Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Environmental control of dimethylsulfoxide (DMSO) cycling under ocean acidification

Cathleen Zindler-Schlundt A B , Hannah Lutterbeck A , Sonja Endres A and Hermann W. Bange A
+ Author Affiliations
- Author Affiliations

A Marine Biogeochemistry Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany.

B Corresponding author. Email: cschlundt@geomar.de

Environmental Chemistry 13(2) 330-339 https://doi.org/10.1071/EN14270
Submitted: 16 December 2014  Accepted: 12 May 2015   Published: 3 September 2015

Environmental context. Ocean acidification affects marine algae and bacteria, which can produce climate active trace gases such as methane or dimethylsulfide from marine dimethylsulfoxide. We conducted field experiments simulating future ocean acidification, and showed that dimethylsulfoxide concentrations decreased with increasing acidification. Less dimethylsulfoxide in the future can affect climate by influencing the concentration of methane and dimethylsulfide.

Abstract. Ongoing ocean acidification (OA), caused by continuous anthropogenic CO2 emissions, seems to decrease the concentrations of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) in the surface oceans. This might have consequences for future climate due to changes in formation and growth of atmospheric sulfate aerosols formed from DMS. However, the effect of OA on dimethylsulfoxide (DMSO), another intermediate of the DMS pathway and a potential precursor of oceanic methane, is unknown. Therefore, we investigated the effect of OA on the DMSO concentrations in a mesocosm study conducted in a Norwegian fjord in spring 2011. Dissolved and particulate DMSO concentrations (DMSOd/p) decreased with pH during the course of the experiment. Temperature correlated inversely with DMSOd concentrations during the first week of the experiment, reflecting the influence of temperature dependent biological activities on DMSOd pathways. Furthermore, DMSOd increased with the cell abundance of heterotrophic bacteria, cryptophytes, and the cyanobacterium Synechococcus sp. Nitrate availability influenced the distribution of cryptophytes and Synechococcus sp. in the same way as DMSOd, indicating again a possible link between these phytoplankton taxa and DMSOd. We conclude that ongoing OA may lead to decreasing DMSO concentrations in the surface ocean that, in turn, might affect the oceanic distributions of DMS and methane.


References

[1]  A. D. Hatton, S. M. Turner, G. Malin, P. S. Liss, Dimethylsulphoxide and other biogenic sulphur compounds in the Galapagos Plume. Deep Sea Res. Part II Top. Stud. Oceanogr. 1998, 45, 1043.
Dimethylsulphoxide and other biogenic sulphur compounds in the Galapagos Plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns12rtr4%3D&md5=4cb5f09a81ba8ff8666a24fccf75a0c6CAS |

[2]  A. D. Hatton, L. Darroch, G. Malin, The role of dimethylsulphoxide in the marine biogeochemical cycle of dimethylsulphide, in Oceanography and Marine Biology: An Annual Review, Vol. 42 (Eds R. N. Gibson, R. J. A. Atkinson and J. D. M. Gordon) 2005, pp. 29–55 (CRC Press and Taylor & Francis Group: Boca Raton, FL).

[3]  I. Barnes, J. Hjorth, N. Mihalopoulos, Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem. Rev. 2006, 106, 940.
Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Grtr4%3D&md5=ca8973f6e99a250defb17c936a272533CAS | 16522014PubMed |

[4]  I. Faloona, S. Conley, B. Blomquist, A. Clarke, V. Kapustin, S. Howell, D. Lenschow, A. Bandy, Sulfur dioxide in the tropical marine boundary layer: dry deposition and heterogeneous oxidation observed during the Pacific Atmospheric Sulfur Experiment. J. Atmos. Chem. 2009, 63, 13.
Sulfur dioxide in the tropical marine boundary layer: dry deposition and heterogeneous oxidation observed during the Pacific Atmospheric Sulfur Experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFymt70%3D&md5=f81bd2b9f4974f6ef489848e8f968860CAS |

[5]  R. von Glasow, P. Crutzen, Model study of multiphase DMS oxidation with a focus on halogens. Atmos. Chem. Phys. 2004, 4, 589.
Model study of multiphase DMS oxidation with a focus on halogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWht7o%3D&md5=d617109e90fbb48040e44886768c2906CAS |

[6]  C. Zindler, A. Bracher, C. A. Marandino, B. Taylor, E. Torrecilla, A. Kock, H. W. Bange, Sulphur compounds, methane, and phytoplankton: interactions along a north–south transit in the western Pacific Ocean. Biogeosciences 2013, 10, 3297.
Sulphur compounds, methane, and phytoplankton: interactions along a north–south transit in the western Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlOrt70%3D&md5=c9534a201908d47faec31ae9fdcc6db4CAS |

[7]  F. Althoff, K. Benzing, P. Comba, C. Mcroberts, D. R. Boyd, S. Greiner, F. Keppler, Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nat. Commun. 2014, 5, 4205.
Abiotic methanogenesis from organosulphur compounds under ambient conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWgtrzI&md5=61ad5b45fd8ab1c4c15b034ca8554f6bCAS | 24957135PubMed |

[8]  T. Stocker, D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex, B. Midgley (Eds), Climate Change 2013: the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013 (Cambridge University Press: Cambridge, UK, and New York).

[9]  A. Hatton, D. Shenoy, M. Hart, A. Mogg, D. Green, Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea. Biogeochemistry 2012, 110, 131.
Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7vF&md5=4a73c53e65859cb7a3c09a9c0efa7170CAS |

[10]  P. A. Lee, S. J. De Mora, M. Levasseur, A review of dimethylsulfoxide in aquatic environments. Atmos.-ocean 1999, 37, 439.
A review of dimethylsulfoxide in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlers7o%3D&md5=d3e451be35f9f3666ed44b6b680c38bcCAS |

[11]  P. A. Lee, S. J. De Mora, Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role. J. Phycol. 1999, 35, 8.
Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVKrs7s%3D&md5=84115dd2d86d118ac2f9d6d8906616e6CAS |

[12]  R. Simó, A. D. Hatton, G. Malin, P. S. Liss, Particulate dimethyl sulphoxide in seawater: production by microplankton. Mar. Ecol. Prog. Ser. 1998, 167, 291.
Particulate dimethyl sulphoxide in seawater: production by microplankton.Crossref | GoogleScholarGoogle Scholar |

[13]  C. E. Spiese, E. A. Tatarkov, Dimethylsulfoxide reduction activity is linked to nutrient stress in Thalassiosira pseudonana NCMA 1335. Mar. Ecol. Prog. Ser. 2014, 507, 31.
Dimethylsulfoxide reduction activity is linked to nutrient stress in Thalassiosira pseudonana NCMA 1335.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFWrsr3L&md5=71a5d0ba6c1f48639d2c0a5932e23daeCAS |

[14]  O. Hoegh-Guldberg, J. F. Bruno, The impact of climate change on the world’s marine ecosystems. Science 2010, 328, 1523.
The impact of climate change on the world’s marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVWnt7Y%3D&md5=f9a91f46f4b173d0c5054d4227ca8b9dCAS | 20558709PubMed |

[15]  U. Riebesell, A. Körtzinger, A. Oschlies, Sensitivities of marine carbon fluxes to ocean change. Proc. Natl. Acad. Sci. USA 2009, 106, 20602.
Sensitivities of marine carbon fluxes to ocean change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFOgsw%3D%3D&md5=06ce0a9fc15b14d5021f17d22c903484CAS | 19995981PubMed |

[16]  P. Brading, M. E. Warner, P. Davey, D. J. Smith, E. P. Achterberg, D. J. Suggett, Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 2011, 56, 927.
Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVKjt7Y%3D&md5=b9d7f8dace1aaaad98a029c783dae4a6CAS |

[17]  A. Engel, I. Zondervan, K. Aerts, L. Beaufort, A. Benthien, L. Chou, B. Delille, J.-P. Gattuso, J. Harlay, C. Heemann, Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 2005, 50, 493.
Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFahs7k%3D&md5=a51d5665f90797984e790ae772fb09b6CAS |

[18]  U. Riebesell, P. D. Tortell, Effects of Ocean Acidification on Pelagic Organisms and Ecosystems 2011 (Oxford University Press Inc.: New York).

[19]  L. Beaufort, I. Probert, T. De Garidel-Thoron, E. M. Bendif, D. Ruiz-Pino, N. Metzl, C. Goyet, N. Buchet, P. Coupel, M. Grelaud, B. Rost, R. E. M. Rickaby, C. De Vargas, Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 2011, 476, 80.
Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslSht70%3D&md5=c733c2eb550ba0f1e23fc876daebd293CAS | 21814280PubMed |

[20]  I. Zondervan, The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 521.
The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review.Crossref | GoogleScholarGoogle Scholar |

[21]  K. G. Schulz, R. G. J. Bellerby, C. P. D. Brussaard, J. Büdenbender, J. Czerny, A. Engel, M. Fischer, S. Koch-Klavsen, S. A. Krug, S. Lischka, A. Ludwig, M. Meyerhöfer, G. Nondal, A. Silyakova, A. Stuhr, U. Riebesell, Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences 2013, 10, 161.
Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide.Crossref | GoogleScholarGoogle Scholar |

[22]  H. Biswas, A. Cros, K. Yadav, V. V. Ramana, V. R. Prasad, T. Acharyya, P. V. R. Babu, The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period. J. Exp. Mar. Biol. Ecol. 2011, 407, 284.
The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period.Crossref | GoogleScholarGoogle Scholar |

[23]  S. Endres, L. Galgani, U. Riebesell, K.-G. Schulz, A. Engel, Stimulated bacterial growth under elevated pCO2: results from an off-shore mesocosm study. PLoS One 2014, 9, e99228.
Stimulated bacterial growth under elevated pCO2: results from an off-shore mesocosm study.Crossref | GoogleScholarGoogle Scholar | 24941307PubMed |

[24]  S. D. Archer, S. A. Kimmance, J. A. Stephens, F. E. Hopkins, R. G. J. Bellerby, K. G. Schulz, J. Piontek, A. Engel, Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences Discuss. 2012, 9, 12803.
Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters.Crossref | GoogleScholarGoogle Scholar |

[25]  V. Avgoustidi, P. D. Nightingale, I. Joint, M. Steinke, S. M. Turner, F. E. Hopkins, P. S. Liss, Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies. Environ. Chem. 2012, 9, 399.
Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajsbzM&md5=03de5aeac6c27dcc36edcf386c14e6abCAS |

[26]  F. E. Hopkins, S. M. Turner, P. D. Nightingale, M. Steinke, D. Bakker, P. S. Liss, Ocean acidification and marine trace gas emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 760.
Ocean acidification and marine trace gas emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCms7g%3D&md5=e3080866fbf9a2a6010c52df109396d7CAS | 20080748PubMed |

[27]  J. M. Kim, K. Lee, E. J. Yang, K. Shin, J. H. Noh, K. T. Park, B. Hyun, H. J. Jeong, J. H. Kim, K. Y. Kim, M. Kim, H. C. Kim, P. G. Jang, M. C. Jang, Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world. Environ. Sci. Technol. 2010, 44, 8140.
Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1akt7rI&md5=4b7311ea709515825e822cca99ef6780CAS | 20883015PubMed |

[28]  M. Vogt, M. Steinke, S. Turner, A. Paulino, M. Meyerhofer, U. Riebesell, C. Lequere, P. Liss, Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment. Biogeosciences 2008, 5, 407.
Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2iurvF&md5=fd6149c9ee35e4d5122509eb5cc160aeCAS |

[29]  O. W. Wingenter, K. B. Haase, M. Zeigler, D. R. Blake, F. S. Rowland, B. C. Sive, A. Paulino, R. Thyrhaug, A. Larsen, K. Schulz, M. Meyerhöfer, U. Riebesell, Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: potential climate impacts. Geophys. Res. Lett. 2007, 34, L05710.
Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: potential climate impacts.Crossref | GoogleScholarGoogle Scholar |

[30]  P. A. Lee, J. R. Rudisill, A. R. Neeley, D. Hutchins, Y. Feng, C. Hare, K. Leblanc, J. Rose, S. Wilhelm, J. Rowe, Effects of increased pCO2 and temperature on the North Atlantic Spring Bloom: III. Dimethylsulfoniopropionate. Mar. Ecol. Prog. Ser. 2009, 388, 41.
Effects of increased pCO2 and temperature on the North Atlantic Spring Bloom: III. Dimethylsulfoniopropionate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SrtrjI&md5=4def50e3e9b1c49da9f300cf16427110CAS |

[31]  U. Riebesell, J. Czerny, K. Von Bröckel, T. Boxhammer, J. Büdenbender, M. Deckelnick, M. Fischer, D. Hoffmann, S. A. Krug, U. Lentz, A. Ludwig, R. Muche, K. G. Schulz, Technical Note: a mobile sea-going mesocosm system – new opportunities for ocean change research. Biogeosciences 2013, 10, 1835.
Technical Note: a mobile sea-going mesocosm system – new opportunities for ocean change research.Crossref | GoogleScholarGoogle Scholar |

[32]  C. Zindler, I. Peeken, C. A. Marandino, H. W. Bange, Environmental control on the variability of DMS and DMSP in the Mauritanian upwelling region. Biogeosciences 2012, 9, 1041.
Environmental control on the variability of DMS and DMSP in the Mauritanian upwelling region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gks73M&md5=679f58e886d69cda6cbc209d305de37bCAS |

[33]  R. Simó, G. Malin, P. S. Liss, Refinement of the borohydride reduction method for trace analysis of dissolved and particulate dimethyl sulfoxide in marine water samples. Anal. Chem. 1998, 70, 4864.
Refinement of the borohydride reduction method for trace analysis of dissolved and particulate dimethyl sulfoxide in marine water samples.Crossref | GoogleScholarGoogle Scholar |

[34]  E. S. M. Deschaseaux, R. P. Kiene, G. B. Jones, M. A. Deseo, H. B. Swan, L. Oswald, B. D. Eyre, Dimethylsulphoxide (DMSO) in biological samples: A comparison of the TiCl3 and NaBH4 reduction methods using headspace analysis. Mar. Chem. 2014, 164, 9.
Dimethylsulphoxide (DMSO) in biological samples: A comparison of the TiCl3 and NaBH4 reduction methods using headspace analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WjsLvK&md5=8afc8017d4a67436952ec5419c774ec4CAS |

[35]  E. Mesarchaki, N. Yassaa, D. Hein, H. E. Lutterbeck, C. Zindler, J. Williams, A novel method for the measurement of VOCs in seawater using needle trap devices and GC-MS. Mar. Chem. 2014, 159, 1.
A novel method for the measurement of VOCs in seawater using needle trap devices and GC-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCks7o%3D&md5=64c1dec8321dd2258c6cd0b232559320CAS |

[36]  A. G. Dickson, The carbon dioxide system in seawater: equilibrium chemistry and measurements in Guide to best practices for ocean acidification research and data reporting (Eds U. Riebesell, V. J. Fabry, L. Hansson, J. P. Gattuso) 2010, pp. 17–40 (Publications Office of the European Union: Luxembourg).

[37]  H. P. Hansen, F. Koroleff, Determination of nutrients, in Methods of Seawater Analysis (Eds K. Grasshoff, K. Kremling, M. Ehrhardt) 2007, pp. 159–228 (Wiley-VCH Verlag GmbH: Weinheim, Germany).

[38]  J. M. Gasol, P. A. del Giorgio, Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 2000, 64, 197.

[39]  A. Larsen, T. Castberg, R. Sandaa, C. Brussaard, J. Egge, M. Heldal, A. Paulino, R. Thyrhaug, E. Van Hannen, G. Bratbak, Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 2001, 221, 47.
Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure.Crossref | GoogleScholarGoogle Scholar |

[40]  N. A. Welschmeyer, Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985.
Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Sru70%3D&md5=64375a1b027ff8b9a929173706603dedCAS |

[41]  H. Utermöhl, Zur Vervollkommnung der quantitativen Phytoplankton-Methodik, Mitt. int. Ver. theor. angew. Limnol. 1958, 9p, 1.

[42]  C. R. Tomas, Identifying Marine Phytoplankton 1997 (Academic Press: San Diego, CA).

[43]  M. Hoppenrath, M. Elbrächter, G. Drebes, Marine Phytoplankton. Selected Microphytoplankton Species from the North Sea around Helgoland and Sylt 2007 (Schweitzerbarth Verlag: Stuttgart).

[44]  A. Kraberg, M. Baumann, C.-D. Dürselen, Coastal Phytoplankton: Photo Guide for Northern European Seas 2010 (Pfeil: München, Germany).

[45]  C. H. Von Quillfeldt, Ice algae and phytoplankton in north Norwegian and Artic waters: species composition, succession and distribution 1996, PhD thesis, University of Tromso in Tromso, Norway.

[46]  F. Hopkins, P. Nightingale, P. Liss, Effects of ocean acidification on the marine source of atmospherically active trace gases, in Ocean Acidification (Eds J.-P. Gattuso and L. Hansson) 2011, pp. 210–229 (Oxford University Press: New York).

[47]  R.-C. Bouillon, W. L. Miller, Determination of apparent quantum yield spectra of DMS photo-degradation in an in situ iron-induced Northeast Pacific Ocean bloom. Geophys. Res. Lett. 2004, 31, L06310.
Determination of apparent quantum yield spectra of DMS photo-degradation in an in situ iron-induced Northeast Pacific Ocean bloom.Crossref | GoogleScholarGoogle Scholar |

[48]  A. R. J. Curson, R. Rogers, J. D. Todd, C. A. Brearley, A. W. B. Johnston, Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ. Microbiol. 2008, 10, 757.
Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVygsLs%3D&md5=97448a7ccd5cfca4d42c45632a2354f9CAS |

[49]  E. Bucciarelli, W. G. Sunda, Influence of CO2, nitrate, phosphate, and silicate limitation on intracellular dimethylsulfoniopropionate in batch cultures of the coastal diatom Thalassiosira pseudonana. Limnol. Oceanogr. 2003, 48, 2256.
Influence of CO2, nitrate, phosphate, and silicate limitation on intracellular dimethylsulfoniopropionate in batch cultures of the coastal diatom Thalassiosira pseudonana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFagtr0%3D&md5=a2adc2f5bb143c27df00a2a098c86314CAS |

[50]  W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=1bcaa8d9ca44d13d4f343901c31cbed2CAS | 12124622PubMed |

[51]  R. Boden, J. C. Murrell, H. Schäfer, Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiol. Lett. 2011, 322, 188.
Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2hsbbP&md5=ad097e7ddfac292df8ff18b104877654CAS | 21718347PubMed |

[52]  D. H. Green, D. M. Shenoy, M. C. Hart, A. D. Hatton, Coupling of dimethylsulfide oxidation to biomass production by a marine Flavobacterium. Appl. Environ. Microbiol. 2011, 77, 3137.
Coupling of dimethylsulfide oxidation to biomass production by a marine Flavobacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeisr%2FF&md5=384ec1d674df2143d57c9927bf64f5e4CAS | 21378049PubMed |

[53]  J. Zeyer, P. Eicher, S. G. Wakeham, R. P. Schwarzenbach, Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl. Environ. Microbiol. 1987, 53, 2026.
| 1:CAS:528:DyaL2sXlsFSqtb8%3D&md5=8c1518ddb8dcf01d6f2f5d85cae45c27CAS | 16347425PubMed |

[54]  S. J. Demora, P. A. Lee, A. Grout, C. Schall, K. G. Heumann, Aspects of the biogeochemistry of sulphur in glacial melt water ponds on the McMurdo Ice Shelf, Antarctica. Antarct. Sci. 1996, 8, 15.

[55]  J. E. Gibson, K. Swadling, H. Burton, Acrylate and dimenthylsulfoniopropionate (DMSP) concentrations during an Antarctic phytoplankton bloom, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. Kiene, P. Visscher, M. Keller and G. Kirst) 1996, pp. 213–222 (Springer: New York).

[56]  A. Hatton, S. Wilson, Particulate dimethylsulphoxide and dimethylsulphoniopropionate in phytoplankton cultures and Scottish coastal waters. Aquat. Sci. 2007, 69, 330.
Particulate dimethylsulphoxide and dimethylsulphoniopropionate in phytoplankton cultures and Scottish coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrjM&md5=e0053968b8927b12cf82b4dc2332885cCAS |

[57]  F.-X. Fu, M. E. Warner, Y. Zhang, Y. Feng, D. A. Hutchins, Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J. Phycol. 2007, 43, 485.
Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria).Crossref | GoogleScholarGoogle Scholar |

[58]  W. Sunda, R. Hardison, R. Kiene, E. Bucciarelli, H. Harada, The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications. Aquat. Sci. 2007, 69, 341.
The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrjO&md5=d2959add7b4e22c3c32d5e5e8ff463deCAS |

[59]  C. Zindler, C. A. Marandino, H. W. Bange, F. Schütte, E. S. Saltzman, Nutrient availability determines dimethyl sulfide and isoprene distribution in the eastern Atlantic Ocean. Geophys. Res. Lett. 2014, 41, 3181.
Nutrient availability determines dimethyl sulfide and isoprene distribution in the eastern Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFagtb8%3D&md5=c929a7ff7ed7c813cc549364f8167ac2CAS |

[60]  A. Jacobsen, J. K. Egge, B. R. Heimdal, Effects of increased concentration of nitrate and phosphate during a springbloom experiment in mesocosm. J. Exp. Mar. Biol. Ecol. 1995, 187, 239.
Effects of increased concentration of nitrate and phosphate during a springbloom experiment in mesocosm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFKjtbs%3D&md5=f2f0772bb0c5965a7f025bc081f48285CAS |

[61]  F. Vidussi, J.-C. Marty, J. Chiavérini, Phytoplankton pigment variations during the transition from spring bloom to oligotrophy in the northwestern Mediterranean Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2000, 47, 423.
Phytoplankton pigment variations during the transition from spring bloom to oligotrophy in the northwestern Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |