d61de4371d00b55f93c03fff59fe5CAS |

[32]  S. G. Aggarwal, K. Kawamura, Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J. Geophys. Res. – Atmos. 2008, 113, D14301.
Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport.Crossref | GoogleScholarGoogle Scholar |

[33]  R. A. Duce, G. L. Hoffman, W. H. Zoller, Atmospheric trace-metals at remote northern and southern-hemisphere sites – pollution or natural. Science 1975, 187, 59.
Atmospheric trace-metals at remote northern and southern-hemisphere sites – pollution or natural.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXnsFOrtQ%3D%3D&md5=bb32a9e13928cac3281cfed1c823845bCAS | 17844209PubMed |

[34]  X. Y. Zhang, S. L. Gong, Z. X. Shen, F. M. Mei, X. X. Xi, L. C. Liu, Z. J. Zhou, D. Wang, Y. Q. Wang, Y. Cheng, Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. J. Geophys. Res. – Atmos. 2003, 108, 4261.
Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations.Crossref | GoogleScholarGoogle Scholar |

[35]  T. S. Bates, J. A. Calhoun, P. K. Quinn, Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol-particles over the South Pacific Ocean. J. Geophys. Res. – Atmos. 1992, 97, 9859.
Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol-particles over the South Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFyns78%3D&md5=236fe5b7a228dae8f9639d1596546164CAS |

[36]  C. M. Geng, Y. J. Mu, Carbonyl sulfide and dimethyl sulfide exchange between trees and the atmosphere. Atmos. Environ. 2006, 40, 1373.
Carbonyl sulfide and dimethyl sulfide exchange between trees and the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1Cluw%3D%3D&md5=be51258ddd26b2c3677e237a7cf8e1e2CAS |

[37]  Z. G. Yi, X. M. Wang, M. G. Ouyang, D. Q. Zhang, G. Y. Zhou, Air–soil exchange of dimethyl sulfide, carbon disulfide, and dimethyl disulfide in three subtropical forests in South China. J. Geophys. Res. – Atmos. 2010, 115, D18302.
Air–soil exchange of dimethyl sulfide, carbon disulfide, and dimethyl disulfide in three subtropical forests in South China.Crossref | GoogleScholarGoogle Scholar |

[38]  J. J. Schauer, M. J. Kleeman, G. R. Cass, B. R. T. Simoneit, Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol. 2002, 36, 1169.
Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFKnsbc%3D&md5=7cf9f64f66ebbfe84229b80ec5b8c5e5CAS | 11944666PubMed |

[39]  Q. Zhang, D. G. Streets, G. R. Carmichael, K. B. He, H. Huo, A. Kannari, Z. Klimont, I. S. Park, S. Reddy, J. S. Fu, D. Chen, L. Duan, Y. Lei, L. T. Wang, Z. L. Yao, Asian emissions in 2006 for the NASA Intex-B mission. Atmos. Chem. Phys. 2009, 9, 5131.
Asian emissions in 2006 for the NASA Intex-B mission.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhsrnE&md5=edce6238852cb9822fa8fa776b3036bdCAS |

[40]  P. Q. Fu, K. Kawamura, K. Okuzawa, S. G. Aggarwal, G. H. Wang, Y. Kanaya, Z. F. Wang, Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt Tai, North China Plain. J. Geophys. Res. – Atmos. 2008, 113, D19107.
Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt Tai, North China Plain.Crossref | GoogleScholarGoogle Scholar |

[41]  G. P. Yang, H. H. Zhang, L. P. Su, L. M. Zhou, Biogenic emission of dimethylsulfide (DMS) from the north Yellow Sea, China and its contribution to sulfate in aerosol during summer. Atmos. Environ. 2009, 43, 2196.
Biogenic emission of dimethylsulfide (DMS) from the north Yellow Sea, China and its contribution to sulfate in aerosol during summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslWks7g%3D&md5=47527e7bafd46710828ba2400e963c50CAS |

[42]  H. Mukai, Y. Yokouchi, M. Suzuki, Seasonal-variation of methanesulfonic-acid in the atmosphere over the Oki Islands in the Sea of Japan. Atmos. Environ. 1995, 29, 1637.
Seasonal-variation of methanesulfonic-acid in the atmosphere over the Oki Islands in the Sea of Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFCmsrc%3D&md5=9127bf093dc257871ebabf2165aa07ceCAS |

[43]  J. M. Prospero, D. L. Savoie, R. Arimoto, Long-term record of NSS-sulfate and nitrate in aerosols on midway island, 1981–2000: evidence of increased (now decreasing?) anthropogenic emissions from Asia. J. Geophys. Res. – Atmos. 2003, 108, 4019.
Long-term record of NSS-sulfate and nitrate in aerosols on midway island, 1981–2000: evidence of increased (now decreasing?) anthropogenic emissions from Asia.Crossref | GoogleScholarGoogle Scholar |

[44]  Y. Miyazaki, P. Q. Fu, K. Kawamura, Y. Mizoguchi, K. Yamanoi, Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. Atmos. Chem. Phys. 2012, 12, 1367.
Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFegsbk%3D&md5=c7bf1076a396884edfa7bf9822529438CAS |

[45]  E. P. Burford, M. Fomina, G. M. Gadd, Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag. 2003, 67, 1127.
Fungal involvement in bioweathering and biotransformation of rocks and minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslOjur8%3D&md5=5fee61d02f6c65a32ea0ab4fded24d6dCAS |

[46]  Z. Q. Liu, Q. H. Liu, H. C. Lin, C. S. Schwartz, Y. H. Lee, T. J. Wang, Three-dimensional variational assimilation of MODIS aerosol optical depth: implementation and application to a dust storm over East Asia. J. Geophys. Res. – Atmos. 2011, 116, D23206.

[47]  F. Giorgi, Dry deposition velocities of atmospheric aerosols as inferred by applying a particle dry deposition parameterization to a general circulation model. Tellus B – Chem. Phys. Meterol. 1988, 40B, 23.
Dry deposition velocities of atmospheric aerosols as inferred by applying a particle dry deposition parameterization to a general circulation model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtlGgtb0%3D&md5=dc3dc82ee45cb1cd40c45a2514648b67CAS |

[48]  M. O. Andreae, Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 1983, 220, 1148.
Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkt1Ohtb4%3D&md5=7284c061465d8c313838705411b6f0caCAS | 17818494PubMed |

[49]  O. Hertel, C. A. Skjoth, S. Reis, A. Bleeker, R. M. Harrison, J. N. Cape, D. Fowler, U. Skiba, D. Simpson, T. Jickells, M. Kulmala, S. Gyldenkaerne, L. L. Sorensen, J. W. Erisman, M. A. Sutton, Governing processes for reactive nitrogen compounds in the European atmosphere. Biogeosciences 2012, 9, 4921.
Governing processes for reactive nitrogen compounds in the European atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVaqu74%3D&md5=4924df7d9814b7ac1353c4a420b2f6e0CAS |

[50]  L. Wouters, S. Hagedoren, I. Dierck, P. Artaxo, R. Vangrieken, Laser microprobe mass analysis of Amazon basin aerosols. Atmos. Environ. A – Gen. 1993, 27, 661.
Laser microprobe mass analysis of Amazon basin aerosols.Crossref | GoogleScholarGoogle Scholar |

[51]  B. R. T. Simoneit, Biomass burning – a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129.
Biomass burning – a review of organic tracers for smoke from incomplete combustion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVaqtA%3D%3D&md5=c06500c4056492acba644d420ea213efCAS |

[52]  D. Hoffmann, A. Tilgner, Y. Iinuma, H. Herrmann, Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ. Sci. Technol. 2010, 44, 694.
Atmospheric stability of levoglucosan: a detailed laboratory and modeling study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGkurfP&md5=3b5908505e3e02e98170bf5f5307d246CAS | 20000815PubMed |

[53]  J. M. Pacyna, E. G. Pacyna, An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269.
An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFegt7k%3D&md5=5f26a7d3112e773d43bc1ff0a1a89552CAS |

[54]  S. Gilardoni, E. Vignati, F. Cavalli, J. P. Putaud, B. R. Larsen, M. Karl, K. Stenstrom, J. Genberg, S. Henne, F. Dentener, Better constraints on sources of carbonaceous aerosols using a combined 14C–macro tracer analysis in a European rural background site. Atmos. Chem. Phys. 2011, 11, 5685.
Better constraints on sources of carbonaceous aerosols using a combined 14C–macro tracer analysis in a European rural background site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WjtrvM&md5=1b156db1b58a26bc6a477c7c96f22c05CAS |

[55]  P. Q. Fu, K. Kawamura, M. Kobayashi, B. R. T. Simoneit, Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: significant contributions of airborne pollen and Asian dust in spring. Atmos. Environ. 2012, 55, 234.
Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: significant contributions of airborne pollen and Asian dust in spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1ejsrY%3D&md5=4493c53e67b2db9a9af2e7f83b6a5175CAS |

[56]  A. Lepšová, V. Mejstřík, Accumulation of trace-elements in the fruiting bodies of macrofungi in the krusnehory mountains, Czechoslovakia. Sci. Total Environ. 1988, 76, 117.
Accumulation of trace-elements in the fruiting bodies of macrofungi in the krusnehory mountains, Czechoslovakia.Crossref | GoogleScholarGoogle Scholar | 3238419PubMed |

[57]  E. Polar, Zinc in pollen and its incorporation into seeds. Planta 1975, 123, 97.
Zinc in pollen and its incorporation into seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhtlynsLY%3D&md5=2060d167921f616dbdf0bf2f3a6e61d9CAS | 24436028PubMed |

[58]  J. O. Nriagu, A global assessment of natural sources of atmospheric trace-metals. Nature 1989, 338, 47.
A global assessment of natural sources of atmospheric trace-metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhslyksr0%3D&md5=3e50897be6e0c9b46666473308816081CAS |

[59]  R. C. Henry, C. W. Lewis, P. K. Hopke, H. J. Williamson, Review of receptor model fundamentals. Atmos. Environ. 1984, 18, 1507.
Review of receptor model fundamentals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltlGqu7k%3D&md5=9426e1191d88fc1005a73f06ebee9c6aCAS |

[60]  T. Pauliquevis, L. L. Lara, M. L. Antunes, P. Artaxo, Aerosol and precipitation chemistry measurements in a remote site in central Amazonia: the role of biogenic contribution. Atmos. Chem. Phys. 2012, 12, 4987.
Aerosol and precipitation chemistry measurements in a remote site in central Amazonia: the role of biogenic contribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaltb%2FL&md5=083163e694965bde586d118fbb8ef923CAS |

[61]  C. W. Liu, K. H. Lin, Y. M. Kuo, Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77.
Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFyku7c%3D&md5=8e2900eda76f1d585e1996d9d3179ccaCAS | 12922062PubMed |

[62]  R. C. MacCallum, K. F. Widaman, S. B. Zhang, S. H. Hong, Sample size in factor analysis. Psychol. Methods 1999, 4, 84.
Sample size in factor analysis.Crossref | GoogleScholarGoogle Scholar |