Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Identification and validation of QTLs controlling multiple traits in sorghum

Hai-Lian Wang A , Hua-Wen Zhang A , Rui-Heng Du B , Gui-Ling Chen A , Bin Liu A , Yan-Bing Yang A , Ling Qin A , Er-Ying Cheng A , Qiang Liu C and Yan-An Guan A D
+ Author Affiliations
- Author Affiliations

A Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.

B Millet Research Institute, Hebei Academy of Agro-forestry Sciences, Shijiazhuang, 050000, China.

C Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.

D Corresponding author. Email: yguan65@163.com

Crop and Pasture Science 67(2) 193-203 https://doi.org/10.1071/CP15239
Submitted: 18 July 2015  Accepted: 2 November 2015   Published: 29 February 2016

Abstract

Sweet sorghum (Sorghum bicolor L. Moench) is a promising crop for biofuel and forage production, having strong resilience to multiple stresses and being capable of thriving on marginal land. The main goals in sweet sorghum improvement are to increase biomass and sugar yield. We validated quantitative trait loci (QTLs) controlling plant height, biomass, juice weight and Brix with 181 recombinant inbred lines derived from a cross between Shihong137, a dwarf grain sorghum, and L-Tian, a tall sweet sorghum, under four environments. Seven QTLs for plant height, stem and leaf fresh weight, stem fresh weight and juice weight could be repeatedly identified across four environments. However, three of those major QTLs, qPH7-2, qSLFW9 and qSFW9, had strong epistatic effect. Many QTLs related to biomass production were co-localised with previously known height QTLs, suggesting that plant height is a major trait regulating biomass production. However, qSFW1-2, qSLFW6-1, and qSLFW6-2 were mapped to positions with no known height QTL. We also identified and validated stable qBrix2 across environments. This study provided a genetic basis for integrated approaches, including plant height, to improve sweet sorghum biomass and sugar production.

Additional keywords: Dw, F2 and F2:3 populations, genetic map, marker-assisted selection.


References

Almodares A, Jafarinia M, Hadi MR (2009) The effects of nitrogen fertilizer on chemical compositions in corn and sweet sorghum. Agriculture and Environment Science 6, 441–446.

Bian YL, Yazaki SJ, Inoue M, Cai HW (2006) QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agricultural Sciences in China 5, 736–744.
QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ehsb3E&md5=bbb5dde3ba9f34e00e0d6927976c20a8CAS |

Brown PJ, William LR, Cleve F, Stephen X (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180, 629–637.
Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes.Crossref | GoogleScholarGoogle Scholar | 18757942PubMed |

Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

Fazaeli H, Golmohhammadi HA, Al-Moddarres A, Mosharraf S, Shoaei AA (2006) Comparing the performance of sorghum silage with maize silage in feedlot calves. Pakistan Journal of Biological Sciences 9, 2450–2455.
Comparing the performance of sorghum silage with maize silage in feedlot calves.Crossref | GoogleScholarGoogle Scholar |

Felderhoff TJ, Murray SC, Klein PE, Sharma A, Hamblin MT, Kresovich S, Vermerris W, Rooney WL (2012) QTLs for energy-related traits in a sweet× grain sorghum [(L.) Moench] mapping population. Crop Science 52, 2040–2049.
QTLs for energy-related traits in a sweet× grain sorghum [(L.) Moench] mapping population.Crossref | GoogleScholarGoogle Scholar |

Guan YA, Wang HL, Qin L, Zhang HW, Yang YB, Gao FJ, Li RY, Wang HG (2011) QTL mapping of bio-energy related traits in sorghum. Euphytica 182, 431–440.
QTL mapping of bio-energy related traits in sorghum.Crossref | GoogleScholarGoogle Scholar |

Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theoretical and Applied Genetics 103, 1232–1242.
Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVyrsb8%3D&md5=457ba9db9ec53bd322db8f74400f2531CAS |

Lander ES, Green P, Abrahamson J (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage map of experimental and natural populations. Genomics 1, 174–181.
MAPMAKER: an interactive computer package for constructing primary genetic linkage map of experimental and natural populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVCksrk%3D&md5=af73748048699bc7603eb83c3ec9b2b9CAS | 3692487PubMed |

Léder I (2004) Sorghum and millets. In ‘Encyclopedia of life support systems’. (Eolss Publishers: Oxford, UK)

Li M, Yuyama N, Luo L, Hirata M, Cai H (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Molecular Breeding 24, 41–47.
In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum.Crossref | GoogleScholarGoogle Scholar |

Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141, 391–411.

Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP version 3.0: A tutorial and reference manual. Whitehead Institute for Biomedical Research Technical Report, 78–79, Cambridge, MA, USA.

Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics 121, 1339–1356.
Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qu7rN&md5=8efa2889aeb272f74aa5441341ab987dCAS | 20585750PubMed |

Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biology 9, 13
A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers.Crossref | GoogleScholarGoogle Scholar | 19171067PubMed |

Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Wang J (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nature Communications 4, 2320
Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum.Crossref | GoogleScholarGoogle Scholar | 23982223PubMed |

Madhusudhana R, Patil JV (2013) A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 191, 259–268.
A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench].Crossref | GoogleScholarGoogle Scholar |

Mocoeur A, Zhang YM, Liu ZQ, Shen X, Zhang LM, Rasmussen SK, Jing HC (2015) Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour). Theoretical and Applied Genetics 128, 1685–1701.
Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXos1Ohsbo%3D&md5=8e4c8bea41cd2bc918c80c77b5ee5444CAS | 25982132PubMed |

Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America 110, 453–458.
Population genomic and genome-wide association studies of agroclimatic traits in sorghum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOht7c%3D&md5=b4551ee6da141b8ed2979b8626728279CAS | 23267105PubMed |

Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81–84.
Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslSjsrc%3D&md5=6f17e4f522f9b8eaefd0e4824b383edbCAS | 14526073PubMed |

Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Science 48, 2165–2179.
Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates.Crossref | GoogleScholarGoogle Scholar |

Paterson AH (2008) Genomics of sorghum. International Journal of Plant Genomics 2008, Art. ID 362451
Genomics of sorghum.Crossref | GoogleScholarGoogle Scholar |

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Peterson DG (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556.
The Sorghum bicolor genome and the diversification of grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOmsb4%3D&md5=42d576e027320e673196f0dcd2a66aa1CAS | 19189423PubMed |

Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theoretical and Applied Genetics 90, 380–388.
Identification of genomic regions affecting plant height in sorghum and maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtF2lsL4%3D&md5=75ab9c93fe26ea4ad5ca14a0dd88fb6aCAS | 24173928PubMed |

Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agronomy Journal 46, 211–216.
Inheritance of height in sorghum.Crossref | GoogleScholarGoogle Scholar |

Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet×grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Molecular Breeding 22, 367–384.
Identification of QTL for sugar-related traits in a sweet×grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population.Crossref | GoogleScholarGoogle Scholar |

Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts & Biorefining 1, 147–157.
Designing sorghum as a dedicated bioenergy feedstock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurnN&md5=ccc7ee74b9272e8fa48628ee20e76d4bCAS |

Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Applied Genetics 119, 1425–1439.
Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench].Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKisrjM&md5=d485be0f0b2c9c216a39ec12e51eed37CAS | 19763534PubMed |

Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theoretical and Applied Genetics 121, 323–336.
Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Wquro%3D&md5=5b2781d136bdda6d9f3a592e27aae4c5CAS | 20229249PubMed |

Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theoretical and Applied Genetics 118, 703–717.
Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVOhs70%3D&md5=3b79e7bec6893978e3aa40b3fd62df75CAS | 19034408PubMed |

Upadhyaya HD, Wang YH, Gowda CLL, Sharma S (2013) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theoretical and Applied Genetics 126, 2003–2015.
Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Sjt7zF&md5=d25394716607ae5a59fb1ad92806ee38CAS | 23649651PubMed |

Wang SC, Basten J, Zeng ZB (2010) ‘Windows QTL Cartographer2.5.’ (Department of Statistics, North Carolina State University: Raleigh, NC, USA) Available at: http://statgen.ncsu.edu/qtlcart/WQTL.Cart.htm

Wang HL, Chen GL, Zhang HW, Liu B, Yang YB, Qin L, Chen EY, Guan YA (2014) Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica 196, 117–127.
Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaqsLbN&md5=6bae1709545749afc11113e702008e1dCAS |

Wortmann CS, Regassa T (2011) ‘Sweet sorghum as a bioenergy crop for the US Great Plains.’ (INTECH Open Access Publisher: Rijeka, Croatia)

Yang J, Zhu J, Williams RW (2007b) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23, 1527–1536.
Mapping the genetic architecture of complex traits in experimental populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFGjs7k%3D&md5=ec0ba6995a43e910c0502609efe14dcfCAS | 17459962PubMed |

Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24, 721–723.
QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations.Crossref | GoogleScholarGoogle Scholar | 18202029PubMed |

Yonemaru J, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M (2009) Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Research 16, 187–193.
Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1eqt7s%3D&md5=871cf2a28bce90db58bc6415e38af1cbCAS | 19363056PubMed |

Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Jing HC (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biology 12, R114
Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVWlsbo%3D&md5=9f7a604e32b1c8f34a2a4909b7569de1CAS | 22104744PubMed |

Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Tao Y (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. Journal of Experimental Botany 63, 5451–5462.
Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSnu7fM&md5=72dceb8acea7faf1d7dadf3bb03bee51CAS | 22859680PubMed |