Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Methoxylated and hydroxylated polybrominated diphenyl ethers in surface sediments from the southern Yellow Sea: spatial distribution and potential producers

Ying Fan A C , Jing Lan B , Jiaokai Wang A , Zongshan Zhao A E , Meixun Zhao A and Guibin Jiang D
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education and Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China.

B College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.

C Jiangxi Institute of Analysing and Testing, Nanchang 330029, China.

D State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085, China.

E Corresponding author. Email: zhaozs@qibebt.ac.cn; zhaozongshan@ouc.edu.cn

Environmental Chemistry 12(3) 366-373 https://doi.org/10.1071/EN14243
Submitted: 15 November 2014  Accepted: 22 January 2015   Published: 22 April 2015

Environmental context. Methoxylated and hydroxylated polybrominated diphenyl ethers are of increasing concern owing to their global distribution and potential ecological risks. We investigated the spatial distribution and sources of these brominated compounds in surface sediments from the southern Yellow Sea, China. The results suggest that marine phytoplankton may be the potential producers of these compounds, thereby providing new insights into their occurrence and provenance in marine environments.

Abstract. Methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have recently caused worldwide concern; however, there have been very limited studies on their presence in marine sediments. In the present study, MeO-PBDEs, OH-PBDEs and phytoplankton biomarkers were determined in surface sediments from the southern Yellow Sea. MeO-PBDEs and OH-PBDEs are ubiquitous in southern Yellow Sea sediments, with total contents ranging from 43.0 to 571.4 pg g–1 dry weight. High contents of these compounds mainly concentrated in the central southern Yellow Sea basin, and their spatial distributions generally presented a seaward-increasing trend. By comparing with total organic carbon and terrestrial organic matter contributions in sediments, these compounds were inferred to originate mainly from marine production rather than from terrigenous inputs. Statistical analysis shows that there are significant correlations between MeO-PBDEs, OH-PBDEs and phytoplankton biomarkers, indicating that MeO-PBDEs and OH-PBDEs are mainly natural compounds, and the phytoplankton are likely to be their potential producers in the southern Yellow Sea, especially for dinosterol.

Additional keywords: MeO-PBDEs, OH-PBDEs, phytoplankton biomarker.


References

[1]  R. J. Law, C. R. Allchin, J. de Boer, A. Covaci, D. Herzke, P. Lepom, S. Morris, J. Tronczynski, C. A. de Wit, Levels and trends of brominated flame retardants in the European environment. Chemosphere 2006, 64, 187.
Levels and trends of brominated flame retardants in the European environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFKrtb4%3D&md5=ffa5facc8102dcfebc995b9c32715e31CAS | 16434081PubMed |

[2]  I. A. T. M. Meerts, R. J. Letcher, S. Hoving, G. Marsh, A. Bergman, J. G. Lemmen, B. van der Burg, A. Brouwer, In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds. Environ. Health Perspect. 2001, 109, 399.
In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVais7c%3D&md5=fefcede1650d67431560c8bb733c9c29CAS |

[3]  M. M. Dingemans, A. de Groot, R. G. van Kleef, A. Bergman, M. van den Berg, H. P. Vijverberg, R. H. Westerink, Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells. Environ. Health Perspect. 2008, 116, 637.
Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVylu7g%3D&md5=3f7df3aefe9103cd9738a2a98a5d74ecCAS | 18470311PubMed |

[4]  G. Su, J. Xia, H. Liu, M. H. W. Lam, H. Yu, J. P. Giesy, X. Zhang, Dioxin-like potency of HO- and MeO- analogues of PBDEs’ the potential risk through consumption of fish from Eastern China. Environ. Sci. Technol. 2012, 46, 10 781.
Dioxin-like potency of HO- and MeO- analogues of PBDEs’ the potential risk through consumption of fish from Eastern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmtb7I&md5=f8387f0867d93f92ef646986e9ebcff4CAS |

[5]  Y. He, M. B. Murphy, R. M. K. Yu, M. H. W. Lam, M. Hecker, J. P. Giesy, R. S. S. Wu, P. K. S. Lam, Effects of 20 PBDE metabolites on steroidogenesis in the H295R cell line. Toxicol. Lett. 2008, 176, 230.
Effects of 20 PBDE metabolites on steroidogenesis in the H295R cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOrs7s%3D&md5=25335b3d3104498f96e3f22693cd9027CAS | 18248924PubMed |

[6]  M. Kuniyoshi, K. Yamada, T. Higa, A biologically active diphenyl ether from the green alga Cladophora fascicularis. Cell. Mol. Life Sci. 1985, 41, 523.
A biologically active diphenyl ether from the green alga Cladophora fascicularis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktF2rtb4%3D&md5=3d1a24d303923bbd398b08dae6de45aeCAS |

[7]  L. Asplund, A. Malmvärn, G. Marsh, M. Athanasiadou, Å. Bergman, L. Kautsky, Hydroxylated brominated diphenyl ethers in salmon (Salmo salar), blue mussels (Mytilus edulis) and the red algae (Ceramium tenuicorne) from the Baltic Sea – natural production in Baltic Sea biota. Organohalogen Compd. 2001, 52, 67.
| 1:CAS:528:DC%2BD38XntlentLw%3D&md5=f25f77f06b905a2d17997da17c3ab18dCAS |

[8]  A. Malmvärn, G. Marsh, L. Kautsky, M. Athanasiadou, Å. Bergman, L. Asplund, Hydroxylated and methoxylated brominated diphenyl ethers in the red algae Ceramium tenuicorne and blue mussels from the Baltic Sea. Environ. Sci. Technol. 2005, 39, 2990.
Hydroxylated and methoxylated brominated diphenyl ethers in the red algae Ceramium tenuicorne and blue mussels from the Baltic Sea.Crossref | GoogleScholarGoogle Scholar | 15926543PubMed |

[9]  A. Malmvärn, Y. Zebühr, L. Kautsky, Å. Bergman, L. Asplund, Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere 2008, 72, 910.
Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar | 18457860PubMed |

[10]  K. Valters, H. Li, M. Alaee, I. D’Sa, G. Marsh, Å. Bergman, R. J. Letcher, Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit River. Environ. Sci. Technol. 2005, 39, 5612.
Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit River.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVKgsbg%3D&md5=f9b1596ac6676a474df1c03b867db69fCAS | 16124294PubMed |

[11]  K. Zhang, Y. Wan, J. P. Giesy, M. H. W. Lam, S. Wiseman, P. D. Jones, J. Hu, Tissue concentrations of polybrominated compounds in Chinese Sturgeon (Acipenser sinensis): origin, hepatic sequestration, and maternal transfer. Environ. Sci. Technol. 2010, 44, 5781.
Tissue concentrations of polybrominated compounds in Chinese Sturgeon (Acipenser sinensis): origin, hepatic sequestration, and maternal transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlOqtLo%3D&md5=8cc6a93d0f9eae1092f76fc8dc490e46CAS | 20604581PubMed |

[12]  X. Fu, F. J. Schmitz, M. Govindan, S. A. Abbas, K. M. Hanson, P. A. Horton, P. Crews, M. Laney, R. C. Schatzman, Enzyme inhibitors: new and known polybrominated phenols and diphenyl ethers from four Indo-Pacific Dysidea sponges. J. Nat. Prod. 1995, 58, 1384.
Enzyme inhibitors: new and known polybrominated phenols and diphenyl ethers from four Indo-Pacific Dysidea sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFWls70%3D&md5=dc3be9a347920be16b96ae3153dbc762CAS | 7494145PubMed |

[13]  B. C. Kelly, M. G. Ikonomou, J. D. Blair, F. A. P. C. Gobas, Hydroxylated and methoxylated polybrominated diphenyl ethers in a Canadian Arctic marine food web. Environ. Sci. Technol. 2008, 42, 7069.
Hydroxylated and methoxylated polybrominated diphenyl ethers in a Canadian Arctic marine food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVemsrnL&md5=64a8531d7fb5d17b069501b1e5c0be0cCAS | 18939528PubMed |

[14]  F. Liu, S. Wiseman, Y. Wan, J. A. Doering, M. Hecker, M. H. W. Lam, J. P. Giesy, Multispecies comparison of the mechanism of biotransformation of MeO-BDEs to OH-BDEs in fish. Aquat. Toxicol. 2012, 114–115, 182.
Multispecies comparison of the mechanism of biotransformation of MeO-BDEs to OH-BDEs in fish.Crossref | GoogleScholarGoogle Scholar | 22446830PubMed |

[15]  H. Stapleton, S. Kelly, R. Pei, R. Letcher, C. Gunsch, Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro. Environ. Health Perspect. 2009, 117, 197.
Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFSktrg%3D&md5=7f538536a3e9152a425d41af009fcd16CAS | 19270788PubMed |

[16]  S. Lacorte, M. G. Ikonomou, Occurrence and congener specific profiles of polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in breast milk from Catalonia. Chemosphere 2009, 74, 412.
Occurrence and congener specific profiles of polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in breast milk from Catalonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCmu7nM&md5=9763d651b3f09c6ce94bfb82b3397d1aCAS | 18977510PubMed |

[17]  L. Hovander, T. Malmberg, M. Athanasiadou, I. Athanassiadis, S. Rahm, Å. Bergman, E. Klasson Wehler, Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch. Environ. Contam. Toxicol. 2002, 42, 105.
Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVagtg%3D%3D&md5=9c9ef9b68da9a4ba42c3708c208f22b7CAS | 11706375PubMed |

[18]  E. L. Teuten, L. Xu, C. M. Reddy, Two abundant bioaccumulated halogenated compounds are natural products. Nat. Prod. Sci. 2005, 307, 917.
| 1:CAS:528:DC%2BD2MXhtFWms7w%3D&md5=64d8600fa01d7c0447b6a2a8aedcc017CAS |

[19]  C. Guitart, M. Slattery, S. Ankisetty, M. Radwan, S. J. Ross, R. J. Letcher, C. M. Reddy, Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge–cyanobacteria associations. Mar. Pollut. Bull. 2011, 62, 631.
Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge–cyanobacteria associations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyksb8%3D&md5=345a973e37c7bf084ecf3655a318ec88CAS | 21276990PubMed |

[20]  Y. Wan, S. Wiseman, H. Chang, X. Zhang, P. D. Jones, M. Hecker, K. Kannan, S. Tanabe, J. Hu, M. H. W. Lam, J. P. Giesy, Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants? Environ. Sci. Technol. 2009, 43, 7536.
Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWqtrjI&md5=b03a16e7d10926d70b70d6421b047283CAS | 19848173PubMed |

[21]  Y. Wan, F. Liu, S. Wiseman, X. Zhang, H. Chang, M. Hecker, P. D. Jones, M. H. W. Lam, J. P. Giesy, Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka. Environ. Sci. Technol. 2010, 44, 8729.
Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlans7fM&md5=7163c51d2fd673a8c7b0fc75d6510c88CAS | 20973477PubMed |

[22]  S. Losada, A. Roach, L. Roosens, F. J. Santos, M. T. Galceran, W. Vetter, H. Neels, A. Covaci, Biomagnification of anthropogenic and naturally produced organobrominated compounds in a marine food web from Sydney harbour, Australia. Environ. Int. 2009, 35, 1142.
Biomagnification of anthropogenic and naturally produced organobrominated compounds in a marine food web from Sydney harbour, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2lu7%2FE&md5=e6a9cdfc69b28c2e22af494ebea3fd0eCAS | 19665796PubMed |

[23]  K. Zhang, Y. Wan, P. D. Jones, S. Wiseman, J. P. Giesy, J. Hu, Occurrences and fates of hydroxylated polybrominated diphenyl ethers in marine sediments in relation to trophodynamics. Environ. Sci. Technol. 2012, 46, 2148.
Occurrences and fates of hydroxylated polybrominated diphenyl ethers in marine sediments in relation to trophodynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVGltg%3D%3D&md5=640e173ef906e141b58e7fbfe0c243e8CAS | 22296595PubMed |

[24]  W. Vetter, P. Haase-Aschoff, N. Rosenfelder, T. Komarova, J. F. Mueller, Determination of halogenated natural products in passive samplers deployed along the Great Barrier Reef, Queensland, Australia. Environ. Sci. Technol. 2009, 43, 6131.
Determination of halogenated natural products in passive samplers deployed along the Great Barrier Reef, Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVWms7Y%3D&md5=00552056355588f6248083809c74c57eCAS | 19746703PubMed |

[25]  Y. Fan, C.-A. Huh, J. Lan, M. Zhao, Z. Zhao, G. Li, J. Sun, G. Jiang, Major sources of MeO/OH-BDEs in the East China Sea elucidated from their records and phytoplankton biomarkers. Environ. Pollut. 2014, 192, 1.
Major sources of MeO/OH-BDEs in the East China Sea elucidated from their records and phytoplankton biomarkers.Crossref | GoogleScholarGoogle Scholar | 24874793PubMed |

[26]  Y. Fan, J. Lan, H. Li, G. Li, Y. Cao, Z. Zhao, M. Zhao, G. Jiang, Spatial distributions of methoxylated and hydroxylated polybrominated diphenyl ethers in the East China Sea – a seaward-increasing trend. Chemosphere 2014, 114, 247.
Spatial distributions of methoxylated and hydroxylated polybrominated diphenyl ethers in the East China Sea – a seaward-increasing trend.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGmt7nI&md5=7f76c529cdefc5e3ada8e818b2e095d7CAS | 25113209PubMed |

[27]  Y. Fan, J. Lan, Z. Zhao, M. Zhao, Sedimentary records of hydroxylated and methoxylated polybrominated diphenyl ethers in the southern Yellow Sea. Mar. Pollut. Bull. 2014, 84, 366.
Sedimentary records of hydroxylated and methoxylated polybrominated diphenyl ethers in the southern Yellow Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvVWrur4%3D&md5=21d72d9f02650c60c5d2af1afce7b210CAS | 24910183PubMed |

[28]  G. W. Gribble, The diversity of naturally produced organohalogens. Chemosphere 2003, 52, 289.
The diversity of naturally produced organohalogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGnsLo%3D&md5=ab7b97e7fcf865c827468b377b9eb2baCAS | 12738253PubMed |

[29]  C. J. Schubert, J. Villanueva, S. E. Calvert, G. L. Cowie, U. von Rad, H. Schulz, U. Berner, H. Erlenkeuser, Stable phytoplankton community structure in the Arabian Sea over the past 200 000 years. Nature 1998, 394, 563.
Stable phytoplankton community structure in the Arabian Sea over the past 200 000 years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlygu74%3D&md5=8fc80b30e7595941ddb84fe54f86c20bCAS |

[30]  M. Zhao, J. L. Mercer, G. Eglinton, M. J. Higginson, C.-Y. Huang, Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa. Org. Geochem. 2006, 37, 72.
Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa.Crossref | GoogleScholarGoogle Scholar |

[31]  L. Xing, R. Zhang, Y. Liu, X. Zhao, S. Liu, X. Shi, M. Zhao, Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr. Quat. Sci. Rev. 2011, 30, 2666.
Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr.Crossref | GoogleScholarGoogle Scholar |

[32]  P. Zhang, J. Song, Z. Liu, G. Zheng, N. Zhang, Z. He, PCBs and its coupling with eco-environments in southern Yellow Sea surface sediments. Mar. Pollut. Bull. 2007, 54, 1105.
PCBs and its coupling with eco-environments in southern Yellow Sea surface sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlKjtLw%3D&md5=1cf65d539900f8ed1c63d1adc18461bdCAS | 17597164PubMed |

[33]  D. Cai, X. Shi, W. Zhou, W. Liu, S. Zhang, Y. Cao, Y. Han, Sources and transportation of suspended matter and sediment in the southern Yellow Sea: evidence from stable carbon isotopes. Chin. Sci. Bull. 2003, 48, 21.
Sources and transportation of suspended matter and sediment in the southern Yellow Sea: evidence from stable carbon isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFCktbg%3D&md5=b35dba156c5f43a6fa3451583bff4492CAS |

[34]  P. Zhang, J. Song, J. Fang, Z. Liu, X. Li, H. Yuan, One century record of contamination by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in core sediments from the southern Yellow Sea. J. Environ. Sci. 2009, 21, 1080.
One century record of contamination by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in core sediments from the southern Yellow Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2iu77E&md5=68d628f6a675e332e2822f03312fc0dfCAS |

[35]  X. Duan, Y. Li, X. Li, D. Zhang, M. Li, Polychlorinated biphenyls in sediments of the Yellow Sea: distribution, source identification and flux estimation. Mar. Pollut. Bull. 2013, 76, 283.
Polychlorinated biphenyls in sediments of the Yellow Sea: distribution, source identification and flux estimation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSkurzO&md5=c482fa75dbb5b9a060dce24d707f9769CAS | 24075617PubMed |

[36]  L. Zeng, R. Chen, Z. Zhao, T. Wang, Y. Gao, A. Li, Y. Wang, G. Jiang, L. Sun, Spatial distributions and deposition chronology of short-chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas. Environ. Sci. Technol. 2013, 47, 11 449.
Spatial distributions and deposition chronology of short-chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVahsrjO&md5=2be6350de43b253b9fea3d81a636b5dcCAS |

[37]  J. Sun, J. Liu, Q. Liu, G. Qu, T. Ruan, G. Jiang, Sample preparation method for the speciation of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogues in diverse environmental matrices. Talanta 2012, 88, 669.
Sample preparation method for the speciation of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogues in diverse environmental matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKltbw%3D&md5=94affdc757e932bdac0485645c6b9535CAS | 22265556PubMed |

[38]  L. Xing, H. Zhang, Z. Yuan, Y. Sun, M. Zhao, Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf. Cont. Shelf Res. 2011, 31, 1106.
Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf.Crossref | GoogleScholarGoogle Scholar |

[39]  P. W. Bradley, Y. Wan, P. D. Jones, S. Wiseman, H. Chang, M. H. W. Lam, D. T. Long, J. P. Giesy, PBDEs and methoxylated analogues in sediment cores from two Michigan, USA, inland lakes. Environ. Toxicol. Chem. 2011, 30, 1236.
PBDEs and methoxylated analogues in sediment cores from two Michigan, USA, inland lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1yhu74%3D&md5=ac77baccffc9a30077720f44625068f4CAS | 21337611PubMed |

[40]  S. Lacorte, M. G. Ikonomou, M. Fischer, A comprehensive gas chromatography coupled to high-resolution mass spectrometry-based method for the determination of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in environmental samples. J. Chromatogr. A 2010, 1217, 337.
A comprehensive gas chromatography coupled to high-resolution mass spectrometry-based method for the determination of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in environmental samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WnsLjL&md5=ba24105d3012f0b1496a0bba88a4859dCAS | 19945713PubMed |

[41]  L. Hu, X. Shi, Z. Guo, H. Wang, Z. Yang, Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing. Mar. Geol. 2013, 335, 52.
Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOhtQ%3D%3D&md5=0dd1dc9f3178c5e42c77f30c37ecfa0aCAS |

[42]  S. Lin, I. J. Hsieh, K.-M. Huang, C.-H. Wang, Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chem. Geol. 2002, 182, 377.
Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSltbs%3D&md5=616bd42957867def9e49bfc8e64bf6fdCAS |

[43]  F. M. Dunnivant, J. T. Coates, A. W. Elzerman, Labile and non-labile desorption rate constants for 33 PCB congeners from lake sediment suspensions. Chemosphere 2005, 61, 332.
Labile and non-labile desorption rate constants for 33 PCB congeners from lake sediment suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVegtLjM&md5=e6abe282b2cc0ea0ff480383c5f9eb53CAS | 16182850PubMed |

[44]  L. Xing, S. Tao, H. Zhang, Y. Liu, Z. Yu, M. Zhao, Distributions and origins of lipid biomarkers in surface sediments from the southern Yellow Sea. Appl. Geochem. 2011, 26, 1584.
Distributions and origins of lipid biomarkers in surface sediments from the southern Yellow Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFGju78%3D&md5=41f6230de1370400b4dd0ce8cdff68e8CAS |

[45]  J. Wang, Study on phytoplankton in the Yellow Sea in autumn and winter. Mar. Fish. Res. 2003, 24, 15.[In Chinese].
| 1:CAS:528:DC%2BD2MXktlKhsQ%3D%3D&md5=056e6a09d9f6b1273b452a6f4b9f0806CAS |

[46]  J. Sun, S. Jin, Species diversity of living coccolithophores in Chinese sea waters. Biodivers. Sci. 2011, 19, 787.[In Chinese].

[47]  W. Tian, J. Sun, Later spring phytoplankton community in the Southern Yellow Sea in 2009. Mar. Sci. 2011, 35, 19.[In Chinese].

[48]  J. K. Volkman, S. M. Barrett, S. I. Blackburn, M. P. Mansour, E. L. Sikes, F. Gelin, Microalgal biomarkers: a review of recent research developments. Org. Geochem. 1998, 29, 1163.
Microalgal biomarkers: a review of recent research developments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpslyrtg%3D%3D&md5=0f8a9dfc52ca9a8cca25effd9b409774CAS |

[49]  D. J. Faulkner, M. D. Unson, C. A. Bewley, The chemistry of some sponges and their symbionts. Pure Appl. Chem. 1994, 66, 1983.
The chemistry of some sponges and their symbionts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFWnu7Y%3D&md5=b71e71a70082021623ab384aa802e5acCAS |

[50]  K. U. Hinrichs, R. R. Schneider, P. J. Müller, J. Rullkötter, A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the south-east Atlantic Ocean. Org. Geochem. 1999, 30, 341.
A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the south-east Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs12nu7o%3D&md5=a51fab214903004239151b7ec1498dbdCAS |

[51]  G. Marsh, M. Athanasiadou, Å. Bergman, L. Asplund, Identification of hydroxylated and methoxylated polybrominated diphenyl ethers in Baltic Sea Salmon (Salmo salar) blood. Environ. Sci. Technol. 2004, 38, 10.
Identification of hydroxylated and methoxylated polybrominated diphenyl ethers in Baltic Sea Salmon (Salmo salar) blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFOgsL0%3D&md5=d4552604736a131dcf01997f440af431CAS | 14740711PubMed |

[52]  S. B. Wiseman, Y. Wan, H. Chang, X. Zhang, M. Hecker, P. D. Jones, J. P. Giesy, Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. Mar. Pollut. Bull. 2011, 63, 179.
Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKktbg%3D&md5=70743357cdc19295de478c1b9cd0f026CAS | 21439595PubMed |

[53]  A. S. Allard, M. Remberger, A. H. Neilson, Bacterial O-methylation of halogen-substituted phenols. Appl. Environ. Microbiol. 1987, 53, 839.
| 1:CAS:528:DyaL2sXktVeqt7s%3D&md5=505a14098928e556dd32e9db5177e5b7CAS | 3579284PubMed |