Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Analysis of genetic diversity, population structure and linkage disequilibrium in elite cotton (Gossypium L.) germplasm in India

Satya Narayan Jena A C , Anukool Srivastava A , Uma Maheswar Singh A , Sribash Roy A , Nandita Banerjee A , Krishan Mohan Rai A , Sunil Kumar Singh A , Verandra Kumar A , Lal Babu Chaudhary A , Joy Kumar Roy A B , Rakesh Tuli A B and Samir V. Sawant A
+ Author Affiliations
- Author Affiliations

A National Botanical Research Institute (CSIR), Rana Pratap Marg, Lucknow, India.

B Present address: National Agri-Food Biotechnology Institute, Industrial Area, SAS Nagar, Mohali, India.

C Corresponding author. Email: satyanarayan@nbri.res.in

Crop and Pasture Science 62(10) 859-875 https://doi.org/10.1071/CP11161
Submitted: 23 June 2011  Accepted: 1 October 2011   Published: 6 December 2011

Abstract

An understanding of the level of genetic diversity is a prerequisite for designing efficient breeding programs. Fifty-one cultivars of four cotton species (Gossypium hirsutum, G. barbadense, G. herbaceum and G. arboreum) representing core collections at four major cotton research stations with a wide range of eco-geographical regions in India were examined for the level of genetic diversity, distinct subpopulations and the level of linkage disequilibrium (LD) using 1100 amplified fragment length polymorphism (AFLP) markers with 16 primer pairs combinations. The AFLP markers enabled a reliable assessment of inter- and intra-specific genetic variability with a heterogeneous genetic structure. Higher genetic diversity was noticed in G. herbaceum, followed by G. arboreum. The genetic diversity in tetraploid cotton species was found to be less than that in the diploid species. The genotypes VAGAD, RAHS14, IPS187, 221 557, Jayhellar of G. herbaceum and 551, DLSA17, 221 566 of G. arboreum were identified as the most diverse parents, useful for quantitative trait loci (QTL) analysis in diploid cotton. Similarly, LRA 5166, AS3 and MCU5 of G. hirsutum and B1, B3, Suvin of G. barbadense were most diverse to develop mapping populations for fibre quality. The internal transcribed spacer sequences were sufficient to resolve different species and subspecies of diploid cotton. Low level of genome-wide LD was detected in the entire collection (r2 = 0.07) as well as within the four species (r2 = 0.11–0.15). A strong agreement was noticed between the clusters constructed on the basis of morphological and genotyping data.

Additional keywords: cotton, genetic diversity, population structure, resolving power.


References

Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE (2001) Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theoretical and Applied Genetics 102, 222–229.
Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVyns70%3D&md5=49777451a85090fbf9f7cf795959f423CAS |

Adawy SS, Assem SK, Ebtissam Hussein HA, Hanaiya AE (2006) Molecular characterization and genetic relationship among cotton genotypes, 2-AFLP analysis. Arab Journal of Biotechnology 9, 478–492.

Anonymous (2006) Project coordinator’s report. All India Coordinated Cotton Improvement Project. CICR, Regional Station, Coimbatore.

Beasley JO (1940) The origin of American tetraploid Gossypium species. American Naturalist 74, 285–286.
The origin of American tetraploid Gossypium species.Crossref | GoogleScholarGoogle Scholar |

Beasley JO (1942) Meiotic chromosome behavior in species, species hybrids, haploids and induced polyploids of Gossypium. Genetics 27, 25–54.

Bouajila A, Abang MM, Haouas S, Rezgui SUS, Baum M, Yahyaoui A (2007) Genetic diversity of Rhynchosporium secalis in Tunisia as revealed by pathotype, AFLP, and microsatellite analyses. Mycopathologia 163, 281–294.
Genetic diversity of Rhynchosporium secalis in Tunisia as revealed by pathotype, AFLP, and microsatellite analyses.Crossref | GoogleScholarGoogle Scholar |

Brubaker CL, Bourland FM, Wendel JF (1999) The origin and domestication of cotton. In ‘Cotton, origin, history, technology and production’. (Eds WC Smith, T Cothren) pp. 3–31. (John Wiley and Sons: New York)

Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family, 5S ribosomal DNA in diploid and allopolyploid cottons. Journal of Molecular Evolution 42, 685–705.
Polymorphism and concerted evolution in a tandemly repeated gene family, 5S ribosomal DNA in diploid and allopolyploid cottons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1Omsbo%3D&md5=b2dfaa4230ea0bc97b2d411c88e5ab64CAS |

Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of cotton genus (Gossypium, Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. American Journal of Botany 89, 707–725.
Rapid diversification of cotton genus (Gossypium, Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVymtA%3D%3D&md5=e7da59e902478f453a9bb3fc4acb8967CAS |

DeVerno LL, Mosseler A (1997) Genetic variation in red pine (Pinus resinosa) revealed by RAPD and RAPD–RFLP analysis. Canadian Journal of Forest Research 27, 1316–1320.
Genetic variation in red pine (Pinus resinosa) revealed by RAPD and RAPD–RFLP analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslOjtro%3D&md5=19b764092eb031119e1c2597fd5e32f1CAS |

Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytogenetics, and evolution of Gossypium. Advances in Genetics 23, 271–375.
Genetics, cytogenetics, and evolution of Gossypium.Crossref | GoogleScholarGoogle Scholar |

Enjalbert J, Duan X, Leconte M, Hovmoller MS, de Vallavielle-pope C (2005) Genetic evidence of local adaptation of wheat yellow rust (Puccina striiformis f. sp. tritici) within France. Molecular Ecology 14, 2065–2073.
Genetic evidence of local adaptation of wheat yellow rust (Puccina striiformis f. sp. tritici) within France.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslemtr0%3D&md5=9dda9303e1a9a99c652f7730744cb1a0CAS |

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=7c07ad3ce6c4ef672713769a7b535367CAS |

Excoffier L (2006) Neandertal genetic diversity, a fresh look from old samples. Current Biology 16, R650–R652.
Neandertal genetic diversity, a fresh look from old samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOhtLY%3D&md5=654579f2d8775361306581e60c4de846CAS |

Excoffier L, Smouse P (1994) Using allele frequencies and geographic subdivision to reconstruct gene genealogies within a species. Molecular variance parsimony. Genetics 136, 343–359.

Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes, application to human mitochondrial DNA restriction data. Genetics 131, 479–491.

Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart N, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Research 10, 220–227.
Extensive genome-wide linkage disequilibrium in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVOks70%3D&md5=8221dd9d1df191b3dcc29da5d4a10832CAS |

Felsenstein J (1985) Confidence limits on phylogenies, an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies, an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Felsenstein J (1989) PHYLIP – Phylogeny Inference Package (version 3.2). Cladistics 5, 164–166.

Fernandez M, Figueiras A, Benito C (2002) The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical Applied and Genetics 104, 845–851.

Flint-Garcia SA, Thornsberry JM, Buckler ESIY (2003) Structure of linkage disequilibrium in plants. Annual Review of Plant Biology 54, 357–374.
Structure of linkage disequilibrium in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgu7c%3D&md5=e59dc56b0f3e5db4b237a288c6904e41CAS |

Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2, 108–165.

Ghislain M, Zhang D, Fajardo D, Huaman Z, Hijmans RJ (1999) Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genetic Resources and Crop Evolution 46, 547–555.
Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers.Crossref | GoogleScholarGoogle Scholar |

Gort G, Koopman WJM, Stein A (2006) Fragment length distributions and collision probabilities for AFLP markers. Biometrics 62, 1107–1115.
Fragment length distributions and collision probabilities for AFLP markers.Crossref | GoogleScholarGoogle Scholar |

Gulatti AM, Turner AJ (1928) A note on the early history of cotton. Indian Central Cotton Committee, Technical Laboratory Bulletin No. 17.

Guo WZ, Wang K, Zhang TZ (2003) A and D genome evolution in Gossypium revealed using SSR molecular markers. Acta Genetica Sinca 30, 183–188.

Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113, 163–185.
The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFSltL8%3D&md5=9980070110dec4ff737a3383d766e504CAS |

Hansen M, Kraft T, Christiansen M, Nilsson NO (1999) Evaluation of AFLP in Beta. Theoretical and Applied Genetics 98, 845–852.
Evaluation of AFLP in Beta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFSmsr8%3D&md5=39cafb133a36c595c4843b2018021e8fCAS |

Hartl DL, Clark AG (1989) ‘Principles of population genetics.’ 2nd edn (Sinauer Associates: Sunderland, MA)

Hussein EHA, Al-Said MSh, El-Itriby HA, Madkour MA (2002) Genotyping Egyptian cotton varities (G. barbadense) using molecular markers. In ‘Biotechnology and Sustainable Development: Voices of the South and North Conference’. Alexandria, Egypt, 16–20 March. Poster.

Hutchinson JB, Silow RA, Stephens SG (1947) ‘The evolution of Gossypium and the differentiation of the cultivated cottons.’ 1st edn. (Oxford University Press: London)

Iqbal MJ, Aziz N, Saeed NA, Zafar Y, Malik KA (1997) Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theoretical and Applied Genetics 94, 139–144.
Genetic diversity evaluation of some elite cotton varieties by RAPD analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVeru7s%3D&md5=40064475c9cb13d405d4d8f74870093fCAS |

Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theoretical and Applied Genetics 103, 547–554.
A genetic bottleneck in the ‘evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Gmsb4%3D&md5=21624fcf2c3998a228bb9a9b102bccf7CAS |

Jaccard P (1908) Nouvelles recherches sur la distribution florale. Société Vaudoise des Sciences Naturelles 44, 223–270.

Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertensive rat. Cell 67, 213–224.
Genetic mapping of a gene causing hypertensive rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmslaiurk%3D&md5=5e5b695f572b3d43081a2c77bfea7971CAS |

Jena S, Sahoo P, Mohanty S, Das AB (2004) Identification of RAPD markers, in situ DNA content and structural chromosomal diversity in some legumes of the mangrove flora of Orissa. Genetica 122, 217–226.
Identification of RAPD markers, in situ DNA content and structural chromosomal diversity in some legumes of the mangrove flora of Orissa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFagtrk%3D&md5=6c2ec448c20d2b2c874c48773cc09c65CAS |

Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Weil C, Bredemeijer G, Vosman B, Mattes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP, and SSR markers in plants by a network of European laboratories. Molecular Breeding 3, 381–390.
Reproducibility testing of RAPD, AFLP, and SSR markers in plants by a network of European laboratories.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFensbg%3D&md5=7c26bcd1c80eee49cd0158dcef33dfd7CAS |

Kalita M, Malek W (2006) Application of the AFLP method to differentiate Genista tinctoria microsymbionts. Journal of General and Applied Microbiology 52, 321–328.
Application of the AFLP method to differentiate Genista tinctoria microsymbionts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlGgtb4%3D&md5=ece1b4af59c66eb82d04383050d323e3CAS |

Kantartzi SK, Ulloa M, Sacks E, Stewart JM (2009) Assessing genetic diversity in Gossypium arboreum L. cultivars using genomic and EST-derived microsatellites. Genetica 136, 141–147.
Assessing genetic diversity in Gossypium arboreum L. cultivars using genomic and EST-derived microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFejtb8%3D&md5=1c6af65a149cd0b615a8b9325212313cCAS |

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.

Kraakman ATW, Niks RE, Berg PMMM, Stam P, Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168, 435–446.
Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptl2mu7Y%3D&md5=9b62a8df474a9b6f2710b1f12eed2222CAS |

Lacape JM, Dessauw D, Rajab M, Noyer JL, Hau B (2007) Microsatellite diversity in tetraploid Gossypium germplasm, assembling a highly informative genotyping set of cotton SSRs. Molecular Breeding 19, 45–58.
Microsatellite diversity in tetraploid Gossypium germplasm, assembling a highly informative genotyping set of cotton SSRs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGktbnP&md5=6c0216d08f5497837153dfb1ffb71274CAS |

Lewontin RC (1972) The apportionment of human diversity. Evolutionary Biology 6, 381–398.

Li Z, Wang X, Yan Z, Guiyin Z, Wu L, Jina C, Ma Z (2008) Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers. Frontiers of Agriculture in China 2, 245–252.

Lukonge E, Herselman L, Labuschangne M (2007) Analysis of genetic diversity in cotton (Gossypium hirsutum L.) varities using amplified fragment length polymorphism (AFLP) markers. In ‘The World Cotton Research Conference-4’. Lubbock, Texas, USA. 10–14 Sept.

Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.

Masum Akond ASMG, Watanabe N, Furuta Y (2008) Comparative genetic diversity of Triticum aestivum–Triticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment. Genetic Resources and Crop Evolution 55, 133–141.
Comparative genetic diversity of Triticum aestivum–Triticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment.Crossref | GoogleScholarGoogle Scholar |

Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecology Evolution 14, 389–394.

Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323.

Nei N, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76, 5269–5273.
Mathematical model for studying genetic variation in terms of restriction endonucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVWn&md5=1888df23ffabbe5265411ac1e2a033cdCAS |

Nybom N, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3, 93–114.
Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants.Crossref | GoogleScholarGoogle Scholar |

Pillay M, Myers GO (1999) Genetic diversity assessed by variation in ribosomal RNA genes and AFLP markers. Crop Science 39, 1881–1886.
Genetic diversity assessed by variation in ribosomal RNA genes and AFLP markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpt1GrtA%3D%3D&md5=cec15e45c6588b173f3b6845edee4a49CAS |

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2, 225–238.
The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntlGrtLk%3D&md5=465859107f5d067d01477409db16c588CAS |

Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics 98, 107–112.
A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslOmur0%3D&md5=6d31ecd36a55c06b77e7692681a88882CAS |

Pritchard K, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C, Tingey SV (1996) Generating and using DNA markers in plants. In ‘Non-mammalian genomic analysis, a practical guide’. (Eds B Birren, E Lai) pp. 75–134. (Academic Press: London)

Rana MK, Singh VP, Bhat KV (2005) Assessment of genetic diversity in Upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics. Genetic Resources and Crop Evolution 52, 989–997.
Assessment of genetic diversity in Upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFSnu7k%3D&md5=cc9eba1777f1bae22315a74c81912787CAS |

Rieseberg LH, Noyes RD (1998) Genetic map-based studies of reticulate evolution in plants. Trends in Plant Science 3, 254–259.
Genetic map-based studies of reticulate evolution in plants.Crossref | GoogleScholarGoogle Scholar |

Rohlf FJ (1998) ‘NTSYS-pc, numerical taxonomy and multivariate analysis system. Version 2.0.’ (Exeter Software: Setauket)

Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics. Proceedings of the National Academy of Sciences of the United States of America 91, 5466–5470.
Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3mtFKjtA%3D%3D&md5=23abf90cd5c3b3733e3f92aacf09d654CAS |

Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

Schneider S, Roessli D, Excoffier L (2000) ‘Arlequin, for population genetics data analysis.’ (Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva: Geneva)

Seelanan T, Schnabel A, Wendel JF (1997) Congruence and consensus in the cotton tribe. Systematic Botany 22, 259–290.
Congruence and consensus in the cotton tribe.Crossref | GoogleScholarGoogle Scholar |

Shannon CE, Weaver W (1949) ‘The mathematical theory of information.’ (University of Illinois Press: Urbana, IL)

Sharma S, Raina SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenetic and Genome Research 109, 15–26.
Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFeku74%3D&md5=888c0b6be4c8d8f2212eeae97611e82bCAS |

Somers DJ, Banks T, DePauw R, Fox S, Clarke J (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50, 557–567.

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4, Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
MEGA4, Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=7d2ef2efe72226fe6f32f66114932563CAS |

Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA, Prathibha Devi P, Varshney RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Science 176, 505–513.
AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFGktbg%3D&md5=1f8d9aff2941417fd2b4683aa51ff771CAS |

Tatineni V, Cantrell RG, Davis DD (1996) Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPD. Crop Science 36, 186–192.
Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPD.Crossref | GoogleScholarGoogle Scholar |

Tautz D, Renz M (1984) Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 12, 4127–4138.
Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXks1KqurY%3D&md5=be1c5437baad47bc75316956dbe8f8d9CAS |

Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science 173, 638–649.
Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2hsb3J&md5=9825d74bd07391f74e3e2022f4dad142CAS |

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP, a new technique for DNA finger printing. Nucleic Acids Research 23, 4407–4414.
AFLP, a new technique for DNA finger printing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=2e28da15615c4c56933a6371f8bd2f2aCAS |

Wendel JF, Doyle JJ (1998) Phylogenetic incongruence, window into genome history and molecular evolution. In ‘Molecular systematics of plants II. DNA sequencing’. (Eds DE Soltis, PS Soltis, JJ Doyle) pp. 265–296. (Kluwer Academic: Boston)

Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of upland cotton. American Journal of Botany 79, 1291–1310.
Genetic diversity in Gossypium hirsutum and the origin of upland cotton.Crossref | GoogleScholarGoogle Scholar |

Wendel JF, Schnabel A, Seelanan T (1995a) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of the United States of America 92, 280–284.
Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtVens7o%3D&md5=db5b62676b2746a31a2e154a77008fe9CAS |

Wendel JF, Schnabel A, Seelanan T (1995b) An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, inter-genomic introgression. Molecular Phylogenetics and Evolution 4, 298–313.
An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, inter-genomic introgression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFShurw%3D&md5=33ac9eb8efcdc5de2d2d17b038000691CAS |

Xiao M, Li Q, Guo L, Luo T, Duan WX, He WX, Wang L, Chen F (2006) AFLP analysis of genetic diversity of the endangered species Sinopodophyllum hexandrum in the Tibetan region of Sichuan province. China Biochemistry Genetics 44, 47–60.

Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 129, 157