Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Genetic monitoring reveals significant population structure in eastern quolls: implications for the conservation of a threatened carnivorous marsupial

Maria J. Cardoso A , Nick Mooney B , Mark D. B. Eldridge C D , Karen B. Firestone A and William B. Sherwin A
+ Author Affiliations
- Author Affiliations

A Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia.

B Department of Primary Industries, Parks, Water and Environment, Wildlife Management and Fox Eradication Branch, GPO Box 44, Hobart, Tas. 7001, Australia.

C Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.

D Corresponding author. Email: mark.eldridge@austmus.gov.au

Australian Mammalogy 36(2) 169-177 https://doi.org/10.1071/AM13035
Submitted: 25 October 2013  Accepted: 6 March 2014   Published: 28 May 2014

Abstract

The eastern quoll (Dasyurus viverrinus), while still relatively abundant in Tasmania, is now threatened by the recently introduced European red fox (Vulpes vulpes). Due to a lack of demographic information on eastern quolls, molecular data become a crucial surrogate to inform the management of the species. The aim of this study was to acquire baseline genetic data for use in current and future conservation strategies. Genetic variation, at seven microsatellite loci, was lower in Tasmanian eastern quolls than in quoll species from the Australian mainland. Within Tasmania, genetic variation was greater in central than peripheral populations, with the lowest levels detected on Bruny Island. Significant genetic population structure, consistent with regional differentiation, appears related to geographic distance among populations. Levels of gene flow appeared moderate, with genetic admixture greatest among central populations. Therefore, eastern quolls from genetically diverse central Tasmanian populations will become an important source for conservation initiatives if widespread declines begin to occur. Ongoing genetic monitoring of existing populations will allow conservation strategies to be adaptive. However, in order for translocations to be successful, managers must not only consider the genetic composition of founding individuals, but also habitat-specific adaptations, disease and threatening processes at translocation sites.

Additional keywords: Dasyurus, management, microsatellites, population genetics, Tasmania.


References

Beebee, T. J. C. (2009). A comparison of single-sample effective size estimators using empirical toad (Bufo calamita) population data: genetic compensation and population size–genetic diversity correlations. Molecular Ecology 18, 4790–4797.
A comparison of single-sample effective size estimators using empirical toad (Bufo calamita) population data: genetic compensation and population size–genetic diversity correlations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2FivFKgtg%3D%3D&md5=216bf4ece25a290340888bdf21dfa783CAS |

Bouzat, J. L., Cheng, H. H., Lewin, H. A., Westemeier, R. L., Brawn, J. D., and Paige, K. N. (1998). Genetic evaluation of a demographic bottleneck in the greater prairie chicken. Conservation Biology 12, 836–843.
Genetic evaluation of a demographic bottleneck in the greater prairie chicken.Crossref | GoogleScholarGoogle Scholar |

Burbidge, A. A., and Manly, B. F. J. (2002). Mammal extinctions on Australian islands: causes and conservation implications. Journal of Biogeography 29, 465–473.
Mammal extinctions on Australian islands: causes and conservation implications.Crossref | GoogleScholarGoogle Scholar |

Burbidge, A. A., and McKenzie, N. L. (1989). Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications. Biological Conservation 50, 143–198.
Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications.Crossref | GoogleScholarGoogle Scholar |

Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J. L., Bielby, J., and Mace, G. M. (2004). Human population density and extinction risk in the world’s carnivores. PLoS Biol 2, 0909–0914.
Human population density and extinction risk in the world’s carnivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslKrtLc%3D&md5=94878f0c62f87bc281cb06fb1e5d44edCAS |

Cardoso, M. J. (2011). Conservation genetics of Australian quolls. Ph.D. Thesis. University of New South Wales, Sydney.

Cardoso, M. J., Eldridge, M. D. B., Oakwood, M., Rankmore, B., Sherwin, W. B., and Firestone, K. B. (2009). Effects of founder events on the genetic variation of translocated island populations – implications for conservation management of the northern quoll. Conservation Genetics 10, 1719–1733.
Effects of founder events on the genetic variation of translocated island populations – implications for conservation management of the northern quoll.Crossref | GoogleScholarGoogle Scholar |

Ceballos, G., and Ehrlich, P. R. (2002). Mammal population losses and the extinction crisis. Science 296, 904–907.
Mammal population losses and the extinction crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFynu70%3D&md5=e93f982d571e30ff78be553ae8eedb34CAS | 11988573PubMed |

Drechsler, M., Eppink, F. V., and Watzold, F. (2011). Does proactive biodiversity conservation save costs? Biodiversity and Conservation 20, 1045–1055.
Does proactive biodiversity conservation save costs?Crossref | GoogleScholarGoogle Scholar |

Eckert, C. G., Samis, K. E., and Lougheed, S. C. (2008). Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Molecular Ecology 17, 1170–1188.
Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFShsbc%3D&md5=be5a50196a4ae9533d7a1e5df73bbc87CAS | 18302683PubMed |

Eldridge, M. D. B., and Herbert, C. A. (2014). Terrestrial mammal diversity, conservation and management in Australia. In ‘Austral Ark’. (Eds A. Stow, G. Holwell and N. Maclean.) In press. (Cambridge University Press: Cambridge.)

Eldridge, M. D. B., Kinnear, J. E., Zenger, K. R., McKenzie, L. M., and Spencer, P. B. S. (2004). Genetic diversity in remnant mainland and ‘pristine’ island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus, and Petrogale lateralis. Conservation Genetics 5, 325–338.
Genetic diversity in remnant mainland and ‘pristine’ island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus, and Petrogale lateralis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1KnsbY%3D&md5=4f5bcf27641782ff6759222b8c28a497CAS |

England, P. R., Cornuet, J.-M., Berthier, P., Tallmon, D. A., and Luikart, G. (2006). Estimating effective population size from linkage disequilibrium: severe bias using small samples. Conservation Genetics 7, 303–308.
Estimating effective population size from linkage disequilibrium: severe bias using small samples.Crossref | GoogleScholarGoogle Scholar |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=a7bd1dd35a37063e998c71a008b82bb1CAS | 15969739PubMed |

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=36dcc2353c9cff6aa3d15021530a7c2fCAS | 1644282PubMed |

Fancourt, B. A., Hawkins, C. E., and Nicol, S. C. (2013). Evidence of rapid population decline of the eastern quoll (Dasyurus viverrinus) in Tasmania. Australian Mammalogy 35, 195–205.
Evidence of rapid population decline of the eastern quoll (Dasyurus viverrinus) in Tasmania.Crossref | GoogleScholarGoogle Scholar |

Firestone, K. B., Sherwin, W. B., Houlden, B. H., and Geffen, E. (2000). Variability and differentiation of microsatellites in the genus Dasyurus and conservation implications for the large Australian carnivorous marsupials. Conservation Genetics 1, 115–133.
Variability and differentiation of microsatellites in the genus Dasyurus and conservation implications for the large Australian carnivorous marsupials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslelsbw%3D&md5=2c71f16314b716687b284f340a2d81b7CAS |

Frankham, R. (1995a). Conservation genetics. Annual Review of Genetics 29, 305–327.
Conservation genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFOm&md5=dd2b91304d37a3ed36634042bb2ef966CAS | 8825477PubMed |

Frankham, R. (1995b). Effective population size/adult population size ratios in wildlife: a review. Genetical Research 66, 95–107.
Effective population size/adult population size ratios in wildlife: a review.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (1997). Do island populations have less genetic variation than mainland populations? Heredity 78, 311–327.
Do island populations have less genetic variation than mainland populations?Crossref | GoogleScholarGoogle Scholar | 9119706PubMed |

Glen, A. S., Cardoso, M. J., Dickman, C. R., and Firestone, K. B. (2009). Who’s your daddy? Paternity testing reveals promiscuity and multiple paternity in the carnivorous marsupial Dasyurus maculatus (Marsupialia: Dasyuridae). Biological Journal of the Linnean Society. Linnean Society of London 96, 1–7.
Who’s your daddy? Paternity testing reveals promiscuity and multiple paternity in the carnivorous marsupial Dasyurus maculatus (Marsupialia: Dasyuridae).Crossref | GoogleScholarGoogle Scholar |

Godsell, J. (1982). The population ecology of the eastern quoll Dasyurus viverrinus (Dasyuridae, Marsupialia), in southern Tasmania. In ‘Carnivorous Marsupials’. (Ed. M. Archer.) pp. 199–207. (Royal Zoological Society of New South Wales: Sydney.)

Godsell, J. (1983). Ecology of the eastern quoll, Dasyurus viverrinus (Dasyuridae: Marsupialia). Ph.D. Thesis. Australian National University, Canberra.

Goudet, J. (1995). F-STAT (Version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.

Hanski, I., and Gaggiotti, O. E. (2004). ‘Ecology, Genetics and Evolution of Metapopulations.’ (Elsevier Academic Press: Amsterdam.)

Hawkins, C. E., Baars, C., Hesterman, H., Hocking, G. J., Jones, M. E., Lazenby, B., Mann, D., Mooney, N., Pemberton, D., Pyecroft, S., Restani, M., and Wiersma, J. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biological Conservation 131, 307–324.
Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii.Crossref | GoogleScholarGoogle Scholar |

Hill, W. G. (1981). Estimation of effective population size from data on linkage disequilibrium. Genetical Research 38, 209–216.
Estimation of effective population size from data on linkage disequilibrium.Crossref | GoogleScholarGoogle Scholar |

IUCN (2013). The IUCN Red List of Threatened Species 2013.2. Available at: www.iucnredlist.org

Jones, M. E., and Barmuta, L. A. (2000). Niche differentiation among sympatric Australian dasyurid carnivores. Journal of Mammalogy 81, 434–447.
Niche differentiation among sympatric Australian dasyurid carnivores.Crossref | GoogleScholarGoogle Scholar |

Jones, M. E., and Rose, R. K. (1996). Preliminary assessment of distribution and habitat associations of the spotted-tailed quoll (Dasyurus maculatus maculatus) and eastern quoll (D. viverrinus) in Tasmania to determine conservation and reservation status. Tasmanian Public Land Use Commission, Hobart.

Jones, M. E., Oakwood, M., Belcher, C. A., Morris, K., Murray, A. J., Woolley, P. A., Firestone, K. B., Johnson, B., and Burnett, S. (2003). Carnivore concerns: problems, issues and solutions for conserving Australasia’s marsupial carnivores. In ‘Predators with Pouches: The Biology of Carnivorous Marsupials’. (Eds M. E. Jones, C. R. Dickman, and M. Archer.) pp. 422–434. (CSIRO Publishing: Melbourne.)

Jones, M. E., Paetkau, D., Geffen, E., and Moritz, C. (2004). Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Molecular Ecology 13, 2197–2209.
Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsl2rtbk%3D&md5=3a4d7850b0d92fe6307344aa8e71265cCAS | 15245394PubMed |

Kalinowski, S. T., and Waples, R. S. (2002). Relationship of effective to census size in fluctuating populations. Conservation Biology 16, 129–136.
Relationship of effective to census size in fluctuating populations.Crossref | GoogleScholarGoogle Scholar |

Luikart, G., Allendorf, F. W., Cornuet, J.-M., and Sherwin, W. B. (1998). Distortion of allele frequency distributions provides a test for recent population bottlenecks. The Journal of Heredity 89, 238–247.
Distortion of allele frequency distributions provides a test for recent population bottlenecks.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czitVKhsA%3D%3D&md5=decd32f0761282ed1e6cff0522cd2805CAS | 9656466PubMed |

Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K., and Allendorf, F. W. (2010). Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conservation Genetics 11, 355–373.
Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFOqsLc%3D&md5=c83363b56aa212c4a4c038bb9efb762cCAS |

Manel, S., Schwartz, M. K., Luikart, G., and Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology & Evolution 18, 189–197.
Landscape genetics: combining landscape ecology and population genetics.Crossref | GoogleScholarGoogle Scholar |

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.
| 1:STN:280:DyaF2s%2FptlSnsA%3D%3D&md5=f5ad2c298c1c8e8144686525267c09d6CAS | 6018555PubMed |

Maudet, C., Miller, C., Bassano, B., Breitenmoser-Würsten, C., Gauthier, D., Obexer-Ruff, G., Michallet, J., Taberlet, P., and Luikart, G. (2002). Microsatellite DNA and recent statistical methods in wildlife conservation mangement: applications in Alpine ibex. Molecular Ecology 11, 421–436.
Microsatellite DNA and recent statistical methods in wildlife conservation mangement: applications in Alpine ibex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislCgtr0%3D&md5=6459adebee056a23d7e2983bfcc6e8f2CAS |

McKnight, M. (2013). Dasyurus viverrinus. In ‘IUCN Red List of Threatened Species 2013.2’. Available at: www.iucnredlist.org

NPWS (1999). Eastern quoll. Threatened species information. Threatened Species Unit, New South Wales National Parks and Wildlife Service, Sydney. http://www.environment.nsw.gov.au/resources/nature/tsprofileEasternQuoll.pdf.

Orloci, L. (1978). ‘Multivariate Analysis in Vegetation Research.’ (Dr W. Junk: The Hague.)

Paetkau, D., Slade, R., Burden, M., and Estoup, A. (2004). Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology 13, 55–65.
Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1WksLY%3D&md5=f90a35d04d0869f13927cd6853babe7fCAS | 14653788PubMed |

Peakall, R., and Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Peel, D., Ovenden, J. R., and Peel, S. L. (2004). NeEstimator: Software for estimating effective population size, version 1.3. Queensland Department of Primary Industries and Fisheries, Brisbane.

Petit, R. J., El Mousadik, A., and Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12, 844–855.
Identifying populations for conservation on the basis of genetic markers.Crossref | GoogleScholarGoogle Scholar |

Piry, S., Luikart, G., and Cornuet, J.-M. (1999). BOTTLENECK: a computer program for detecting recent reductions in effective population size from allele frequency data. The Journal of Heredity 90, 502–503.
BOTTLENECK: a computer program for detecting recent reductions in effective population size from allele frequency data.Crossref | GoogleScholarGoogle Scholar |

Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, L., Baudouin, L., and Estoup, A. (2004). GENECLASS2: a software for genetic assignment and first-generation migrant detection. The Journal of Heredity 95, 536–539.
GENECLASS2: a software for genetic assignment and first-generation migrant detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlWlsrk%3D&md5=e78f4b3a963d95c8a44dd68bab02c149CAS | 15475402PubMed |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure from multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=ef19218588e600e8898e3bfa5ea9e288CAS | 10835412PubMed |

Rankmore, B., Griffiths, A. D., Woinarski, J., Ganambarr, B. L., Taylor, R., Brennan, K., Firestone, K. B., and Cardoso, M. J. (2008). Island translocation of the northern quoll Dasyurus hallucatus as a conservation response to the spread of the cane toad Chaunus [Bufo] marinus in the Northern Territory, Australia. Department of Natural Resources, Environment and the Arts, Darwin.

Rannala, B., and Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America 94, 9197–9201.
Detecting immigration by using multilocus genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Kls7w%3D&md5=d1dbd2ff05cf45395ce1e350e983edb1CAS | 9256459PubMed |

Raymond, M., and Rousset, F. (1995). GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.

Reed, D. H., and Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology 17, 230–237.
Correlation between fitness and genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Rounsevell, D. E., Taylor, R. J., and Hocking, G. J. (1991). Distribution records of native terrestrial mammals in Tasmania. Wildlife Research 18, 699–717.
Distribution records of native terrestrial mammals in Tasmania.Crossref | GoogleScholarGoogle Scholar |

Short, J., and Smith, A. (1994). Mammal decline and recovery in Australia. Journal of Mammalogy 75, 288–297.
Mammal decline and recovery in Australia.Crossref | GoogleScholarGoogle Scholar |

Smouse, P. E., Long, J. C., and Sockal, R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35, 627–632.
Multiple regression and correlation extensions of the Mantel test of matrix correspondence.Crossref | GoogleScholarGoogle Scholar |

Sokal, R. R., and Rohlf, F. J. (1995). ‘Biometry: The Principles and Practice of Statistics in Biological Research.’ (Freeman & Co: New York.)

Sunnucks, P., and Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Kgurk%3D&md5=11329b51d28875e8c6ddec92edf2e323CAS | 8742640PubMed |

Tallmon, D. A., Koyuk, A., Luikart, G., and Beaumont, A. (2008). ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Molecular Ecology Resources 8, 299–301.
ONeSAMP: a program to estimate effective population size using approximate Bayesian computation.Crossref | GoogleScholarGoogle Scholar | 21585773PubMed |

Vandermeer, J., and Carvajal, R. (2001). Metapopulation dynamics and the quality of the matrix. American Naturalist 158, 211–220.
Metapopulation dynamics and the quality of the matrix.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1critlymsg%3D%3D&md5=b072f15742654a57f06a166b3a14984cCAS | 18707319PubMed |

Vucetich, J. A., and Waite, T. A. (2003). Spatial patterns of demographic and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conservation Genetics 4, 639–645.
Spatial patterns of demographic and genetic processes across the species’ range: null hypotheses for landscape conservation genetics.Crossref | GoogleScholarGoogle Scholar |

Waples, R. S. (2006). A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics 7, 167–184.
A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci.Crossref | GoogleScholarGoogle Scholar |

Waples, R. S., and Do, C. (2008). LDNe: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8, 753–756.
LDNe: a program for estimating effective population size from data on linkage disequilibrium.Crossref | GoogleScholarGoogle Scholar | 21585883PubMed |

Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Estimating F-statistics for the analysis of population structure.Crossref | GoogleScholarGoogle Scholar |