Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Synthesis, characterisation and aquatic ecotoxicity of the UV filter hexyl 2-(4-diethylamino-2-hydroxybenzoyl)benzoate (DHHB) and its chlorinated by-products

Gorica Grbović A , Olga Malev B C , Darko Dolenc D , Roberta Sauerborn Klobučar E , Želimira Cvetković F , Bruno Cvetković F , Branimir Jovančićević G and Polonca Trebše C H I
+ Author Affiliations
- Author Affiliations

A Center for Chemistry, Institute of Chemistry, Technology and Metallurgy (ICTM), University of Belgrade, Njegoševa 12, RS-11000 Belgrade, Serbia.

B Clinical Research Department, Children’s Hospital Srebrnjak, Srebrnjak 100, HR-10000 Zagreb, Croatia.

C Laboratory Nova Gorica, Laboratory for Environmental Research, University of Nova Gorica, SI-5000 Nova Gorica, Slovenia.

D Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.

E Division of Materials Chemistry, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia.

F Institute of Public Health ‘Dr Andrija Štampar’, HR-10000 Zagreb, Croatia.

G Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, RS-11000 Belgrade, Serbia.

H Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.

I Corresponding author. Email: polonca.trebse@zf.uni-lj.si

Environmental Chemistry 13(1) 119-126 https://doi.org/10.1071/EN15013
Submitted: 15 January 2015  Accepted: 26 March 2015   Published: 15 September 2015

Environmental context. Various UV-filtering chemicals are added to sunscreens in order to protect humans from the harmful effects of the sun. As a consequence of disinfection processes in swimming pools, sunscreen components may be chlorinated and change their structure and properties, leading to derivatives with higher toxicity. The safety of sunscreen components as well as that of their transformation products during their use requires further study.

Abstract. In this work is presented a synthesis pathway for the UV filter hexyl 2-(4-diethylamino-2-hydroxybenzoyl)benzoate (DHHB) and its chlorinated by-products in order to investigate the transformation behaviour and toxicity changes of DHHB during chlorination disinfection treatment. Acute toxicity was measured using standardised tests with aquatic model organisms. The potency of DHHB was compared with other benzophenone-like UV filters tested in the same experimental set-up. The toxicity of chlorinated compounds tested with photobacteria was found to be in a similar range to that of the starting compound. Microalgae were more sensitive to DHHB than to its chlorinated by-products, whereas daphnids were affected more by DHHB’s chlorinated products. The comparative toxicity data showed DHHB and even more its chlorinated by-products as more highly biologically potent to daphnids than other tested UV filters. The toxic potential of benzophenone-like UV filters should be interpreted together with data on their chemical properties, chlorination effects and affected organisms.

Additional keywords: chlorination, comparative toxicity, daphnids, microalgae.


References

[1]  S. Díaz-Cruz, D. M. Barceló, Chemical analysis and ecotoxicological effects of organic UV-absorbing compounds in aquatic ecosystems. TrAC – Trends Analyt. Chem. 2009, 28, 708.
Chemical analysis and ecotoxicological effects of organic UV-absorbing compounds in aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |

[2]  G. J. Nohynek, H. Schaefer, Benefit and risk of organic ultraviolet filters. Regul. Toxicol. Pharmacol. 2001, 33, 285.
Benefit and risk of organic ultraviolet filters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlCntLw%3D&md5=3abde8eb21b1c40d1172af33b2a08047CAS | 11407932PubMed |

[3]  R. Schreurs, P. Lanser, W. Seinen, B. van der Burg, Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Arch. Toxicol. 2002, 76, 257.
Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Srtrk%3D&md5=ab1a28ca87ba81f556b2938b43564b42CAS | 12107642PubMed |

[4]  D. L. Giokas, A. Salvador, A. Chisvert, UV filters: from sunscreens to human body and the environment. TrAC – Trends Analyt. Chem. 2007, 26, 360.
UV filters: from sunscreens to human body and the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1GqtL0%3D&md5=59bfa771771cfd2702cc704c7f41f65eCAS |

[5]  C. Puglia, E. Damiani, A. Offerta, L. Rizza, G. G. Tirendi, M. S. Tarico, S. Curreri, F. Bonina, R. E. Perrotta, Evaluation of nanostructured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: characterization, in vitro penetration and photostability studies. Eur. J. Pharm. Sci. 2014, 51, 211.
Evaluation of nanostructured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: characterization, in vitro penetration and photostability studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslygtbjE&md5=4204b93d1ad1bc9e7e06812fe605d649CAS | 24157543PubMed |

[6]  C. Tuchinda, H. W. Lim, U. Osterwalder, A. Rougier, Novel emerging sunscreen technologies. Dermatol. Clin. 2006, 24, 105.
Novel emerging sunscreen technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGiurzL&md5=59631dc2879e6fdf665fc1d686e7a9a7CAS | 16311173PubMed |

[7]  A. J. M. Santos, M. S. Miranda, J. C. G. Esteves da Silva, The degradation products of UV filters in aqueous and chlorinated aqueous solutions. Water Res. 2012, 46, 3167.
The degradation products of UV filters in aqueous and chlorinated aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1Wktr8%3D&md5=dc870ac77032673e04c26214e344eb9dCAS |

[8]  K. Fent, P. Y. Kunz, A. Zenker, M. Rapp, A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor. Mar. Environ. Res. 2010, 69, S4.
A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgtLjP&md5=3d117e2038295e7abc55527edd95315fCAS | 19910045PubMed |

[9]  J. M. Brausch, G. M. Rand, A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 2011, 82, 1518.
A review of personal care products in the aquatic environment: environmental concentrations and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1yqu7o%3D&md5=561c37a37dbb84aa247be2e59624800cCAS | 21185057PubMed |

[10]  D. Kaiser, A. Sieratowicz, H. Zielke, M. Oetken, H. Hollert, J. Oehlmann, Ecotoxicological effect characterisation of widely used organic UV filters. Environ. Pollut. 2012, 163, 84.
Ecotoxicological effect characterisation of widely used organic UV filters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFKqur4%3D&md5=be154131cdcc7c5814679a2a82102abbCAS | 22325435PubMed |

[11]  S. E. Duirk, D. R. Bridenstine, D. C. Leslie, Reaction of benzophenone UV filters in the presence of aqueous chlorine: kinetics and chloroform formation. Water Res. 2013, 47, 579.
Reaction of benzophenone UV filters in the presence of aqueous chlorine: kinetics and chloroform formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12itbvF&md5=cc9bb4b822c2d29f91ec1f7e496a2767CAS | 23168312PubMed |

[12]  M. Xiao, D. Wei, J. Yin, G. Wei, Y. Du, Transformation mechanism of benzophenone-4 in free chlorine-promoted chlorination disinfection. Water Res. 2013, 47, 6223.
Transformation mechanism of benzophenone-4 in free chlorine-promoted chlorination disinfection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ohs7vO&md5=0700fc9741cde19ba484ec14ea3c5126CAS | 23953088PubMed |

[13]  L. Vidal, A. Chisvert, A. Canals, A. Salvador, Ionic liquid-based single-drop microextraction followed by liquid chromatography–ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples. Talanta 2010, 81, 549.
Ionic liquid-based single-drop microextraction followed by liquid chromatography–ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisF2it70%3D&md5=76a506cb6ce97b37e154677531d72ae0CAS | 20188961PubMed |

[14]  P. Cuderman, E. Heath, Determination of UV filters and antimicrobial agents in environmental water samples. Anal. Bioanal. Chem. 2007, 387, 1343.
Determination of UV filters and antimicrobial agents in environmental water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFWlsLw%3D&md5=7e62e6674d096885dc170e21a1355328CAS | 17136341PubMed |

[15]  D. A. Lambropoulou, D. L. Giokas, V. A. Sakkas, T. A. Albanis, Gas chromatographic determination of 2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction. J. Chromatogr. A 2002, 967, 243.
Gas chromatographic determination of 2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVOltbY%3D&md5=c318d05c5f516643f7c06da3b75e5ac6CAS | 12685571PubMed |

[16]  D. L. Giokas, V. A. Sakkas, T. A. Albanis, Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography–photodiode array detection and gas chromatography–mass spectrometry. J. Chromatogr. A 2004, 1026, 289.
Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography–photodiode array detection and gas chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWjtbzP&md5=5091699a6258ae820388d77cd038191bCAS | 14763756PubMed |

[17]  R. Zhuang, R. Žabar, G. Grbović, D. Dolenc, J. Yao, T. Tišler, P. Trebše, Stability and toxicity of selected benzophenone-type compounds in waters. Acta Chim. Slov. 2013, 60, 826.
| 1:CAS:528:DC%2BC2cXntVOrsQ%3D%3D&md5=bb0b508f6ae2f64e9a102f344152164bCAS | 24362986PubMed |

[18]  A. J. M. Santos, D. M. A. Crista, M. S. Miranda, I. F. Almeida, J. P. S. Silva, P. C. Costa, M. H. Amaral, P. A. L. Lobão, J. M. S. Lobo, J. C. G. E. da Silva, Degradation of UV filter 2-ethylhexyl-4-methoxycinnamate and 4-tert-butyl-4′-methoxydibenzoylmethane in chlorinated water. Environ. Chem. 2013, 10, 127.
Degradation of UV filter 2-ethylhexyl-4-methoxycinnamate and 4-tert-butyl-4′-methoxydibenzoylmethane in chlorinated water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVCkt7k%3D&md5=ce41bf179e740fe6dbfd1fc125880d59CAS |

[19]  T. Yamamoto, D. Nakajima, S. Goto, S. Onodera, A. Yasuhara, S. Sakai, M. Soma, Mutagenicity of chlorinated products of benzophenones and its derivatives. J. Environ. Chem. 2004, 14, 335.
Mutagenicity of chlorinated products of benzophenones and its derivatives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvF2gtrk%3D&md5=a18d87bfc389beac54d789bf6b98f22aCAS |

[20]  N. Negreira, P. Canosa, I. Rodriguez, M. Ramil, E. Rubi, R. Cela, Study of some UV filters stability in chlorinated water and identification of halogenated by-products by gas chromatography–mass spectrometry. J. Chromatogr. A 2008, 1178, 206.
Study of some UV filters stability in chlorinated water and identification of halogenated by-products by gas chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSmsw%3D%3D&md5=78faefaa1599fe0beb45470e26c4b020CAS | 18067901PubMed |

[21]  M. Nakajima, T. Kawakami, T. Niino, Y. Takahashi, S. Onodera, Aquatic fate of sunscreen agents octyl-4-methoxycinnamate and octyl-4-dimethylaminobenzoate in model swimming pools and the mutagenic assays of their chlorination by-products. J. Health Sci. 2009, 55, 363.
Aquatic fate of sunscreen agents octyl-4-methoxycinnamate and octyl-4-dimethylaminobenzoate in model swimming pools and the mutagenic assays of their chlorination by-products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt12iu78%3D&md5=276d2f27145db13a9ae7511213222075CAS |

[22]  M. Silvia Díaz-Cruz, M. Lorca, D. Barcelo, Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC – Trends Analyt. Chem. 2008, 27, 873.
Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment.Crossref | GoogleScholarGoogle Scholar |

[23]  S. D. Richardson, Disinfection by-products: formation and occurrence in drinking water, in Encyclopedia of Environmental Health (Ed. J. O. Nriagu) 2011, Vol. 1, pp. 110–136 (Elsevier: Burlington, MA, USA).

[24]  Q. Liu, Z. Chen, D. Wei, Y. Du, Acute toxicity formation potential of benzophenone-type UV filters in chlorination disinfection process. J. Environ. Sci. 2014, 26, 440.
Acute toxicity formation potential of benzophenone-type UV filters in chlorination disinfection process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSis7nI&md5=b59112b86b34ceca3bf83c4ce7ca9b82CAS |

[25]  G. Grbović, P. Trebše, D. Dolenc, A. T. Lebedev, M. Sarakha, LC/MS study of the UV filter hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]-benzoate (DHHB) aquatic chlorination with sodium hypochlorite. J. Mass Spectrom. 2013, 48, 1232.
LC/MS study of the UV filter hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]-benzoate (DHHB) aquatic chlorination with sodium hypochlorite.Crossref | GoogleScholarGoogle Scholar | 24259212PubMed |

[26]  R. Žabar, D. Dolenc, T. Jerman, M. Franko, P. Trebše, Photolytic and photocatalytic degradation of 6-chloronicotinic acid. Chemosphere 2011, 85, 861.
Photolytic and photocatalytic degradation of 6-chloronicotinic acid.Crossref | GoogleScholarGoogle Scholar | 21802113PubMed |

[27]  S. V. Patel, M. P. Patel, R. G. Patel, Synthesis and characterization of bromoquinazolinone-substituted spiro[isobenzofuran-1,9′-xanthene]-3-ones. J. Iranian Chem. Soc. 2005, 2, 220.
Synthesis and characterization of bromoquinazolinone-substituted spiro[isobenzofuran-1,9′-xanthene]-3-ones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKltb7E&md5=118a813751ee884160ef2f3fd924ec5aCAS |

[28]  ISO 11348–2, Water quality – Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – part 2: method using liquid-dried bacteria 2007 (International Organization for Standardization: Geneva, Switzerland).

[29]  ISO 8692, Water quality – fresh water algal growth inhibition test with unicellular green algae 2012 (International Organization for Standardization: Geneva, Switzerland).

[30]  ISO 6341, Water quality – determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) – acute toxicity test 2012 (International Organization for Standardization: Geneva, Switzerland).

[31]  ISO 10706, Water quality – determination of long term toxicity of substances to Daphnia magna Straus (Cladocera, Crustacea) 2000 (International Organization for Standardization: Geneva, Switzerland).

[32]  J. Y. Hu, T. Aizawa, S. Ookubo, Products of aqueous chlorination of bisphenol A and their estrogenic activity. Environ. Sci. Technol. 2002a, 36, 1980.
Products of aqueous chlorination of bisphenol A and their estrogenic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFamurk%3D&md5=00f5a7a8501af082742c193dddfc778cCAS | 12026981PubMed |

[33]  J. Y. Hu, G. H. Xie, T. Aizawa, Products of aqueous chlorination of 4-nonylphenol and their estrogenic activity. Environ. Sci. Technol. 2002b, 21, 2034.
| 1:CAS:528:DC%2BD38XntlGjt70%3D&md5=0ac05d33551aa353eafc7612d80092f4CAS |

[34]  J. Y. Hu, S. Cheng, T. Aizawa, Y. Terao, S. Kunikane, Products of aqueous chlorination of 17β-estradiol and their activities. Environ. Sci. Technol. 2003, 37, 5665.
Products of aqueous chlorination of 17β-estradiol and their activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVOgt70%3D&md5=b47405e4fa09bc71b9f31b61e76392d4CAS |

[35]  J. Y. Hu, X. Jin, S. Kunikane, Y. Terao, T. Aizawa, Transformation of pyrene in aqueous chlorination in the presence and absence of bromide ion: kinetics, products and their aryl hydrocarbon receptor-mediated activities. Environ. Sci. Technol. 2006, 40, 487.
Transformation of pyrene in aqueous chlorination in the presence and absence of bromide ion: kinetics, products and their aryl hydrocarbon receptor-mediated activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KktrvP&md5=b58074ba9d51424887aaf58b6ffbccbfCAS |

[36]  J. Michałowicz, W. Duda, J. Stufka-Olczyk, Transformation of phenol, catechol, guaiacol and syringol exposed to sodium hypochlorite. Chemosphere 2007, 66, 657.
Transformation of phenol, catechol, guaiacol and syringol exposed to sodium hypochlorite.Crossref | GoogleScholarGoogle Scholar | 16963105PubMed |

[37]  M.-H. Li, Acute toxicity of benzophenone-type UV filters and paraben preservatives to freshwater planarian, Dugesia japonica.. Toxicol. Environ. Chem. 2012, 94, 566.
Acute toxicity of benzophenone-type UV filters and paraben preservatives to freshwater planarian, Dugesia japonica..Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVagtrk%3D&md5=90b0aa4ba6197a36b37cc4e3e06314a6CAS |

[38]  A. Sieratowicz, D. Kaiser, M. Behr, M. Oetken, J. Oehlmann, Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna.. J. Environ. Sci. Health A 2011, 46, 1311.
Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna..Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wksb%2FP&md5=e497e10a6abb4b224d32fb55c51806f7CAS |

[39]  M. Y. Chen, M. Ike, M. Fujita, Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ. Toxicol. Chem. 2002, 17, 80.
Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslOksrk%3D&md5=5d9762512492c5a45ed96c45a18ba3a9CAS |

[40]  E. Kim, I.-C. Eom, H.-Y. Ro, S. Yoo, S. Lee, K. Choi, Toxicity Assessment of 2,4 Dihydroxybenzophenone for Aquatic Effects 2009 (Risk Assessment Division, National Institute of Environmental Research: Incheon, South Korea).

[41]  E. Paredes, S. Perez, R. Rodil, J. B. Quintana, R. Beiras, Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata. Chemosphere 2014, 104, 44.
Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOgtrnE&md5=e65fc62d9a0069d35769a73011533972CAS | 24359924PubMed |

[42]  R. Rodil, M. Moeder, R. Altenburger, M. Schmitt-Jansen, Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water. Anal. Bioanal. Chem. 2009, 395, 1513.
Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyjs7bP&md5=9b63b7861ddc42bccc561c7a0eaedd09CAS | 19768642PubMed |